Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy
The limited clinical response and serious side effect have been challenging in cancer immunotherapy resulting from immunosuppressive tumor microenvironment (TME) and inferior drug targeting. Herein, an active targeting TME nanoplatform capable of revising the immunosuppressive TME microenvironment i...
Saved in:
Published in: | Bioactive materials Vol. 19; pp. 237 - 250 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
China
Elsevier B.V
01-01-2023
KeAi Publishing KeAi Communications Co., Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The limited clinical response and serious side effect have been challenging in cancer immunotherapy resulting from immunosuppressive tumor microenvironment (TME) and inferior drug targeting. Herein, an active targeting TME nanoplatform capable of revising the immunosuppressive TME microenvironment is designed. Briefly, gold nanorods (GNRs) are covered with silica dioxide (SiO2) and then coated manganese dioxide (MnO2) to obtain GNRs@SiO2@MnO2 (GSM). Myeloid-derived suppressor cells (MDSCs) membrane is further camouflaged on the surface of GSM to obtain GNRs@SiO2@MnO2@MDSCs (GSMM). In this system, GSMM inherits active targeting TME capacity of MDSCs. The localized surface plasmon resonance of GNRs is developed in near-infrared II window by MnO2 layer coating, realizing NIR-II window photothermal imaging and photoacoustic imaging of GSMM. Based on the release of Mn2+ in acidic TME, GSMM can be also used for magnetic resonance imaging. In cancer cells, Mn2+ catalyzes H2O2 into ·OH for (chemodynamic therapy) CDT leading to activate cGAS-STING, but also directly acts on STING inducing secretion of type I interferons, pro-inflammatory cytokines and chemokines. Additionally, photothermal therapy and CDT-mediated immunogenic cell death of tumor cells can further enhance anti-tumor immunity via exposure of CRT, HMGB1 and ATP. In summary, our nanoplatform realizes multimodal cancer imaging and dual immunotherapy.
Biomimetic Manganese-Based Nanoplatform (GSMM) demonstrates superior performance in multimodal caner imaging, including PTI, PAI and MRI. In acidic tumor microenvironment, GSMM can be degraded into Mn2+, which catalyzes H2O2 into ·OH for CDT leading to activate cGAS-STING signaling, but also directly acts on STING inducing secretion of IFN I, pro-inflammatory cytokines and chemokines. [Display omitted]
•Fabricated a tumor microenvironment targeted nanoplatform GSMM.•GSMM realize multimodal tumor imaging.•GSMM activate cGAS-STING signal pathway.•Chemodynamic and photothermal therapy synergetically enhance anti-tumor immune response. |
---|---|
AbstractList | The limited clinical response and serious side effect have been challenging in cancer immunotherapy resulting from immunosuppressive tumor microenvironment (TME) and inferior drug targeting. Herein, an active targeting TME nanoplatform capable of revising the immunosuppressive TME microenvironment is designed. Briefly, gold nanorods (GNRs) are covered with silica dioxide (SiO2) and then coated manganese dioxide (MnO2) to obtain GNRs@SiO2@MnO2 (GSM). Myeloid-derived suppressor cells (MDSCs) membrane is further camouflaged on the surface of GSM to obtain GNRs@SiO2@MnO2@MDSCs (GSMM). In this system, GSMM inherits active targeting TME capacity of MDSCs. The localized surface plasmon resonance of GNRs is developed in near-infrared II window by MnO2 layer coating, realizing NIR-II window photothermal imaging and photoacoustic imaging of GSMM. Based on the release of Mn2+ in acidic TME, GSMM can be also used for magnetic resonance imaging. In cancer cells, Mn2+ catalyzes H2O2 into ·OH for (chemodynamic therapy) CDT leading to activate cGAS-STING, but also directly acts on STING inducing secretion of type I interferons, pro-inflammatory cytokines and chemokines. Additionally, photothermal therapy and CDT-mediated immunogenic cell death of tumor cells can further enhance anti-tumor immunity via exposure of CRT, HMGB1 and ATP. In summary, our nanoplatform realizes multimodal cancer imaging and dual immunotherapy. The limited clinical response and serious side effect have been challenging in cancer immunotherapy resulting from immunosuppressive tumor microenvironment (TME) and inferior drug targeting. Herein, an active targeting TME nanoplatform capable of revising the immunosuppressive TME microenvironment is designed. Briefly, gold nanorods (GNRs) are covered with silica dioxide (SiO ) and then coated manganese dioxide (MnO ) to obtain GNRs@SiO @MnO (GSM). Myeloid-derived suppressor cells (MDSCs) membrane is further camouflaged on the surface of GSM to obtain GNRs@SiO @MnO @MDSCs (GSMM). In this system, GSMM inherits active targeting TME capacity of MDSCs. The localized surface plasmon resonance of GNRs is developed in near-infrared II window by MnO layer coating, realizing NIR-II window photothermal imaging and photoacoustic imaging of GSMM. Based on the release of Mn in acidic TME, GSMM can be also used for magnetic resonance imaging. In cancer cells, Mn catalyzes H O into ·OH for (chemodynamic therapy) CDT leading to activate cGAS-STING, but also directly acts on STING inducing secretion of type I interferons, pro-inflammatory cytokines and chemokines. Additionally, photothermal therapy and CDT-mediated immunogenic cell death of tumor cells can further enhance anti-tumor immunity via exposure of CRT, HMGB1 and ATP. In summary, our nanoplatform realizes multimodal cancer imaging and dual immunotherapy. The limited clinical response and serious side effect have been challenging in cancer immunotherapy resulting from immunosuppressive tumor microenvironment (TME) and inferior drug targeting. Herein, an active targeting TME nanoplatform capable of revising the immunosuppressive TME microenvironment is designed. Briefly, gold nanorods (GNRs) are covered with silica dioxide (SiO2) and then coated manganese dioxide (MnO2) to obtain GNRs@SiO2@MnO2 (GSM). Myeloid-derived suppressor cells (MDSCs) membrane is further camouflaged on the surface of GSM to obtain