Interpretable machine learning approach for neuron-centric analysis of human cortical cytoarchitecture
The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with th...
Saved in:
Published in: | Scientific reports Vol. 13; no. 1; p. 5567 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
05-04-2023
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons’ neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions. |
---|---|
AbstractList | The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons' neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions. Abstract The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons’ neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions. |
ArticleNumber | 5567 |
Author | Štajduhar, Andrija Lipić, Tomislav Lončarić, Sven Sedmak, Goran Judaš, Miloš |
Author_xml | – sequence: 1 givenname: Andrija surname: Štajduhar fullname: Štajduhar, Andrija email: andrija.stajduhar@hiim.hr organization: School of Public Health “Andrija Štampar”, School of Medicine, University of Zagreb, Croatian Institute for Brain Research, School of Medicine, University of Zagreb – sequence: 2 givenname: Tomislav surname: Lipić fullname: Lipić, Tomislav organization: Laboratory for Machine Learning and Knowledge Representation, Ruder Bošković Institute – sequence: 3 givenname: Sven surname: Lončarić fullname: Lončarić, Sven organization: Faculty of Electrical Engineering and Computing, University of Zagreb – sequence: 4 givenname: Miloš surname: Judaš fullname: Judaš, Miloš organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb – sequence: 5 givenname: Goran surname: Sedmak fullname: Sedmak, Goran organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37019971$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvA4dmKfEKr4WKkSFzhbjjPezSqxg52g7r-vd1NKywFfbM28fjwzfl8WZz54LIrXQN8DreSHxEEoWVJWlRUDwcvbZ8UFo1yUrGLs7NH5vLhKaU_zEkxxUC-K86qhoFQDF4Xb-BnjFHE27YBkNHbXeyQDmuh7vyVmmmLIQeJCJB6XGHxp0c-xt8R4MxxSn0hwZLeMxhMb4txbMxB7mIOJmTWjnZeIr4rnzgwJr-73y-Lnl88_rr-VN9-_bq4_3ZRWcJhLA12rJNSUMorSIjaGgRVSCOiUsrSGFrpOKuGkoK01orHOKeesbLmwqq4ui83K7YLZ6yn2o4kHHUyvT4EQt9ocSxxQdxyc4FUlOdTc0LZ1dSPB5dnSuuHIM-vjypqWdsTu1LUZnkCfZny_09vwWwOlTc0ZzYR394QYfi2YZj32yeIwGI9hSZo1-Q94o-AoffuPdB-WmAd8UgkFTf7PrGKrysaQUkT3UA1QfbSFXm2hsy30yRb6Nl9687iPhyt_TJAF1SpIOeW3GP--_R_sHbizxsA |
CitedBy_id | crossref_primary_10_1093_cercor_bhae229 |
Cites_doi | 10.1016/S0940-9602(11)80212-8 10.1093/cercor/bhq067 10.1126/science.1242072 10.1016/j.neuron.2015.12.001 10.1073/pnas.73.8.2928 10.1016/j.neuroimage.2022.119453 10.1016/j.media.2022.102371 10.1145/361002.361007 10.1038/s41598-020-78638-y 10.1016/j.visinf.2017.01.006 10.1371/journal.pbio.3000678 10.1038/163688a0 10.1016/j.ajpath.2021.01.015 10.1126/science.1235381 10.1145/304181.304187 10.1016/B978-012693019-1/50023-X 10.1111/j.1749-6632.2011.05993.x 10.1038/s41598-019-43432-y 10.1016/S0143-6228(02)00002-4 10.1016/j.cell.2011.11.001 10.1002/j.1538-7305.1948.tb01338.x 10.1007/978-1-4614-7138-7 10.1016/j.physa.2018.12.027 10.23919/ELMAR.2018.8534593 10.1006/nimg.1998.0385 10.1038/s42256-019-0018-3 10.1093/cercor/bhy074 10.1093/ajcp/75.6.816 10.1186/s12859-017-1934-z 10.2478/s13380-012-0009-x 10.1083/jcb.201610026 10.1109/TSMC.1979.4310076 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-32154-x |
DatabaseName | Springer Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 5567 |
ExternalDocumentID | oai_doaj_org_article_d41f543384164a0bbf6781f0380674e4 10_1038_s41598_023_32154_x 37019971 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canada First Research Excellence Fund funderid: http://dx.doi.org/10.13039/501100010785 – fundername: European Regional Development Fund grantid: KK.01.1.1.01.0007; KK.01.1.1.01.0009 funderid: http://dx.doi.org/10.13039/501100008530 – fundername: ; – fundername: ; grantid: KK.01.1.1.01.0007; KK.01.1.1.01.0009 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c541t-a1db98160020e8cee7a21c58551d99c061b1dd895f850bca57cff9ffc8b45c963 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:13:58 EDT 2024 Tue Sep 17 21:33:40 EDT 2024 Fri Oct 25 06:12:26 EDT 2024 Mon Nov 18 02:57:28 EST 2024 Thu Nov 21 22:17:09 EST 2024 Wed Oct 16 00:39:54 EDT 2024 Fri Oct 11 20:46:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-a1db98160020e8cee7a21c58551d99c061b1dd895f850bca57cff9ffc8b45c963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076420/ |
PMID | 37019971 |
PQID | 2795917204 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d41f543384164a0bbf6781f0380674e4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10076420 proquest_miscellaneous_2797147910 proquest_journals_2795917204 crossref_primary_10_1038_s41598_023_32154_x pubmed_primary_37019971 springer_journals_10_1038_s41598_023_32154_x |
PublicationCentury | 2000 |
PublicationDate | 2023-04-05 |
PublicationDateYYYYMMDD | 2023-04-05 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | ImageJ analyze menu. https://imagej.nih.gov/ij/docs/menus/analyze.html. Accessed: 2022-09-30. NagendraHOpposite trends in response for the Shannon and Simpson indices of landscape diversityAppl. Geogr.20022217518610.1016/S0143-6228(02)00002-4 BramerMPrinciples of Data Mining2007Springer1116.68069 LiuSWangXLiuMZhuJTowards better analysis of machine learning models: A visual analytics perspectiveVisual Informatics20171485610.1016/j.visinf.2017.01.006 RodriguezALaioAClustering by fast search and find of density peaksScience2014344149214962014Sci...344.1492R1:CAS:528:DC%2BC2cXhtVaks7%2FL10.1126/science.124207224970081 CampelloRJMoulaviDZimekASanderJHierarchical density estimates for data clustering, visualization, and outlier detectionACM Trans. Knowl. Discov. Data (TKDD)2015105 BrodmannKVergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues1909Barth HopfARegistration of the myeloarchitecture of the human frontal lobe with an extinction methodJ. Hirnforsch.1968102591:STN:280:DyaF1M3lslagsg%3D%3D4895364 Zilles, K., Schleicher, A., Palomero-Gallagher, N. & Amunts, K. Quantitative analysis of cyto-and receptor architecture of the human brain. In Brain Mapping: The Methods (Second Edition) 573–602 (Elsevier, 2002). LiDDiscrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learningSci. Rep.2019974242019NatSR...9.7424L10.1038/s41598-019-43432-y310928416520410 JamesGWittenDHastieTTibshiraniRAn Introduction to Statistical Learning2013Springer10.1007/978-1-4614-7138-71281.62147 SchleicherAZillesKKretschmannHAutomatische registrierung und auswertung eines grauwertindex in histologischen schnittenVerh Anat Ges197872413415 AmuntsKZillesKArchitectonic mapping of the human brain beyond BrodmannNeuron201588108611071:CAS:528:DC%2BC2MXitVGhsbfK10.1016/j.neuron.2015.12.00126687219 TizhooshHRSearching images for consensus: Can AI remove observer variability in pathology?Am. J. Pathol.20211911702170810.1016/j.ajpath.2021.01.01533636179 AmuntsKBigbrain: An ultrahigh-resolution 3d human brain modelScience2013340147214752013Sci...340.1472A1:CAS:528:DC%2BC3sXpsFKltLs%3D10.1126/science.123538123788795 GrysBTMachine learning and computer vision approaches for phenotypic profilingJ. Cell Biol.201721665711:CAS:528:DC%2BC2sXptFGrsrc%3D10.1083/jcb.201610026279408875223612 KiwitzKSchifferCSpitzerHDickscheidTAmuntsKDeep learning networks reflect cytoarchitectonic features used in brain mappingSci. Rep.20201011510.1038/s41598-020-78638-y MeyerHSNumber and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortexCereb. Cortex2010202277228610.1093/cercor/bhq067205347842936806 UpschulteEHarmelingSAmuntsKDickscheidTContour proposal networks for biomedical instance segmentationMed. Image Anal.20227710237110.1016/j.media.2022.10237135180674 RuedenCTImagej 2: Imagej for the next generation of scientific image dataBMC Bioinform.20171852910.1186/s12859-017-1934-z WagstylKAutomated segmentation of cortical layers in bigbrain reveals divergent cortical and laminar thickness gradients in sensory and motor corticesPLoS Biol.202018e30006781:CAS:528:DC%2BB3cXhtFCisbrJ10.1371/journal.pbio.3000678322434497159250 Maneewongvatana, S. & Mount, D. M. It’s okay to be skinny, if your friends are fat. In Center for Geometric Computing 4th Annual Workshop on Computational Geometry Vol. 2 1–8 (1999). SchleicherAAmuntsKGeyerSMorosanPZillesKObserver-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonicsNeuroimage199991651771:STN:280:DyaK1M7hvFGhsg%3D%3D10.1006/nimg.1998.03859918738 WagstylKMapping cortical laminar structure in the 3d bigbrainCereb. Cortex2018282551256210.1093/cercor/bhy074299017915998962 HsuS-MRaineLFangerHThe use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technicsAm. J. Clin. Pathol.1981758168211:CAS:528:DyaL3MXlt1yksb4%3D10.1093/ajcp/75.6.8166167159 Štajduhar, A., Lepage, C., Judaš, M., Lončarić, S. & Evans, A. C. 3d localization of neurons in bright-field histological images. In ELMAR (ELMAR), 2018 60th International Symposium 75–78 (IEEE, 2018). SimpsonEHMeasurement of diversityNature19491636881949Natur.163..688S10.1038/163688a00032.03902 Dorogush, A. V., Ershov, V. & Gulin, A. Catboost: Gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 (2018). JudašMCepanecMSedmakGBrodmann’s map of the human cerebral cortex-or Brodmann’s maps?Transl. Neurosci.20123677410.2478/s13380-012-0009-x ŠtajduharADžajaDJudašMLončarićSAutomatic detection of neurons in neun-stained histological images of human brainPhysica A20195192372462019PhyA..519..237S389569310.1016/j.physa.2018.12.02707559853 KaasJHThe functional organization of somatosensory cortex in primatesAnn. Anat. Anatomischer Anzeiger19931755095181:STN:280:DyaK2c7islOhuw%3D%3D10.1016/S0940-9602(11)80212-88297039 ShannonCEA mathematical theory of communicationBell Syst. Tech. J.1948273794232628610.1002/j.1538-7305.1948.tb01338.x1154.94303 von EconomoCFKoskinasGNDie cytoarchitektonik der hirnrinde des erwachsenen menschen1925Springer OtsuNA threshold selection method from gray-level histogramsIEEE Trans. Syst. Man Cybern.19799626610.1109/TSMC.1979.4310076 DanuserGComputer vision in cell biologyCell20111479739781:CAS:528:DC%2BC3MXhsFeisrbJ10.1016/j.cell.2011.11.00122118455 HudspethARuarkJKellyJCytoarchitectonic mapping by microdensitometryProc. Natl. Acad. Sci.197673292829311976PNAS...73.2928H1:STN:280:DyaE283mvFOjsg%3D%3D10.1073/pnas.73.8.2928822423430806 QuabsJCytoarchitecture, probability maps and segregation of the human insulaNeuroimage202226011945310.1016/j.neuroimage.2022.11945335809885 LutnickBAn integrated iterative annotation technique for easing neural network training in medical image analysisNat. Mach. Intell.2019111211910.1038/s42256-019-0018-3311870886557463 BentleyJLMultidimensional binary search trees used for associative searchingCommun. ACM19751850951710.1145/361002.3610070306.68061 van Albada, S. J. et al. Bringing anatomical information into neuronal network models. arXiv preprint arXiv:2007.00031 (2020). MagurranAEMeasuring Biological Diversity2013Wiley NosovaSSnopovaLTurlapovVAutomatic detection of neurons, astrocytes, and layers for nissl-stained mouse cortexJ. WSCG201725143150 Ankerst, M., Breunig, M. M., Kriegel, H.-P. & Sander, J. Optics: ordering points to identify the clustering structure. In ACM Sigmod Record Vol. 28/2 49–60 (ACM, 1999). JudašMThe Zagreb Collection of human brains: A unique, versatile, but underexploited resource for the neuroscience communityAnn. N. Y. Acad. Sci.20111225E101E13010.1111/j.1749-6632.2011.05993.x LundbergSMLeeS-IGuyonIA unified approach to interpreting model predictionsAdvances in Neural Information Processing Systems2017Curran Associates, Inc.47654774 HR Tizhoosh (32154_CR20) 2021; 191 G James (32154_CR43) 2013 CT Rueden (32154_CR30) 2017; 18 JL Bentley (32154_CR35) 1975; 18 EH Simpson (32154_CR40) 1949; 163 H Nagendra (32154_CR38) 2002; 22 32154_CR44 32154_CR21 BT Grys (32154_CR23) 2017; 216 S Nosova (32154_CR18) 2017; 25 A Schleicher (32154_CR8) 1999; 9 N Otsu (32154_CR26) 1979; 9 JH Kaas (32154_CR4) 1993; 175 CF von Economo (32154_CR3) 1925 A Hudspeth (32154_CR6) 1976; 73 RJ Campello (32154_CR34) 2015; 10 D Li (32154_CR19) 2019; 9 32154_CR9 K Brodmann (32154_CR1) 1909 CE Shannon (32154_CR39) 1948; 27 M Judaš (32154_CR2) 2012; 3 32154_CR36 K Wagstyl (32154_CR14) 2018; 28 K Wagstyl (32154_CR16) 2020; 18 HS Meyer (32154_CR12) 2010; 20 M Bramer (32154_CR41) 2007 J Quabs (32154_CR15) 2022; 260 A Rodriguez (32154_CR32) 2014; 344 K Amunts (32154_CR13) 2013; 340 32154_CR31 E Upschulte (32154_CR29) 2022; 77 32154_CR33 A Schleicher (32154_CR10) 1978; 72 S-M Hsu (32154_CR25) 1981; 75 AE Magurran (32154_CR37) 2013 B Lutnick (32154_CR5) 2019; 1 G Danuser (32154_CR22) 2011; 147 M Judaš (32154_CR24) 2011; 1225 SM Lundberg (32154_CR45) 2017 A Hopf (32154_CR7) 1968; 10 K Amunts (32154_CR11) 2015; 88 32154_CR28 S Liu (32154_CR42) 2017; 1 K Kiwitz (32154_CR17) 2020; 10 A Štajduhar (32154_CR27) 2019; 519 |
References_xml | – volume: 175 start-page: 509 year: 1993 ident: 32154_CR4 publication-title: Ann. Anat. Anatomischer Anzeiger doi: 10.1016/S0940-9602(11)80212-8 contributor: fullname: JH Kaas – volume: 20 start-page: 2277 year: 2010 ident: 32154_CR12 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq067 contributor: fullname: HS Meyer – volume: 344 start-page: 1492 year: 2014 ident: 32154_CR32 publication-title: Science doi: 10.1126/science.1242072 contributor: fullname: A Rodriguez – volume-title: Die cytoarchitektonik der hirnrinde des erwachsenen menschen year: 1925 ident: 32154_CR3 contributor: fullname: CF von Economo – volume: 88 start-page: 1086 year: 2015 ident: 32154_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2015.12.001 contributor: fullname: K Amunts – volume: 73 start-page: 2928 year: 1976 ident: 32154_CR6 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.73.8.2928 contributor: fullname: A Hudspeth – volume: 260 start-page: 119453 year: 2022 ident: 32154_CR15 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119453 contributor: fullname: J Quabs – volume: 77 start-page: 102371 year: 2022 ident: 32154_CR29 publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102371 contributor: fullname: E Upschulte – volume: 18 start-page: 509 year: 1975 ident: 32154_CR35 publication-title: Commun. ACM doi: 10.1145/361002.361007 contributor: fullname: JL Bentley – volume: 10 start-page: 1 year: 2020 ident: 32154_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-020-78638-y contributor: fullname: K Kiwitz – volume: 1 start-page: 48 year: 2017 ident: 32154_CR42 publication-title: Visual Informatics doi: 10.1016/j.visinf.2017.01.006 contributor: fullname: S Liu – ident: 32154_CR44 – volume: 18 start-page: e3000678 year: 2020 ident: 32154_CR16 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000678 contributor: fullname: K Wagstyl – volume: 163 start-page: 688 year: 1949 ident: 32154_CR40 publication-title: Nature doi: 10.1038/163688a0 contributor: fullname: EH Simpson – volume-title: Principles of Data Mining year: 2007 ident: 32154_CR41 contributor: fullname: M Bramer – volume: 191 start-page: 1702 year: 2021 ident: 32154_CR20 publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2021.01.015 contributor: fullname: HR Tizhoosh – volume: 10 start-page: 259 year: 1968 ident: 32154_CR7 publication-title: J. Hirnforsch. contributor: fullname: A Hopf – volume: 340 start-page: 1472 year: 2013 ident: 32154_CR13 publication-title: Science doi: 10.1126/science.1235381 contributor: fullname: K Amunts – ident: 32154_CR33 doi: 10.1145/304181.304187 – ident: 32154_CR9 doi: 10.1016/B978-012693019-1/50023-X – volume: 1225 start-page: E101 year: 2011 ident: 32154_CR24 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2011.05993.x contributor: fullname: M Judaš – ident: 32154_CR36 – volume: 9 start-page: 7424 year: 2019 ident: 32154_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-019-43432-y contributor: fullname: D Li – volume: 22 start-page: 175 year: 2002 ident: 32154_CR38 publication-title: Appl. Geogr. doi: 10.1016/S0143-6228(02)00002-4 contributor: fullname: H Nagendra – volume: 25 start-page: 143 year: 2017 ident: 32154_CR18 publication-title: J. WSCG contributor: fullname: S Nosova – volume: 72 start-page: 413 year: 1978 ident: 32154_CR10 publication-title: Verh Anat Ges contributor: fullname: A Schleicher – volume: 147 start-page: 973 year: 2011 ident: 32154_CR22 publication-title: Cell doi: 10.1016/j.cell.2011.11.001 contributor: fullname: G Danuser – volume: 27 start-page: 379 year: 1948 ident: 32154_CR39 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x contributor: fullname: CE Shannon – volume-title: An Introduction to Statistical Learning year: 2013 ident: 32154_CR43 doi: 10.1007/978-1-4614-7138-7 contributor: fullname: G James – volume: 519 start-page: 237 year: 2019 ident: 32154_CR27 publication-title: Physica A doi: 10.1016/j.physa.2018.12.027 contributor: fullname: A Štajduhar – volume-title: Measuring Biological Diversity year: 2013 ident: 32154_CR37 contributor: fullname: AE Magurran – ident: 32154_CR28 doi: 10.23919/ELMAR.2018.8534593 – start-page: 4765 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 32154_CR45 contributor: fullname: SM Lundberg – volume: 9 start-page: 165 year: 1999 ident: 32154_CR8 publication-title: Neuroimage doi: 10.1006/nimg.1998.0385 contributor: fullname: A Schleicher – volume: 1 start-page: 112 year: 2019 ident: 32154_CR5 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0018-3 contributor: fullname: B Lutnick – volume: 28 start-page: 2551 year: 2018 ident: 32154_CR14 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhy074 contributor: fullname: K Wagstyl – ident: 32154_CR21 – volume: 75 start-page: 816 year: 1981 ident: 32154_CR25 publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/75.6.816 contributor: fullname: S-M Hsu – volume: 18 start-page: 529 year: 2017 ident: 32154_CR30 publication-title: BMC Bioinform. doi: 10.1186/s12859-017-1934-z contributor: fullname: CT Rueden – volume: 10 start-page: 5 year: 2015 ident: 32154_CR34 publication-title: ACM Trans. Knowl. Discov. Data (TKDD) contributor: fullname: RJ Campello – volume: 3 start-page: 67 year: 2012 ident: 32154_CR2 publication-title: Transl. Neurosci. doi: 10.2478/s13380-012-0009-x contributor: fullname: M Judaš – volume: 216 start-page: 65 year: 2017 ident: 32154_CR23 publication-title: J. Cell Biol. doi: 10.1083/jcb.201610026 contributor: fullname: BT Grys – volume-title: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues year: 1909 ident: 32154_CR1 contributor: fullname: K Brodmann – volume: 9 start-page: 62 year: 1979 ident: 32154_CR26 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 contributor: fullname: N Otsu – ident: 32154_CR31 |
SSID | ssj0000529419 |
Score | 2.4505842 |
Snippet | The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology... Abstract The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5567 |
SubjectTerms | 631/114/116 631/114/1305 631/114/1564 692/698/1688/64 Anatomy Brain architecture Cerebral cortex Cerebral Cortex - anatomy & histology Histology Humanities and Social Sciences Humans Image Processing, Computer-Assisted Learning algorithms Machine Learning multidisciplinary Neurons Phenotypes Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6VlSpxQYUWSKHIlbhRizix1_aRtqCeemmRuFm2EwMSZBG7Ky3_nrGdXVge4sI1tpLRPDwzmfE3APvDCBjC7JAGpSzlQjlqZa2p4so5EZogQ_p18U_-PVO_jyNMzmLUV-wJy_DAmXGHDWdBcEykMHLgtnQu4PHKQlkrPGd5m5FAS_komcqo3pXmTPe3ZHDz4Rg9VbxNVtW0RjfH6WzJEyXA_peizOfNkk8qpskRnXyCtT6CJEeZ8nX40HYb8DHPlLz7DOGhjdBdteQ6NUu2pJ8OcU7mIOIEo1WS0Cw7mj566YntEUrIKJA0vI9gbpp-dhN_Nxk9Ljp8gdOT4_-__tB-mAL1grMJtaxxWrFYhitbha5R2op5TBYEa7T26NYdaxqlRVCidN4K6UPQIXjluPBoppsw6EZduw3Exel3ZVCuwZTWo0ik9FoNrbfaYwBZFnAwZ6y5yZgZJtW6a2WyGAyKwSQxmFkBPyPvFzsj3nV6gFpgei0wb2lBAbtzyZneCMeminPUWZzCU8D3xTKaT6yJ2K4dTdMeybjUkeqtLOgFJXWEqsflAtSSCiyRurzSXV4kiO7Ye4KZHb70x1xbHuh6nRdf34MXO7BaRTWP7UViFwaT22n7DVbGzXQvGck9gX8UrA priority: 102 providerName: Directory of Open Access Journals |
Title | Interpretable machine learning approach for neuron-centric analysis of human cortical cytoarchitecture |
URI | https://link.springer.com/article/10.1038/s41598-023-32154-x https://www.ncbi.nlm.nih.gov/pubmed/37019971 https://www.proquest.com/docview/2795917204 https://search.proquest.com/docview/2797147910 https://pubmed.ncbi.nlm.nih.gov/PMC10076420 https://doaj.org/article/d41f543384164a0bbf6781f0380674e4 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB51kSr1UpXSR8pDRuqNmo0Te20fgYK4UFUqlXqzbCemK7EJYncl-PeMnWRhS3vpNbbikWesb8Yz_gbg8yQShjA7oUEpS7lQjlpZaqq4ck6EKsiQri5-yG-_1NfTSJMzGd7CpKJ976aHzfXssJn-TrWVNzM_HurExt8vTmJmH_3mfDyCETqHT2L0jtG70Jzp_oVMXqrxHFEqviQrSloixHEa2afLSESuJVsDpMTb_zdn83nN5B-J04RHZ2_gde9IkqNO4E14UTdv4WXXWvJ-C8JjNaG7rsks1UzWpG8ScUUGLnGCTitJpJYNTYtOPbE9UQlpA0k9_AiGqOnOm_j7Rfs09_AOfp6dXp6c076nAvWCswW1rHJasZiNy2uFCCltwTzGDIJVWntEd8eqSmkRlMidt0L6EHQIXjkuPJ7W97DRtE39EYiLTfDyoFyFka3PnZPSazWx3mqPfmSewcGwseamo84wKeVdKtNpxKBGTNKIucvgOO79amakvU4f2tsr0yvfVJwFwTGqRjeSW1wyINaygH9E0OU1z2Bn0Jzpz-LcFLGdOovNeDLYXw3jKYqpEdvU7TLNkYxLHaX-0Cl6JclgKBmoNRNYE3V9BA03MXUPhprBl8FaHuX69158-v-VtuFVEe081haJHdhY3C7rXRjNq-Veum7YS2flAQb0F9U |
link.rule.ids | 230,315,729,782,786,866,887,2107,27934,27935,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfYJgQvML4LA4LEG2TXtMkleWRj0xDbhMSQeIuStBkn7dppdyex_x4nbW-7AS97baLEjW3Zjp2fAd6PI2AIs2MalLKUC-WolaWmiivnRKiCDOnq4rs8_qk-70WYnPHwFiYV7Xs32W7OptvN5FeqrTyf-tFQJzb6drQbM_voN-ejNdhAhc2La1F6h-ldaM50_0YmL9VohnYqviUrSlqikeM04k-XEYpcS7ZikhJy_7_czb-rJm-kTpNF2n9423_ZhAe9D0o-deOP4E7dPIa7XVfKyycQrgoR3VlNpqncsiZ9f4lTMsCQE_R3ScLDbGiiduKJ7TFOSBtIav9HMLpN1-XEX87b62mLp_Bjf-9k94D27RioF5zNqWWV04rFRF5eKzSu0hbMY7ghWKW1R8fAsapSWgQlcuetkD4EHYJXjguPiv4M1pu2qV8AcbF_Xh6UqzAo9rlzUnqtxtZb7dEFzTP4MHDEnHeoGyZly0tlOlYaZKVJrDS_M9iJTFvOjIjZ6UN7cWr6szYVZ0FwDMjRA-UWtwxoplnAFdFe85pnsDWw3PRqPDNF7MTOYh-fDN4th1EBY1bFNnW7SHMk41JHqp93ErKkZJCwDNSK7KyQujqCcpJAvge5yODjIGZXdP3_LF7efqe3cO_g5OjQHH45_voK7hdRWWKJktiC9fnFon4Na7Nq8Sap2h_lzCyP |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYEIgXvgeFAUHiDbI21-SS8AbbTiBgmgRIvEVJ2oyTdu1pdyex_x4nbW87Pl7gtYkSN7ZlO3Z-BngxjoAhzI5pUMpSLpSjVpaaKq6cE6EKMqSri8_y6Js6OIwwOa-HtzCpaN-76V5zOttrpt9TbeV85vOhTiw__rQfM_voNxf5vAr5FlxFpS34pUi9w_Ueac50_06mKFW-QFsV35ONSlqioeM0YlCXEY5cS7ZhlhJ6_59czt8rJ39JnyarNLn1P_9zG272vih50825A1fq5i5c67pTnt-DcFGQ6E5rMktllzXp-0yckAGOnKDfSxIuZkMTxVNPbI91QtpAUhtAglFuujYn_nzZXk5f3Ievk8Mv--9o35aBesHZklpWOa1YTOgVtUIjK-2IeQw7BKu09uggOFZVSougROG8FdKHoEPwynHhUeF3YLtpm_ohEBf76BVBuQqDY184J6XXamy91R5d0SKDlwNXzLxD3zApa14q07HTIDtNYqf5kcHbyLj1zIicnT60ZyemP29TcRYEx8AcPVFuccuA5poFXBHtNq95BrsD202vzgszih3ZWeznk8Hz9TAqYsyu2KZuV2mOZFzqSPWDTkrWlAxSloHakJ8NUjdHUFYS2PcgGxm8GkTtgq6_n8Wjf9_pGVw_PpiYj--PPjyGG6OoL7FSSezC9vJsVT-BrUW1epq07SdSGy8P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+machine+learning+approach+for+neuron-centric+analysis+of+human+cortical+cytoarchitecture&rft.jtitle=Scientific+reports&rft.au=%C5%A0tajduhar%2C+Andrija&rft.au=Lipi%C4%87%2C+Tomislav&rft.au=Lon%C4%8Dari%C4%87%2C+Sven&rft.au=Juda%C5%A1%2C+Milo%C5%A1&rft.date=2023-04-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-32154-x&rft.externalDocID=10_1038_s41598_023_32154_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |