Neurosteroid Modulation of GABA IPSCs Is Phosphorylation Dependent

The neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) facilitates GABA(A) receptor-mediated ionic currents via allosteric modulation of the GABA(A) receptor. Accordingly, allopregnanolone caused an increase in the slow decay time constant of spontaneous GABA-mediated IPSCs in magn...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 20; no. 9; pp. 3067 - 3075
Main Authors: Fancsik, Andras, Linn, David M, Tasker, Jeffrey G
Format: Journal Article
Language:English
Published: United States Soc Neuroscience 01-05-2000
Society for Neuroscience
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) facilitates GABA(A) receptor-mediated ionic currents via allosteric modulation of the GABA(A) receptor. Accordingly, allopregnanolone caused an increase in the slow decay time constant of spontaneous GABA-mediated IPSCs in magnocellular neurons recorded in hypothalamic slices. The allopregnanolone effect on IPSCs was inhibited by a G-protein antagonist as well as by blocking protein kinase C and, to a lesser extent, cAMP-dependent protein kinase activities. G-protein and protein kinase C activation in the absence of the neurosteroid had no effect on spontaneous IPSCs but enhanced the effect of subsequent allopregnanolone application. These findings together suggest that the neurosteroid modulation of GABA-mediated IPSCs requires G-protein and protein kinase activation, although not via a separate G-protein-coupled steroid receptor.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.20-09-03067.2000