GNRs@SiO2@MnO2@MDSCs (GSMM). In this system, GSMM inherits active targeting TME capacity of MDSCs. The localized surface plasmon resonance of GNRs is developed in near-infrared II window by MnO2 layer coating, realizing NIR-II window photothermal imaging and photoacoustic imaging of GSMM. Based on the release of Mn2+ in acidic TME, GSMM can be also used for magnetic resonance imaging. In cancer cells, Mn2+ catalyzes H2O2 into ·OH for (chemodynamic therapy) CDT leading to activate cGAS-STING, but also directly acts on STING inducing secretion of type I interferons, pro-inflammatory cytokines and chemokines. Additionally, photothermal therapy and CDT-mediated immunogenic cell death of tumor cells can further enhance anti-tumor immunity via exposure of CRT, HMGB1 and ATP. In summary, our nanoplatform realizes multimodal cancer imaging and dual immunotherapy. Biomimetic Manganese-Based Nanoplatform (GSMM) demonstrates superior performance in multimodal caner imaging, including PTI, PAI and MRI. In acidic tumor microenvironment, GSMM can be degraded into Mn2+, which catalyzes H2O2 into ·OH for CDT leading to activate cGAS-STING signaling, but also directly acts on STING inducing secretion of IFN I, pro-inflammatory cytokines and chemokines. [Display omitted] •Fabricated a tumor microenvironment targeted nanoplatform GSMM.•GSMM realize multimodal tumor imaging.•GSMM activate cGAS-STING signal pathway.•Chemodynamic and photothermal therapy synergetically enhance anti-tumor immune response. The limited clinical response and serious side effect have been challenging in cancer immunotherapy resulting from immunosuppressive tumor microenvironment (TME) and inferior drug targeting. Herein, an active targeting TME nanoplatform capable of revising the immunosuppressive TME microenvironment is designed. Briefly, gold nanorods (GNRs) are covered with silica dioxide (SiO 2 ) and then coated manganese dioxide (MnO 2 ) to obtain GNRs@SiO 2 @MnO 2 (GSM). Myeloid-derived suppressor cells (MDSCs) membrane is further camouflaged on the surface of GSM to obtain GNRs@SiO 2 @MnO 2 @MDSCs (GSMM). In this system, GSMM inherits active targeting TME capacity of MDSCs. The localized surface plasmon resonance of GNRs is developed in near-infrared II window by MnO 2 layer coating, realizing NIR-II window photothermal imaging and photoacoustic imaging of GSMM. Based on the release of Mn 2+ in acidic TME, GSMM can be also used for magnetic resonance imaging. In cancer cells, Mn 2+ catalyzes H 2 O 2 into ·OH for (chemodynamic therapy) CDT leading to activate cGAS-STING, but also directly acts on STING inducing secretion of type I interferons, pro-inflammatory cytokines and chemokines. Additionally, photothermal therapy and CDT-mediated immunogenic cell death of tumor cells can further enhance anti-tumor immunity via exposure of CRT, HMGB1 and ATP. In summary, our nanoplatform realizes multimodal cancer imaging and dual immunotherapy. Biomimetic Manganese-Based Nanoplatform (GSMM) demonstrates superior performance in multimodal caner imaging, including PTI, PAI and MRI. In acidic tumor microenvironment, GSMM can be degraded into Mn 2+ , which catalyzes H 2 O 2 into ·OH for CDT leading to activate cGAS-STING signaling, but also directly acts on STING inducing secretion of IFN I, pro-inflammatory cytokines and chemokines. Image 1 • Fabricated a tumor microenvironment targeted nanoplatform GSMM. • GSMM realize multimodal tumor imaging. • GSMM activate cGAS-STING signal pathway. • Chemodynamic and photothermal therapy synergetically enhance anti-tumor immune response. |
Author | Mai, Qiuying Yu, Guangtao Meng, Qianfang Lan, Zhou Zou, Kelong Chen, Tongkai Ma, Limin Zhao, Yuyue Cui, Hao Cheng, Guowang Pan, Yuanwei Rao, Lang |
Author_xml | – sequence: 1 givenname: Yuyue surname: Zhao fullname: Zhao, Yuyue organization: Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China – sequence: 2 givenname: Yuanwei surname: Pan fullname: Pan, Yuanwei organization: Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China – sequence: 3 givenname: Kelong surname: Zou fullname: Zou, Kelong organization: Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China – sequence: 4 givenname: Zhou surname: Lan fullname: Lan, Zhou organization: Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China – sequence: 5 givenname: Guowang surname: Cheng fullname: Cheng, Guowang organization: Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China – sequence: 6 givenname: Qiuying surname: Mai fullname: Mai, Qiuying organization: Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China – sequence: 7 givenname: Hao surname: Cui fullname: Cui, Hao organization: Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China – sequence: 8 givenname: Qianfang surname: Meng fullname: Meng, Qianfang organization: Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China – sequence: 9 givenname: Tongkai surname: Chen fullname: Chen, Tongkai organization: Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China – sequence: 10 givenname: Lang surname: Rao fullname: Rao, Lang organization: Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China – sequence: 11 givenname: Limin surname: Ma fullname: Ma, Limin email: malimin7@126.com organization: Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China – sequence: 12 givenname: Guangtao orcidid: 0000-0003-1642-3924 surname: Yu fullname: Yu, Guangtao email: guangtao1986@smu.edu.cn organization: Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35510176$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAQxyNURB_0K0COXHYZO07iXJBKBbRSJS4gcbMmzmTrJbYXO9uq357Zblm1Jy5jax6_efxPi6MQAxXFewFLAaL5uF72LqKdPc5LCVIuQS1BiFfFiVS1XIiu-3X07H9cnOe8BgDRsoH2TXFc1TWT2uak-P3ZRe88zc6WHsMKA2Va9JhpKOdbShhi3sUCfzYTzmNMvmRTWgyWUum30-x8HHAqnceVC6sSA5fexzFOA_v8NsRH0ObhbfF6xCnT-dN7Vvz8-uXH5dXi5vu368uLm4WtlZgX41iT7jRqoagFW4EART2AskqOpAU1eqgG0VoY-5ZajnbKAjbNiFS1FVRnxfWeO0Rcm03iwdKDiejMoyOmlcHES01kFPai6Xs9SKjUoEfdAYK2pGQnte1rZn3aszbb3tNgKcwJpxfQl5Hgbs0q3pkOlBZSMeDDEyDFP1vKs_EuW5omvnTcZiObhheUrAintvtUm2LOicZDGwFmp7xZm4PyZqe8AWVYea5893zKQ90_nTnhYp9AfPc7R8lk64gVHFwiO_Nh3H-b_AWwisiU |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_3c01852 crossref_primary_10_3390_jcm12020560 crossref_primary_10_1021_acs_nanolett_2c04295 crossref_primary_10_1002_smll_202203227 crossref_primary_10_1007_s12672_023_00798_w crossref_primary_10_1002_smtd_202301470 crossref_primary_10_1039_D2CS00435F crossref_primary_10_1186_s12951_023_01771_z crossref_primary_10_1021_acsnano_3c09734 crossref_primary_10_1021_acsnano_3c12511 crossref_primary_10_1016_j_nantod_2022_101583 crossref_primary_10_1111_odi_14367 crossref_primary_10_3389_fimmu_2023_1156239 crossref_primary_10_1002_sstr_202300148 crossref_primary_10_1111_imr_13251 crossref_primary_10_1155_2024_1073915 crossref_primary_10_1016_j_jconrel_2023_08_019 crossref_primary_10_1111_odi_14925 crossref_primary_10_1002_adtp_202200175 crossref_primary_10_1021_acsnano_2c11691 crossref_primary_10_1016_j_ccr_2023_215098 crossref_primary_10_1002_smll_202400353 crossref_primary_10_1016_j_envpol_2022_120412 crossref_primary_10_1088_1758_5090_ad2081 crossref_primary_10_3389_fimmu_2022_979469 crossref_primary_10_3389_fonc_2023_1270407 crossref_primary_10_1002_advs_202302278 crossref_primary_10_1002_1878_0261_13517 |
Cites_doi | 10.1002/adfm.201804634 10.1038/s41568-021-00339-z 10.1158/2159-8290.CD-21-0764 10.1002/adma.201901015 10.1088/1361-6528/aaa7c7 10.1002/adfm.200902445 10.1002/adfm.201700978 10.1038/s41577-021-00524-z 10.1038/s41392-020-00280-x 10.1016/j.nantod.2021.101139 10.1021/acsami.0c20624 10.1021/acs.accounts.0c00313 10.1002/adma.202102271 10.1016/j.cell.2021.09.019 10.1002/adma.202003563 10.1002/adfm.201906309 10.1038/nrc3380 10.1002/anie.202108342 10.4049/jimmunol.1400675 10.3390/ma14102643 10.1158/2159-8290.CD-20-1575 10.1016/j.cis.2021.102486 10.1002/adma.202107141 10.1039/C8CS00618K 10.1021/acsnano.9b05038 10.1038/s41565-021-00962-9 10.1158/2159-8290.CD-19-0761 10.1038/s41568-021-00386-6 10.1002/adma.201905823 10.1039/D0CS00178C 10.1158/2159-8290.CD-20-1680 10.1038/nri.2016.107 10.1002/adma.202008540 10.1038/s41467-017-01050-0 10.1002/adfm.202010587 10.1007/s10334-012-0307-x 10.1016/j.cellimm.2020.104119 10.1126/science.aaa2630 10.4049/jimmunol.1000114 10.1016/j.immuni.2014.06.010 |
ContentType | Journal Article |
Copyright | 2022 The Authors 2022 The Authors. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: 2022 The Authors. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2022.04.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 250 |
ExternalDocumentID | oai_doaj_org_article_4ab16bb8d2034d8f890a08ce42928cb5 10_1016_j_bioactmat_2022_04_011 35510176 S2452199X22001815 |
Genre | Journal Article |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ ADVLN NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c541t-ff5e898a814e70c30104eb004c42fe81e68d3d17c0fb7e710494c0a66fae37303 |
IEDL.DBID | RPM |
ISSN | 2452-199X |
IngestDate | Tue Oct 22 15:15:45 EDT 2024 Tue Sep 17 21:16:45 EDT 2024 Fri Aug 16 22:57:16 EDT 2024 Fri Aug 23 02:01:45 EDT 2024 Sat Sep 28 08:40:44 EDT 2024 Wed May 17 00:03:39 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | The second near-infrared window Biomimetic Cancer imaging Immunotherapy Manganese ions |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-ff5e898a814e70c30104eb004c42fe81e68d3d17c0fb7e710494c0a66fae37303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-1642-3924 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048124/ |
PMID | 35510176 |
PQID | 2660102355 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ab16bb8d2034d8f890a08ce42928cb5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9048124 proquest_miscellaneous_2660102355 crossref_primary_10_1016_j_bioactmat_2022_04_011 pubmed_primary_35510176 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2022_04_011 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2023 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Liu, Huang, Zhang (bib19) 2021; 50 Meng, Rao, Zan, Chen, Yu, Wei, Wu, Sun, Guo, Zhao, Wang, Liu (bib28) 2018; 29 Ni, Luo, Nash, Lin (bib3) 2020; 53 Yang, Xu, Chao, Xu, Sun, Wu, Peng, Liu (bib23) 2017; 8 He, Jiang, He, Zhang, He, Wu, Lin, Zhou, Huang (bib6) 2021; 33 Liu, Cai, Wu, Cong, Chen, Li, Du, Ren, Wu, Grishin, Chen (bib41) 2015; 347 Noy, Pollard (bib48) 2014; 41 Song, Li, Li, Yang, Huang, de la Fuente, Ni, Cui (bib8) 2020; 30 Liang, Yang, Wang, Ji, Zhang, Jia, Chen, Wang, Tan, Sun, Yuan, Tan (bib17) 2021 Ding, Zheng, Ma (bib9) 2020; 32 Jhunjhunwala, Hammer, Delamarre (bib47) 2021; 21 Lam, Araya, Huang, Chen, Di Modica, Rodrigues, Lopès, Johnson, Schwarz, Bohrnsen, Cogdill, Bosio, Wargo, Lee, Goldszmid (bib15) 2021; 184 Wang, Basagoudanavar, Wang, Hopewell, Albrecht, García-Sastre, Balachandran (bib40) 2010; 185 Liu, He, Luo, Zhou, Liang, Pan, Ma, Cai (bib44) 2020; 30 Zhao, Gong, Li, Wang, Zhang, Zhao, Zhang, Zheng, Miron, Yuan, Zhang (bib18) 2021; 33 Grover, Sanseviero, Timosenko, Gabrilovich (bib27) 2021; 11 Gupta, Li, Roszik, Lizée (bib2) 2021; 11 Liu, Hong, Luo, Chen, Chang, Gong, He, Yang, Yuan, Li, Mu, Wang, Mi, Luo, Xie (bib7) 2019; 31 Krysko, Garg, Kaczmarek, Krysko, Agostinis, Vandenabeele (bib38) 2012; 12 Phung, Tran, Choi, Jeong, Ku, Yong (bib32) 2021; 13 Qin, He, Xu, Huang, Wang, Wang, Wang, Zhao, Tian, Wang (bib36) 2021; 294 Yu, Luo, Li, Chen, Huang, Sun, Cui (bib5) 2019; 13 Liu, Bhattarai, Dai (bib4) 2019; 48 Albiin, Kartalis, Bergquist, Sadigh, Brismar (bib13) 2012; 25 Chabanon, Rouanne, Lord, Soria, Pasero, Postel-Vinay (bib37) 2021; 21 Corrales, Matson, Flood, Spranger (bib14) 2017; 27 Decout, Katz, Venkatraman, Ablasser (bib16) 2021; 21 Wang, Wang, Zheng, Xie, Hopewell, Albrecht, Nogusa, García-Sastre, Balachandran (bib39) 2014; 193 Yang, Ji, Liu (bib34) 2021; 13 Han, Lee, Cho, Yoo, Oh, Jeong, Kim, Park, Kim, Namkoong, Jo, Lee, Lim, Soh, Sung, Yoo, Park, Hyeon (bib10) 2020; 32 Xu, Cui, Wang, Li, Lyu, Wang, Bao, Wang, Qin, Liu, Wei, Liu (bib22) 2020; 32 Gao, Sun, Liang (bib31) 2021; 31 Yang, Zhuang, Hu, Du, Zhang, Shi, Wu, Yang (bib42) 2010; 20 Wang, Xie, Luo, Guo, Hu, Chen, Chen, Lu, Mao, Zhang, Wei, Ma, Wang, Zhou, He, Zhang, Zhang, Chen, Shen, Chen, Qiu, Liu, Cui, Liao, Liu (bib24) 2021; 38 Lei, Fu, Cheng, Fu, Wu, Zhang, Fu, Cheng, Gao, Zhao (bib43) 2017; 27 Sun, Zhang, Li, Park, Han, Zhou, Xu, Nam, Xu, Shi, Wei, Lei, Moon (bib20) 2021 Jin, Jin (bib33) 2020; 5 Fan, Jia, Pang, Yang, Yang, Kamel Elyzayati, Liao, Wang, Zhu, Wang (bib46) 2021; 31 Sharma, Siddiqui, Anandhan, Yadav, Subudhi, Gao, Goswami, Allison (bib1) 2021; 11 Yu, Rao, Wu, Yang, Bu, Deng, Wu, Nan, Zhang, Zhao, Liu (bib26) 2018; 28 Xin, Hu, Xiang, Li, Fu, Li (bib35) 2021; 14 Fu, Du, Cai, Yao, Zhao (bib49) 2020; 353 Lv, Chen, Zhang, Zhang, Wang, Zhang, Wei, Guan, Liu, Feng, Jing, Wang, Liu, Mei, Han, Jiang (bib21) 2020; 30 Meng, Zhao, Dong, Liu, Pan, Lai, Liu, Yu, Chen, Rao (bib25) 2021 Xiao, Liu, Chen, Lee, Song, Yang, Omenya, Reed, Sprenkle, Ren, Sun, Yang, Amine, Li, Xu, Li (bib11) 2021 Zhang, Meng, Cao, Yang, Dong, Zhang, Lu, Shi (bib30) 2018; 28 Meng, Zhao, Dong, Liu, Pan, Lai, Liu, Yu, Chen, Rao (bib29) 2021; 60 Galluzzi, Buqué, Kepp, Zitvogel, Kroemer (bib12) 2017; 17 Kwon, Bakhoum (bib50) 2020; 10 Li, Hao, Sun, Gu, Xu (bib45) 2020; 30 Sharma (10.1016/j.bioactmat.2022.04.011_bib1) 2021; 11 Krysko (10.1016/j.bioactmat.2022.04.011_bib38) 2012; 12 Yang (10.1016/j.bioactmat.2022.04.011_bib23) 2017; 8 Gupta (10.1016/j.bioactmat.2022.04.011_bib2) 2021; 11 Yu (10.1016/j.bioactmat.2022.04.011_bib26) 2018; 28 Wang (10.1016/j.bioactmat.2022.04.011_bib40) 2010; 185 Sun (10.1016/j.bioactmat.2022.04.011_bib20) 2021 Chabanon (10.1016/j.bioactmat.2022.04.011_bib37) 2021; 21 Jin (10.1016/j.bioactmat.2022.04.011_bib33) 2020; 5 Ding (10.1016/j.bioactmat.2022.04.011_bib9) 2020; 32 Liang (10.1016/j.bioactmat.2022.04.011_bib17) 2021 Corrales (10.1016/j.bioactmat.2022.04.011_bib14) 2017; 27 Phung (10.1016/j.bioactmat.2022.04.011_bib32) 2021; 13 Lam (10.1016/j.bioactmat.2022.04.011_bib15) 2021; 184 Meng (10.1016/j.bioactmat.2022.04.011_bib29) 2021; 60 Zhao (10.1016/j.bioactmat.2022.04.011_bib18) 2021; 33 Wang (10.1016/j.bioactmat.2022.04.011_bib24) 2021; 38 Galluzzi (10.1016/j.bioactmat.2022.04.011_bib12) 2017; 17 Liu (10.1016/j.bioactmat.2022.04.011_bib19) 2021; 50 Meng (10.1016/j.bioactmat.2022.04.011_bib28) 2018; 29 Ni (10.1016/j.bioactmat.2022.04.011_bib3) 2020; 53 Kwon (10.1016/j.bioactmat.2022.04.011_bib50) 2020; 10 Fu (10.1016/j.bioactmat.2022.04.011_bib49) 2020; 353 Liu (10.1016/j.bioactmat.2022.04.011_bib4) 2019; 48 Gao (10.1016/j.bioactmat.2022.04.011_bib31) 2021; 31 Song (10.1016/j.bioactmat.2022.04.011_bib8) 2020; 30 Liu (10.1016/j.bioactmat.2022.04.011_bib44) 2020; 30 Albiin (10.1016/j.bioactmat.2022.04.011_bib13) 2012; 25 Xin (10.1016/j.bioactmat.2022.04.011_bib35) 2021; 14 Lv (10.1016/j.bioactmat.2022.04.011_bib21) 2020; 30 Grover (10.1016/j.bioactmat.2022.04.011_bib27) 2021; 11 Zhang (10.1016/j.bioactmat.2022.04.011_bib30) 2018; 28 Yu (10.1016/j.bioactmat.2022.04.011_bib5) 2019; 13 Noy (10.1016/j.bioactmat.2022.04.011_bib48) 2014; 41 Han (10.1016/j.bioactmat.2022.04.011_bib10) 2020; 32 Xu (10.1016/j.bioactmat.2022.04.011_bib22) 2020; 32 He (10.1016/j.bioactmat.2022.04.011_bib6) 2021; 33 Decout (10.1016/j.bioactmat.2022.04.011_bib16) 2021; 21 Wang (10.1016/j.bioactmat.2022.04.011_bib39) 2014; 193 Lei (10.1016/j.bioactmat.2022.04.011_bib43) 2017; 27 Yang (10.1016/j.bioactmat.2022.04.011_bib34) 2021; 13 Yang (10.1016/j.bioactmat.2022.04.011_bib42) 2010; 20 Liu (10.1016/j.bioactmat.2022.04.011_bib41) 2015; 347 Fan (10.1016/j.bioactmat.2022.04.011_bib46) 2021; 31 Xiao (10.1016/j.bioactmat.2022.04.011_bib11) 2021 Jhunjhunwala (10.1016/j.bioactmat.2022.04.011_bib47) 2021; 21 Liu (10.1016/j.bioactmat.2022.04.011_bib7) 2019; 31 Li (10.1016/j.bioactmat.2022.04.011_bib45) 2020; 30 Meng (10.1016/j.bioactmat.2022.04.011_bib25) 2021 Qin (10.1016/j.bioactmat.2022.04.011_bib36) 2021; 294 |
References_xml | – volume: 27 year: 2017 ident: bib43 article-title: Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging publication-title: Adv. Funct. Mater. contributor: fullname: Zhao – volume: 53 start-page: 1739 year: 2020 end-page: 1748 ident: bib3 article-title: Nanoscale metal-organic frameworks for cancer immunotherapy publication-title: Acc. Chem. Res. contributor: fullname: Lin – volume: 13 year: 2021 ident: bib34 article-title: Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy publication-title: Wires Nanomed. Nanobiol. contributor: fullname: Liu – volume: 33 year: 2021 ident: bib18 article-title: Target reprogramming lysosomes of CD8+ T cells by a mineralized metal-organic framework for cancer immunotherapy publication-title: Adv. Mater. contributor: fullname: Zhang – volume: 353 year: 2020 ident: bib49 article-title: Mou XZ the roles of tumor-associated macrophages in tumor angiogenesis and metastasis publication-title: Cell. Immunol. contributor: fullname: Zhao – volume: 11 start-page: 2693 year: 2021 end-page: 2706 ident: bib27 article-title: Myeloid-derived suppressor cells: A Propitious Road to Clinic publication-title: Cancer Discov. contributor: fullname: Gabrilovich – year: 2021 ident: bib11 article-title: Uncommon behavior of Li doping suppresses oxygen redox in P2-type manganese-rich sodium cathodes publication-title: Adv. Mater. contributor: fullname: Li – volume: 25 start-page: 361 year: 2012 end-page: 368 ident: bib13 article-title: Manganese chloride tetrahydrate (CMC-001) enhanced liver MRI: evaluation of efficacy and safety in healthy volunteers publication-title: Magma contributor: fullname: Brismar – volume: 32 year: 2020 ident: bib22 article-title: Immunomodulation-enhanced nanozyme-based tumor catalytic therapy publication-title: Adv. Mater. contributor: fullname: Liu – volume: 60 start-page: 26320 year: 2021 end-page: 26326 ident: bib29 article-title: Genetically programmable fusion cellular vesicles for cancer immunotherapy publication-title: Angew Chem. Int. Ed. Engl. contributor: fullname: Rao – volume: 17 start-page: 97 year: 2017 end-page: 111 ident: bib12 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat. Rev. Immunol. contributor: fullname: Kroemer – volume: 50 start-page: 1188 year: 2021 end-page: 1218 ident: bib19 article-title: Lei J Multifunctional metal-organic framework heterostructures for enhanced cancer therapy publication-title: Chem. Soc. Rev. contributor: fullname: Zhang – volume: 48 start-page: 2053 year: 2019 end-page: 2108 ident: bib4 article-title: Chen X Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer publication-title: Chem. Soc. Rev. contributor: fullname: Dai – volume: 29 year: 2018 ident: bib28 article-title: Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy publication-title: Nanotechnology contributor: fullname: Liu – volume: 347 year: 2015 ident: bib41 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science contributor: fullname: Chen – volume: 11 start-page: 838 year: 2021 end-page: 857 ident: bib1 article-title: The Next Decade of Immune Checkpoint Therapy publication-title: Cancer Discov. contributor: fullname: Allison – volume: 27 start-page: 96 year: 2017 end-page: 108 ident: bib14 article-title: Gajewski TF Innate immune signaling and regulation in cancer immunotherapy Cell publication-title: Res. contributor: fullname: Spranger – volume: 30 year: 2020 ident: bib45 article-title: Engineering a therapy-induced “immunogenic cancer cell death” amplifier to boost Systemic Tumor Elimination publication-title: Adv. Funct. Mater. contributor: fullname: Xu – volume: 185 start-page: 1720 year: 2010 end-page: 1729 ident: bib40 article-title: Beg AA NF-kappa B RelA subunit is crucial for early IFN-beta expression and resistance to RNA virus replication publication-title: J. Immunol. contributor: fullname: Balachandran – volume: 20 start-page: 1733 year: 2010 end-page: 1741 ident: bib42 article-title: Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells publication-title: Adv. Funct. Mater. contributor: fullname: Yang – volume: 33 year: 2021 ident: bib6 article-title: Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy publication-title: Adv. Mater. contributor: fullname: Huang – volume: 21 start-page: 298 year: 2021 end-page: 312 ident: bib47 article-title: Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion publication-title: Nat. Rev. Cancer contributor: fullname: Delamarre – volume: 184 start-page: 5338 year: 2021 end-page: 5356 ident: bib15 article-title: Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment publication-title: Cell contributor: fullname: Goldszmid – volume: 28 year: 2018 ident: bib26 article-title: Sun Z-J myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death publication-title: Adv. Funct. Mater. contributor: fullname: Liu – volume: 8 start-page: 902 year: 2017 ident: bib23 article-title: Hollow MnO(2) as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses publication-title: Nat. Commun. contributor: fullname: Liu – volume: 13 start-page: 5999 year: 2021 end-page: 6010 ident: bib32 article-title: Kim JO pre- and post-transcriptional regulation of cFLIP for effective cancer therapy using pH-ultrasensitive nanoparticles publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Yong – volume: 21 start-page: 701 year: 2021 end-page: 717 ident: bib37 article-title: Targeting the DNA damage response in immuno-oncology: developments and opportunities publication-title: Nat. Rev. Cancer contributor: fullname: Postel-Vinay – volume: 10 start-page: 26 year: 2020 end-page: 39 ident: bib50 article-title: The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer publication-title: Cancer Discov. contributor: fullname: Bakhoum – volume: 38 year: 2021 ident: bib24 article-title: Chen C Engineering a self-navigated MnARK nanovaccine for inducing potent protective immunity against novel coronavirus publication-title: Nano Today contributor: fullname: Liu – volume: 14 year: 2021 ident: bib35 article-title: Wei X carbon-based nanocomposites as fenton-like catalysts in wastewater treatment applications: A Review publication-title: Materials (Basel) contributor: fullname: Li – volume: 30 year: 2020 ident: bib8 article-title: Long-circulating drug-dye-based micelles with ultrahigh pH-sensitivity for deep tumor penetration and superior chemo-photothermal therapy publication-title: Adv. Funct. Mater. contributor: fullname: Cui – volume: 21 start-page: 548 year: 2021 end-page: 569 ident: bib16 article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases publication-title: Nat. Rev. Immunol. contributor: fullname: Ablasser – volume: 294 year: 2021 ident: bib36 article-title: Spinel ferrites (MFe(2)O(4)): synthesis, improvement and catalytic application in environment and energy field publication-title: Adv. Colloid Interface Sci. contributor: fullname: Wang – year: 2021 ident: bib17 article-title: Calcium phosphate-reinforced metal-organic frameworks regulate adenosine-mediated immunosuppression publication-title: Adv. Mater. contributor: fullname: Tan – volume: 193 start-page: 2538 year: 2014 end-page: 2545 ident: bib39 article-title: Beg AA Differential requirement for the IKKβ/NF-κB signaling module in regulating TLR- versus RLR-induced type 1 IFN expression in dendritic cells publication-title: J. Immunol. contributor: fullname: Balachandran – volume: 32 year: 2020 ident: bib9 article-title: Lin J manganese oxide nanomaterials: synthesis, properties, and theranostic applications publication-title: Adv. Mater. contributor: fullname: Ma – year: 2021 ident: bib20 article-title: Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy publication-title: Nat. Nanotechnol. contributor: fullname: Moon – volume: 30 start-page: 966 year: 2020 end-page: 979 ident: bib21 article-title: Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy Cell publication-title: Res. contributor: fullname: Jiang – volume: 28 year: 2018 ident: bib30 article-title: Zhang X metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy publication-title: Adv. Funct. Mater. contributor: fullname: Shi – volume: 31 year: 2019 ident: bib7 article-title: Zhang XD atomic-precision gold clusters for NIR-II imaging publication-title: Adv. Mater. contributor: fullname: Xie – volume: 30 year: 2020 ident: bib44 article-title: In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer publication-title: Adv. Funct. Mater. contributor: fullname: Cai – volume: 11 start-page: 1024 year: 2021 end-page: 1039 ident: bib2 article-title: Exploiting tumor neoantigens to target cancer evolution: current challenges and promising Therapeutic approaches publication-title: Cancer Discov. contributor: fullname: Lizée – year: 2021 ident: bib25 article-title: Genetically programmable fusion cellular vesicles for cancer immunotherapy publication-title: Angew Chem. Int. Ed. Engl. contributor: fullname: Rao – volume: 12 start-page: 860 year: 2012 end-page: 875 ident: bib38 article-title: Immunogenic cell death and DAMPs in cancer therapy publication-title: Nat. Rev. Cancer contributor: fullname: Vandenabeele – volume: 13 start-page: 12830 year: 2019 end-page: 12839 ident: bib5 article-title: Zhang M molecular targeting nanoprobes with non-overlap emission in the second near-infrared window for in vivo two-color colocalization of immune cells publication-title: ACS Nano contributor: fullname: Cui – volume: 32 year: 2020 ident: bib10 article-title: Epitaxially strained CeO(2)/Mn(3) O(4) nanocrystals as an enhanced antioxidant for radioprotection publication-title: Adv. Mater. contributor: fullname: Hyeon – volume: 31 year: 2021 ident: bib31 article-title: Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment publication-title: Adv. Funct. Mater. contributor: fullname: Liang – volume: 5 start-page: 166 year: 2020 ident: bib33 article-title: The updated landscape of tumor microenvironment and drug repurposing publication-title: Signal Transduct. Targeted Ther. contributor: fullname: Jin – volume: 41 start-page: 49 year: 2014 end-page: 61 ident: bib48 article-title: Tumor-associated macrophages: from mechanisms to therapy publication-title: Immunity contributor: fullname: Pollard – volume: 31 year: 2021 ident: bib46 article-title: Injectable Adhesive hydrogel as photothermal-derived antigen reservoir for enhanced anti-tumor immunity publication-title: Adv. Funct. Mater. contributor: fullname: Wang – volume: 28 year: 2018 ident: 10.1016/j.bioactmat.2022.04.011_bib30 article-title: Zhang X metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804634 contributor: fullname: Zhang – volume: 21 start-page: 298 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib47 article-title: Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00339-z contributor: fullname: Jhunjhunwala – volume: 11 start-page: 2693 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib27 article-title: Myeloid-derived suppressor cells: A Propitious Road to Clinic publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-21-0764 contributor: fullname: Grover – volume: 31 year: 2019 ident: 10.1016/j.bioactmat.2022.04.011_bib7 article-title: Zhang XD atomic-precision gold clusters for NIR-II imaging publication-title: Adv. Mater. doi: 10.1002/adma.201901015 contributor: fullname: Liu – volume: 33 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib18 article-title: Target reprogramming lysosomes of CD8+ T cells by a mineralized metal-organic framework for cancer immunotherapy publication-title: Adv. Mater. contributor: fullname: Zhao – volume: 29 year: 2018 ident: 10.1016/j.bioactmat.2022.04.011_bib28 article-title: Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy publication-title: Nanotechnology doi: 10.1088/1361-6528/aaa7c7 contributor: fullname: Meng – volume: 20 start-page: 1733 year: 2010 ident: 10.1016/j.bioactmat.2022.04.011_bib42 article-title: Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902445 contributor: fullname: Yang – volume: 28 year: 2018 ident: 10.1016/j.bioactmat.2022.04.011_bib26 article-title: Sun Z-J myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death publication-title: Adv. Funct. Mater. contributor: fullname: Yu – volume: 27 year: 2017 ident: 10.1016/j.bioactmat.2022.04.011_bib43 article-title: Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700978 contributor: fullname: Lei – volume: 21 start-page: 548 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib16 article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00524-z contributor: fullname: Decout – volume: 5 start-page: 166 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib33 article-title: The updated landscape of tumor microenvironment and drug repurposing publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-020-00280-x contributor: fullname: Jin – volume: 38 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib24 article-title: Chen C Engineering a self-navigated MnARK nanovaccine for inducing potent protective immunity against novel coronavirus publication-title: Nano Today doi: 10.1016/j.nantod.2021.101139 contributor: fullname: Wang – volume: 13 start-page: 5999 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib32 article-title: Kim JO pre- and post-transcriptional regulation of cFLIP for effective cancer therapy using pH-ultrasensitive nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20624 contributor: fullname: Phung – volume: 53 start-page: 1739 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib3 article-title: Nanoscale metal-organic frameworks for cancer immunotherapy publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00313 contributor: fullname: Ni – year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib17 article-title: Calcium phosphate-reinforced metal-organic frameworks regulate adenosine-mediated immunosuppression publication-title: Adv. Mater. doi: 10.1002/adma.202102271 contributor: fullname: Liang – volume: 184 start-page: 5338 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib15 article-title: Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2021.09.019 contributor: fullname: Lam – volume: 32 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib22 article-title: Immunomodulation-enhanced nanozyme-based tumor catalytic therapy publication-title: Adv. Mater. doi: 10.1002/adma.202003563 contributor: fullname: Xu – volume: 30 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib8 article-title: Long-circulating drug-dye-based micelles with ultrahigh pH-sensitivity for deep tumor penetration and superior chemo-photothermal therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906309 contributor: fullname: Song – volume: 12 start-page: 860 year: 2012 ident: 10.1016/j.bioactmat.2022.04.011_bib38 article-title: Immunogenic cell death and DAMPs in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3380 contributor: fullname: Krysko – volume: 60 start-page: 26320 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib29 article-title: Genetically programmable fusion cellular vesicles for cancer immunotherapy publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.202108342 contributor: fullname: Meng – volume: 193 start-page: 2538 year: 2014 ident: 10.1016/j.bioactmat.2022.04.011_bib39 article-title: Beg AA Differential requirement for the IKKβ/NF-κB signaling module in regulating TLR- versus RLR-induced type 1 IFN expression in dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1400675 contributor: fullname: Wang – volume: 14 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib35 article-title: Wei X carbon-based nanocomposites as fenton-like catalysts in wastewater treatment applications: A Review publication-title: Materials (Basel) doi: 10.3390/ma14102643 contributor: fullname: Xin – volume: 32 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib10 article-title: Epitaxially strained CeO(2)/Mn(3) O(4) nanocrystals as an enhanced antioxidant for radioprotection publication-title: Adv. Mater. contributor: fullname: Han – volume: 11 start-page: 1024 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib2 article-title: Exploiting tumor neoantigens to target cancer evolution: current challenges and promising Therapeutic approaches publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-20-1575 contributor: fullname: Gupta – volume: 30 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib44 article-title: In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer publication-title: Adv. Funct. Mater. contributor: fullname: Liu – volume: 294 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib36 article-title: Spinel ferrites (MFe(2)O(4)): synthesis, improvement and catalytic application in environment and energy field publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2021.102486 contributor: fullname: Qin – year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib11 article-title: Uncommon behavior of Li doping suppresses oxygen redox in P2-type manganese-rich sodium cathodes publication-title: Adv. Mater. doi: 10.1002/adma.202107141 contributor: fullname: Xiao – volume: 48 start-page: 2053 year: 2019 ident: 10.1016/j.bioactmat.2022.04.011_bib4 article-title: Chen X Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00618K contributor: fullname: Liu – volume: 13 start-page: 12830 year: 2019 ident: 10.1016/j.bioactmat.2022.04.011_bib5 article-title: Zhang M molecular targeting nanoprobes with non-overlap emission in the second near-infrared window for in vivo two-color colocalization of immune cells publication-title: ACS Nano doi: 10.1021/acsnano.9b05038 contributor: fullname: Yu – year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib20 article-title: Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00962-9 contributor: fullname: Sun – volume: 10 start-page: 26 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib50 article-title: The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-0761 contributor: fullname: Kwon – volume: 21 start-page: 701 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib37 article-title: Targeting the DNA damage response in immuno-oncology: developments and opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00386-6 contributor: fullname: Chabanon – volume: 13 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib34 article-title: Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy publication-title: Wires Nanomed. Nanobiol. contributor: fullname: Yang – volume: 30 start-page: 966 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib21 article-title: Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy Cell publication-title: Res. contributor: fullname: Lv – volume: 32 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib9 article-title: Lin J manganese oxide nanomaterials: synthesis, properties, and theranostic applications publication-title: Adv. Mater. doi: 10.1002/adma.201905823 contributor: fullname: Ding – volume: 50 start-page: 1188 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib19 article-title: Lei J Multifunctional metal-organic framework heterostructures for enhanced cancer therapy publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00178C contributor: fullname: Liu – volume: 27 start-page: 96 year: 2017 ident: 10.1016/j.bioactmat.2022.04.011_bib14 article-title: Gajewski TF Innate immune signaling and regulation in cancer immunotherapy Cell publication-title: Res. contributor: fullname: Corrales – volume: 11 start-page: 838 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib1 article-title: The Next Decade of Immune Checkpoint Therapy publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-20-1680 contributor: fullname: Sharma – volume: 17 start-page: 97 year: 2017 ident: 10.1016/j.bioactmat.2022.04.011_bib12 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.107 contributor: fullname: Galluzzi – volume: 31 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib31 article-title: Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment publication-title: Adv. Funct. Mater. contributor: fullname: Gao – volume: 33 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib6 article-title: Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.202008540 contributor: fullname: He – volume: 8 start-page: 902 year: 2017 ident: 10.1016/j.bioactmat.2022.04.011_bib23 article-title: Hollow MnO(2) as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses publication-title: Nat. Commun. doi: 10.1038/s41467-017-01050-0 contributor: fullname: Yang – volume: 31 year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib46 article-title: Injectable Adhesive hydrogel as photothermal-derived antigen reservoir for enhanced anti-tumor immunity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010587 contributor: fullname: Fan – volume: 25 start-page: 361 year: 2012 ident: 10.1016/j.bioactmat.2022.04.011_bib13 article-title: Manganese chloride tetrahydrate (CMC-001) enhanced liver MRI: evaluation of efficacy and safety in healthy volunteers publication-title: Magma doi: 10.1007/s10334-012-0307-x contributor: fullname: Albiin – volume: 30 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib45 article-title: Engineering a therapy-induced “immunogenic cancer cell death” amplifier to boost Systemic Tumor Elimination publication-title: Adv. Funct. Mater. contributor: fullname: Li – volume: 353 year: 2020 ident: 10.1016/j.bioactmat.2022.04.011_bib49 article-title: Mou XZ the roles of tumor-associated macrophages in tumor angiogenesis and metastasis publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2020.104119 contributor: fullname: Fu – year: 2021 ident: 10.1016/j.bioactmat.2022.04.011_bib25 article-title: Genetically programmable fusion cellular vesicles for cancer immunotherapy publication-title: Angew Chem. Int. Ed. Engl. contributor: fullname: Meng – volume: 347 year: 2015 ident: 10.1016/j.bioactmat.2022.04.011_bib41 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science doi: 10.1126/science.aaa2630 contributor: fullname: Liu – volume: 185 start-page: 1720 year: 2010 ident: 10.1016/j.bioactmat.2022.04.011_bib40 article-title: Beg AA NF-kappa B RelA subunit is crucial for early IFN-beta expression and resistance to RNA virus replication publication-title: J. Immunol. doi: 10.4049/jimmunol.1000114 contributor: fullname: Wang – volume: 41 start-page: 49 year: 2014 ident: 10.1016/j.bioactmat.2022.04.011_bib48 article-title: Tumor-associated macrophages: from mechanisms to therapy publication-title: Immunity doi: 10.1016/j.immuni.2014.06.010 contributor: fullname: Noy |
SSID | ssj0001700007 |
Score | 2.5078008 |
Snippet | The limited clinical response and serious side effect have been challenging in cancer immunotherapy resulting from immunosuppressive tumor microenvironment... |
SourceID | doaj pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 237 |
SubjectTerms | Biomimetic Cancer imaging Immunotherapy Manganese ions The second near-infrared window |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6IilegICNxjfAricONQqueuABSb5afkNI4VbsrxL9nxsmuGjj0wsWKnMSxPWPPZ2f8DSFvvWugfratfR9VrRoXa-dcqgOznHuReLS433H2pft8rj-dIE3OPtQX-oTN9MBzx71T1vHWOR0EkyropHtmmfYRwyxp-FKZfZm-tZi6mElh0PphZDnVCPSmOF85d7lhsn4DmBBWiEIUslPOV6apMPivLNS_CPRvR8pblun0EXm4QEr6YW7KIbkX82Py83iYxmHEI4p0tPm7xUiTNdqsQMuZqzwhQzPNcHF1aTeIXSkk1KMaXNPiaDhOAQoexhLJiNoMr_6a0nQZIG_c5uXw1u8n5NvpydePZ_USWKH2jeKbOqUm6l5bzVXsmJe4JsMYQsorkaLmsdVBBt55llwXAYOoXnlm2zbZKGFKkE_JQZ5yfE5oklwkDavEhkuYDlqnhGeyb3W0OkBaEbbrU3M182eYnWPZhdmLwaAYDFMGxFCRY-z7_eNIgF0yQC3MohbmLrWoyPud5MyCJWaMAEUNd9fgzU7WBkYb_kIBKU3bGwNwBkn4AKRV5Nks-309IRPnt7Yi3UorVg1Z38nDj8Lo3SNrj1Av_kfLX5IH0BQ5bxMdkYPN9Ta-IvdvwvZ1GSN_AE58GS4 priority: 102 providerName: Directory of Open Access Journals |
Title | Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy |
URI | https://dx.doi.org/10.1016/j.bioactmat.2022.04.011 https://www.ncbi.nlm.nih.gov/pubmed/35510176 https://search.proquest.com/docview/2660102355 https://pubmed.ncbi.nlm.nih.gov/PMC9048124 https://doaj.org/article/4ab16bb8d2034d8f890a08ce42928cb5 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXYnrggEAVCaZVKXNO1EydxuLWlVS8gJEDiZvmzpGyc1XZXiH_PjJOsGjggcbGifGnieck8O-M3hLw1ugT7VJWZxvGMl9plWmufWaoYM7lnTuF8x83n-uM38f4KZXLKaS1MTNo3uj0Lq-4stN9jbuW6M8spT2z56cNlgyInOV8uyAK44YMh-t2gB4OBb5bLpdtemS1QQBgQ5nnUNmVYIwaCLUKymgWlqN0_i01_c88_UygfxKTrp-TJSCbT88HoZ-SRC8_Jj4u279oOFyemnQq3CmtMZhitbBpXW4UetZnTABvrldoia02hSQ0CYJPGFMOut3Djtos1jFIV4NKfve9XFvZ1uzAu2_p1SL5eX325vMnGkgqZKTnbZt6XTjRCCcZdTU2BozGsHsQNz70TzFXCFpbVhnpdO2AfvOGGqqryyhXwMShekIPQB_eKpL5guRcwPixZAR-CSvPc0KKphFPCQpsQOvWpXA_KGXJKKbuTe49I9IikXIJHEnKBfb8_HaWv445-cytHAEiuNKu0FjanBbfCi4YqKozDulsCoJeQd5Pn5MgiBnYAt2r_bcHp5GsJ7xn-PAEv9bt7CUQG5fcAMQl5Ofh-b-cEo4TUM1TMHmR-BKAdtbxHKL_-7yuPyGOwvxhmhd6Qg-1m547J4t7uTuL8wkl8O34Dj14YfQ |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcCFh3ilvILENV07dhKHGy2tFtFWSBSJm-VnSdk4q-2uKv49YydZNXBA6sWK7NiyM589Y2f8DULvtSqgf7LMdG1ZxgplM6WUywyWhOjcESvDecf8W3X2g386CjQ5xXgXJjrta9Xs-0W775uf0bdy2erZ6Cc2-3p6WAeSk5zNdtBdmK-Y3tikX_aMMEH1Tby5VNNJvQYjELaEeR7ZTUmIEgPqNoCynKilyN4_0U7_Wp9_O1He0ErHD285nkfowWCGph_74sfojvVP0K-DpmubNlxrTFvpL2SITpkFPWfSeE_Ld4HVOfXwsFzIdbB3U0hSHaCzSqNzYtsZaLhpY_SjVHqoet25bmEgr9344cLX76fo-_HR-eE8G4IxZLpgZJ05V1hec8kJsxXWNOzjQtwhplnuLCe25IYaUmnsVGXBbmE101iWpZOWwjJCn6Fd33n7AqWOktxx2FkWhMISUiqWa0zrklvJDaQJwqMsxLLn3BCjM9ql2EpSBEkKzARIMkEHQWbb1wNpdszoVhdi-NSCSUVKpbjJMWWGO15jibm2IWIXB9Am6MMocTHYH71dAU01_-_BuxEjAmZo-O0CUuo2VwJMoEDcB0hL0PMeM9t-jvBLUDVB02Qg0xIAUWQBH0Czd-uab9G9-fnpiTj5fPblJboPY6H92dIrtLtebexrtHNlNm_i3PoDJ68tDw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAXHuIVyiNIXNO1EydxuNHHqgioKgESN8vPNmWTrLa7qvj3zDjJqoEDElysyLEtO_PZM3bG3xDy1ugc-qeKxFSOJzzXLtFa-8RSxZhJPXMKzztOvpSn38XRMdLkbEN9Bad9o-v9dtHst_VF8K1cNmY2-onNzj4fVkhykvLZ0vrZDrkNc5bmNzbqlz0rDKq_iUeXrjtl1mAIwrYwTQPDKcNIMaByEZjFRDUFBv-JhvrTAv3dkfKGZprf_48xPSD3BnM0ft8XeUhuufYR-XFQd03d4PXGuFHtucIolQnqOxuH-1pth-zOcQsPy4Vao90bQxIbhNAqDk6KTWeh4boJUZBi1ULV6853Cwt5zaYdLn79fEy-zY-_Hp4kQ1CGxOScrRPvcycqoQTjrqQmw_0cxh_ihqfeCeYKYTPLSkO9Lh3YL7zihqqi8MplsJxkT8hu27XuGYl9xlIvYIeZswyWkkLz1NCsKoRTwkIaETrKQy577g05OqVdyq00JUpTUi5BmhE5QLltiyN5dsjoVudy-NySK80KrYVNacat8KKiigrjMHKXAPBG5N0odTnYIb19AU3Vf-_BmxEnEmYq_n4BKXWbKwmmEBL4Adoi8rTHzbafIwQjUk4QNRnI9A0AKbCBD8B5_s81X5M7Z0dz-enD6cc9cheGkvVHTC_I7nq1cS_JzpXdvArT6xd2TC-P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetic+manganese-based+theranostic+nanoplatform+for+cancer+multimodal+imaging+and+twofold+immunotherapy&rft.jtitle=Bioactive+materials&rft.au=Zhao%2C+Yuyue&rft.au=Pan%2C+Yuanwei&rft.au=Zou%2C+Kelong&rft.au=Lan%2C+Zhou&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=19&rft.spage=237&rft.epage=250&rft_id=info:doi/10.1016%2Fj.bioactmat.2022.04.011&rft.externalDocID=S2452199X22001815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |