Interpretable machine learning approach for neuron-centric analysis of human cortical cytoarchitecture

The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with th...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 13; no. 1; p. 5567
Main Authors: Štajduhar, Andrija, Lipić, Tomislav, Lončarić, Sven, Judaš, Miloš, Sedmak, Goran
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 05-04-2023
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons’ neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions.
AbstractList The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons' neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions.
Abstract The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology for quantitative histology that shifts focus from image-level investigations towards neuron-level representations of cortical regions, with the neurons in the image as a subject of study, rather than pixel-wise image content. Our methodology relies on the automatic segmentation of neurons across whole histological sections and an extensive set of engineered features, which reflect the neuronal phenotype of individual neurons and the properties of neurons’ neighborhoods. The neuron-level representations are used in an interpretable machine learning pipeline for mapping the phenotype to cortical layers. To validate our approach, we created a unique dataset of cortical layers manually annotated by three experts in neuroanatomy and histology. The presented methodology offers high interpretability of the results, providing a deeper understanding of human cortex organization, which may help formulate new scientific hypotheses, as well as to cope with systematic uncertainty in data and model predictions.
ArticleNumber 5567
Author Štajduhar, Andrija
Lipić, Tomislav
Lončarić, Sven
Sedmak, Goran
Judaš, Miloš
Author_xml – sequence: 1
  givenname: Andrija
  surname: Štajduhar
  fullname: Štajduhar, Andrija
  email: andrija.stajduhar@hiim.hr
  organization: School of Public Health “Andrija Štampar”, School of Medicine, University of Zagreb, Croatian Institute for Brain Research, School of Medicine, University of Zagreb
– sequence: 2
  givenname: Tomislav
  surname: Lipić
  fullname: Lipić, Tomislav
  organization: Laboratory for Machine Learning and Knowledge Representation, Ruder Bošković Institute
– sequence: 3
  givenname: Sven
  surname: Lončarić
  fullname: Lončarić, Sven
  organization: Faculty of Electrical Engineering and Computing, University of Zagreb
– sequence: 4
  givenname: Miloš
  surname: Judaš
  fullname: Judaš, Miloš
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb
– sequence: 5
  givenname: Goran
  surname: Sedmak
  fullname: Sedmak, Goran
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37019971$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvA4dmKfEKr4WKkSFzhbjjPezSqxg52g7r-vd1NKywFfbM28fjwzfl8WZz54LIrXQN8DreSHxEEoWVJWlRUDwcvbZ8UFo1yUrGLs7NH5vLhKaU_zEkxxUC-K86qhoFQDF4Xb-BnjFHE27YBkNHbXeyQDmuh7vyVmmmLIQeJCJB6XGHxp0c-xt8R4MxxSn0hwZLeMxhMb4txbMxB7mIOJmTWjnZeIr4rnzgwJr-73y-Lnl88_rr-VN9-_bq4_3ZRWcJhLA12rJNSUMorSIjaGgRVSCOiUsrSGFrpOKuGkoK01orHOKeesbLmwqq4ui83K7YLZ6yn2o4kHHUyvT4EQt9ocSxxQdxyc4FUlOdTc0LZ1dSPB5dnSuuHIM-vjypqWdsTu1LUZnkCfZny_09vwWwOlTc0ZzYR394QYfi2YZj32yeIwGI9hSZo1-Q94o-AoffuPdB-WmAd8UgkFTf7PrGKrysaQUkT3UA1QfbSFXm2hsy30yRb6Nl9687iPhyt_TJAF1SpIOeW3GP--_R_sHbizxsA
CitedBy_id crossref_primary_10_1093_cercor_bhae229
Cites_doi 10.1016/S0940-9602(11)80212-8
10.1093/cercor/bhq067
10.1126/science.1242072
10.1016/j.neuron.2015.12.001
10.1073/pnas.73.8.2928
10.1016/j.neuroimage.2022.119453
10.1016/j.media.2022.102371
10.1145/361002.361007
10.1038/s41598-020-78638-y
10.1016/j.visinf.2017.01.006
10.1371/journal.pbio.3000678
10.1038/163688a0
10.1016/j.ajpath.2021.01.015
10.1126/science.1235381
10.1145/304181.304187
10.1016/B978-012693019-1/50023-X
10.1111/j.1749-6632.2011.05993.x
10.1038/s41598-019-43432-y
10.1016/S0143-6228(02)00002-4
10.1016/j.cell.2011.11.001
10.1002/j.1538-7305.1948.tb01338.x
10.1007/978-1-4614-7138-7
10.1016/j.physa.2018.12.027
10.23919/ELMAR.2018.8534593
10.1006/nimg.1998.0385
10.1038/s42256-019-0018-3
10.1093/cercor/bhy074
10.1093/ajcp/75.6.816
10.1186/s12859-017-1934-z
10.2478/s13380-012-0009-x
10.1083/jcb.201610026
10.1109/TSMC.1979.4310076
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-32154-x
DatabaseName Springer Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 5567
ExternalDocumentID oai_doaj_org_article_d41f543384164a0bbf6781f0380674e4
10_1038_s41598_023_32154_x
37019971
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canada First Research Excellence Fund
  funderid: http://dx.doi.org/10.13039/501100010785
– fundername: European Regional Development Fund
  grantid: KK.01.1.1.01.0007; KK.01.1.1.01.0009
  funderid: http://dx.doi.org/10.13039/501100008530
– fundername: ;
– fundername: ;
  grantid: KK.01.1.1.01.0007; KK.01.1.1.01.0009
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c541t-a1db98160020e8cee7a21c58551d99c061b1dd895f850bca57cff9ffc8b45c963
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:13:58 EDT 2024
Tue Sep 17 21:33:40 EDT 2024
Fri Oct 25 06:12:26 EDT 2024
Mon Nov 18 02:57:28 EST 2024
Thu Nov 21 22:17:09 EST 2024
Wed Oct 16 00:39:54 EDT 2024
Fri Oct 11 20:46:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-a1db98160020e8cee7a21c58551d99c061b1dd895f850bca57cff9ffc8b45c963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076420/
PMID 37019971
PQID 2795917204
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d41f543384164a0bbf6781f0380674e4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10076420
proquest_miscellaneous_2797147910
proquest_journals_2795917204
crossref_primary_10_1038_s41598_023_32154_x
pubmed_primary_37019971
springer_journals_10_1038_s41598_023_32154_x
PublicationCentury 2000
PublicationDate 2023-04-05
PublicationDateYYYYMMDD 2023-04-05
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ImageJ analyze menu. https://imagej.nih.gov/ij/docs/menus/analyze.html. Accessed: 2022-09-30.
NagendraHOpposite trends in response for the Shannon and Simpson indices of landscape diversityAppl. Geogr.20022217518610.1016/S0143-6228(02)00002-4
BramerMPrinciples of Data Mining2007Springer1116.68069
LiuSWangXLiuMZhuJTowards better analysis of machine learning models: A visual analytics perspectiveVisual Informatics20171485610.1016/j.visinf.2017.01.006
RodriguezALaioAClustering by fast search and find of density peaksScience2014344149214962014Sci...344.1492R1:CAS:528:DC%2BC2cXhtVaks7%2FL10.1126/science.124207224970081
CampelloRJMoulaviDZimekASanderJHierarchical density estimates for data clustering, visualization, and outlier detectionACM Trans. Knowl. Discov. Data (TKDD)2015105
BrodmannKVergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues1909Barth
HopfARegistration of the myeloarchitecture of the human frontal lobe with an extinction methodJ. Hirnforsch.1968102591:STN:280:DyaF1M3lslagsg%3D%3D4895364
Zilles, K., Schleicher, A., Palomero-Gallagher, N. & Amunts, K. Quantitative analysis of cyto-and receptor architecture of the human brain. In Brain Mapping: The Methods (Second Edition) 573–602 (Elsevier, 2002).
LiDDiscrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learningSci. Rep.2019974242019NatSR...9.7424L10.1038/s41598-019-43432-y310928416520410
JamesGWittenDHastieTTibshiraniRAn Introduction to Statistical Learning2013Springer10.1007/978-1-4614-7138-71281.62147
SchleicherAZillesKKretschmannHAutomatische registrierung und auswertung eines grauwertindex in histologischen schnittenVerh Anat Ges197872413415
AmuntsKZillesKArchitectonic mapping of the human brain beyond BrodmannNeuron201588108611071:CAS:528:DC%2BC2MXitVGhsbfK10.1016/j.neuron.2015.12.00126687219
TizhooshHRSearching images for consensus: Can AI remove observer variability in pathology?Am. J. Pathol.20211911702170810.1016/j.ajpath.2021.01.01533636179
AmuntsKBigbrain: An ultrahigh-resolution 3d human brain modelScience2013340147214752013Sci...340.1472A1:CAS:528:DC%2BC3sXpsFKltLs%3D10.1126/science.123538123788795
GrysBTMachine learning and computer vision approaches for phenotypic profilingJ. Cell Biol.201721665711:CAS:528:DC%2BC2sXptFGrsrc%3D10.1083/jcb.201610026279408875223612
KiwitzKSchifferCSpitzerHDickscheidTAmuntsKDeep learning networks reflect cytoarchitectonic features used in brain mappingSci. Rep.20201011510.1038/s41598-020-78638-y
MeyerHSNumber and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortexCereb. Cortex2010202277228610.1093/cercor/bhq067205347842936806
UpschulteEHarmelingSAmuntsKDickscheidTContour proposal networks for biomedical instance segmentationMed. Image Anal.20227710237110.1016/j.media.2022.10237135180674
RuedenCTImagej 2: Imagej for the next generation of scientific image dataBMC Bioinform.20171852910.1186/s12859-017-1934-z
WagstylKAutomated segmentation of cortical layers in bigbrain reveals divergent cortical and laminar thickness gradients in sensory and motor corticesPLoS Biol.202018e30006781:CAS:528:DC%2BB3cXhtFCisbrJ10.1371/journal.pbio.3000678322434497159250
Maneewongvatana, S. & Mount, D. M. It’s okay to be skinny, if your friends are fat. In Center for Geometric Computing 4th Annual Workshop on Computational Geometry Vol. 2 1–8 (1999).
SchleicherAAmuntsKGeyerSMorosanPZillesKObserver-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonicsNeuroimage199991651771:STN:280:DyaK1M7hvFGhsg%3D%3D10.1006/nimg.1998.03859918738
WagstylKMapping cortical laminar structure in the 3d bigbrainCereb. Cortex2018282551256210.1093/cercor/bhy074299017915998962
HsuS-MRaineLFangerHThe use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technicsAm. J. Clin. Pathol.1981758168211:CAS:528:DyaL3MXlt1yksb4%3D10.1093/ajcp/75.6.8166167159
Štajduhar, A., Lepage, C., Judaš, M., Lončarić, S. & Evans, A. C. 3d localization of neurons in bright-field histological images. In ELMAR (ELMAR), 2018 60th International Symposium 75–78 (IEEE, 2018).
SimpsonEHMeasurement of diversityNature19491636881949Natur.163..688S10.1038/163688a00032.03902
Dorogush, A. V., Ershov, V. & Gulin, A. Catboost: Gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 (2018).
JudašMCepanecMSedmakGBrodmann’s map of the human cerebral cortex-or Brodmann’s maps?Transl. Neurosci.20123677410.2478/s13380-012-0009-x
ŠtajduharADžajaDJudašMLončarićSAutomatic detection of neurons in neun-stained histological images of human brainPhysica A20195192372462019PhyA..519..237S389569310.1016/j.physa.2018.12.02707559853
KaasJHThe functional organization of somatosensory cortex in primatesAnn. Anat. Anatomischer Anzeiger19931755095181:STN:280:DyaK2c7islOhuw%3D%3D10.1016/S0940-9602(11)80212-88297039
ShannonCEA mathematical theory of communicationBell Syst. Tech. J.1948273794232628610.1002/j.1538-7305.1948.tb01338.x1154.94303
von EconomoCFKoskinasGNDie cytoarchitektonik der hirnrinde des erwachsenen menschen1925Springer
OtsuNA threshold selection method from gray-level histogramsIEEE Trans. Syst. Man Cybern.19799626610.1109/TSMC.1979.4310076
DanuserGComputer vision in cell biologyCell20111479739781:CAS:528:DC%2BC3MXhsFeisrbJ10.1016/j.cell.2011.11.00122118455
HudspethARuarkJKellyJCytoarchitectonic mapping by microdensitometryProc. Natl. Acad. Sci.197673292829311976PNAS...73.2928H1:STN:280:DyaE283mvFOjsg%3D%3D10.1073/pnas.73.8.2928822423430806
QuabsJCytoarchitecture, probability maps and segregation of the human insulaNeuroimage202226011945310.1016/j.neuroimage.2022.11945335809885
LutnickBAn integrated iterative annotation technique for easing neural network training in medical image analysisNat. Mach. Intell.2019111211910.1038/s42256-019-0018-3311870886557463
BentleyJLMultidimensional binary search trees used for associative searchingCommun. ACM19751850951710.1145/361002.3610070306.68061
van Albada, S. J. et al. Bringing anatomical information into neuronal network models. arXiv preprint arXiv:2007.00031 (2020).
MagurranAEMeasuring Biological Diversity2013Wiley
NosovaSSnopovaLTurlapovVAutomatic detection of neurons, astrocytes, and layers for nissl-stained mouse cortexJ. WSCG201725143150
Ankerst, M., Breunig, M. M., Kriegel, H.-P. & Sander, J. Optics: ordering points to identify the clustering structure. In ACM Sigmod Record Vol. 28/2 49–60 (ACM, 1999).
JudašMThe Zagreb Collection of human brains: A unique, versatile, but underexploited resource for the neuroscience communityAnn. N. Y. Acad. Sci.20111225E101E13010.1111/j.1749-6632.2011.05993.x
LundbergSMLeeS-IGuyonIA unified approach to interpreting model predictionsAdvances in Neural Information Processing Systems2017Curran Associates, Inc.47654774
HR Tizhoosh (32154_CR20) 2021; 191
G James (32154_CR43) 2013
CT Rueden (32154_CR30) 2017; 18
JL Bentley (32154_CR35) 1975; 18
EH Simpson (32154_CR40) 1949; 163
H Nagendra (32154_CR38) 2002; 22
32154_CR44
32154_CR21
BT Grys (32154_CR23) 2017; 216
S Nosova (32154_CR18) 2017; 25
A Schleicher (32154_CR8) 1999; 9
N Otsu (32154_CR26) 1979; 9
JH Kaas (32154_CR4) 1993; 175
CF von Economo (32154_CR3) 1925
A Hudspeth (32154_CR6) 1976; 73
RJ Campello (32154_CR34) 2015; 10
D Li (32154_CR19) 2019; 9
32154_CR9
K Brodmann (32154_CR1) 1909
CE Shannon (32154_CR39) 1948; 27
M Judaš (32154_CR2) 2012; 3
32154_CR36
K Wagstyl (32154_CR14) 2018; 28
K Wagstyl (32154_CR16) 2020; 18
HS Meyer (32154_CR12) 2010; 20
M Bramer (32154_CR41) 2007
J Quabs (32154_CR15) 2022; 260
A Rodriguez (32154_CR32) 2014; 344
K Amunts (32154_CR13) 2013; 340
32154_CR31
E Upschulte (32154_CR29) 2022; 77
32154_CR33
A Schleicher (32154_CR10) 1978; 72
S-M Hsu (32154_CR25) 1981; 75
AE Magurran (32154_CR37) 2013
B Lutnick (32154_CR5) 2019; 1
G Danuser (32154_CR22) 2011; 147
M Judaš (32154_CR24) 2011; 1225
SM Lundberg (32154_CR45) 2017
A Hopf (32154_CR7) 1968; 10
K Amunts (32154_CR11) 2015; 88
32154_CR28
S Liu (32154_CR42) 2017; 1
K Kiwitz (32154_CR17) 2020; 10
A Štajduhar (32154_CR27) 2019; 519
References_xml – volume: 175
  start-page: 509
  year: 1993
  ident: 32154_CR4
  publication-title: Ann. Anat. Anatomischer Anzeiger
  doi: 10.1016/S0940-9602(11)80212-8
  contributor:
    fullname: JH Kaas
– volume: 20
  start-page: 2277
  year: 2010
  ident: 32154_CR12
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq067
  contributor:
    fullname: HS Meyer
– volume: 344
  start-page: 1492
  year: 2014
  ident: 32154_CR32
  publication-title: Science
  doi: 10.1126/science.1242072
  contributor:
    fullname: A Rodriguez
– volume-title: Die cytoarchitektonik der hirnrinde des erwachsenen menschen
  year: 1925
  ident: 32154_CR3
  contributor:
    fullname: CF von Economo
– volume: 88
  start-page: 1086
  year: 2015
  ident: 32154_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.12.001
  contributor:
    fullname: K Amunts
– volume: 73
  start-page: 2928
  year: 1976
  ident: 32154_CR6
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.73.8.2928
  contributor:
    fullname: A Hudspeth
– volume: 260
  start-page: 119453
  year: 2022
  ident: 32154_CR15
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119453
  contributor:
    fullname: J Quabs
– volume: 77
  start-page: 102371
  year: 2022
  ident: 32154_CR29
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102371
  contributor:
    fullname: E Upschulte
– volume: 18
  start-page: 509
  year: 1975
  ident: 32154_CR35
  publication-title: Commun. ACM
  doi: 10.1145/361002.361007
  contributor:
    fullname: JL Bentley
– volume: 10
  start-page: 1
  year: 2020
  ident: 32154_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-78638-y
  contributor:
    fullname: K Kiwitz
– volume: 1
  start-page: 48
  year: 2017
  ident: 32154_CR42
  publication-title: Visual Informatics
  doi: 10.1016/j.visinf.2017.01.006
  contributor:
    fullname: S Liu
– ident: 32154_CR44
– volume: 18
  start-page: e3000678
  year: 2020
  ident: 32154_CR16
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000678
  contributor:
    fullname: K Wagstyl
– volume: 163
  start-page: 688
  year: 1949
  ident: 32154_CR40
  publication-title: Nature
  doi: 10.1038/163688a0
  contributor:
    fullname: EH Simpson
– volume-title: Principles of Data Mining
  year: 2007
  ident: 32154_CR41
  contributor:
    fullname: M Bramer
– volume: 191
  start-page: 1702
  year: 2021
  ident: 32154_CR20
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2021.01.015
  contributor:
    fullname: HR Tizhoosh
– volume: 10
  start-page: 259
  year: 1968
  ident: 32154_CR7
  publication-title: J. Hirnforsch.
  contributor:
    fullname: A Hopf
– volume: 340
  start-page: 1472
  year: 2013
  ident: 32154_CR13
  publication-title: Science
  doi: 10.1126/science.1235381
  contributor:
    fullname: K Amunts
– ident: 32154_CR33
  doi: 10.1145/304181.304187
– ident: 32154_CR9
  doi: 10.1016/B978-012693019-1/50023-X
– volume: 1225
  start-page: E101
  year: 2011
  ident: 32154_CR24
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2011.05993.x
  contributor:
    fullname: M Judaš
– ident: 32154_CR36
– volume: 9
  start-page: 7424
  year: 2019
  ident: 32154_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43432-y
  contributor:
    fullname: D Li
– volume: 22
  start-page: 175
  year: 2002
  ident: 32154_CR38
  publication-title: Appl. Geogr.
  doi: 10.1016/S0143-6228(02)00002-4
  contributor:
    fullname: H Nagendra
– volume: 25
  start-page: 143
  year: 2017
  ident: 32154_CR18
  publication-title: J. WSCG
  contributor:
    fullname: S Nosova
– volume: 72
  start-page: 413
  year: 1978
  ident: 32154_CR10
  publication-title: Verh Anat Ges
  contributor:
    fullname: A Schleicher
– volume: 147
  start-page: 973
  year: 2011
  ident: 32154_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.001
  contributor:
    fullname: G Danuser
– volume: 27
  start-page: 379
  year: 1948
  ident: 32154_CR39
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
  contributor:
    fullname: CE Shannon
– volume-title: An Introduction to Statistical Learning
  year: 2013
  ident: 32154_CR43
  doi: 10.1007/978-1-4614-7138-7
  contributor:
    fullname: G James
– volume: 519
  start-page: 237
  year: 2019
  ident: 32154_CR27
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.12.027
  contributor:
    fullname: A Štajduhar
– volume-title: Measuring Biological Diversity
  year: 2013
  ident: 32154_CR37
  contributor:
    fullname: AE Magurran
– ident: 32154_CR28
  doi: 10.23919/ELMAR.2018.8534593
– start-page: 4765
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 32154_CR45
  contributor:
    fullname: SM Lundberg
– volume: 9
  start-page: 165
  year: 1999
  ident: 32154_CR8
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0385
  contributor:
    fullname: A Schleicher
– volume: 1
  start-page: 112
  year: 2019
  ident: 32154_CR5
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0018-3
  contributor:
    fullname: B Lutnick
– volume: 28
  start-page: 2551
  year: 2018
  ident: 32154_CR14
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy074
  contributor:
    fullname: K Wagstyl
– ident: 32154_CR21
– volume: 75
  start-page: 816
  year: 1981
  ident: 32154_CR25
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/75.6.816
  contributor:
    fullname: S-M Hsu
– volume: 18
  start-page: 529
  year: 2017
  ident: 32154_CR30
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-017-1934-z
  contributor:
    fullname: CT Rueden
– volume: 10
  start-page: 5
  year: 2015
  ident: 32154_CR34
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
  contributor:
    fullname: RJ Campello
– volume: 3
  start-page: 67
  year: 2012
  ident: 32154_CR2
  publication-title: Transl. Neurosci.
  doi: 10.2478/s13380-012-0009-x
  contributor:
    fullname: M Judaš
– volume: 216
  start-page: 65
  year: 2017
  ident: 32154_CR23
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201610026
  contributor:
    fullname: BT Grys
– volume-title: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues
  year: 1909
  ident: 32154_CR1
  contributor:
    fullname: K Brodmann
– volume: 9
  start-page: 62
  year: 1979
  ident: 32154_CR26
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
  contributor:
    fullname: N Otsu
– ident: 32154_CR31
SSID ssj0000529419
Score 2.4505842
Snippet The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science methodology...
Abstract The complexity of the cerebral cortex underlies its function and distinguishes us as humans. Here, we present a principled veridical data science...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5567
SubjectTerms 631/114/116
631/114/1305
631/114/1564
692/698/1688/64
Anatomy
Brain architecture
Cerebral cortex
Cerebral Cortex - anatomy & histology
Histology
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted
Learning algorithms
Machine Learning
multidisciplinary
Neurons
Phenotypes
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6VlSpxQYUWSKHIlbhRizix1_aRtqCeemmRuFm2EwMSZBG7Ky3_nrGdXVge4sI1tpLRPDwzmfE3APvDCBjC7JAGpSzlQjlqZa2p4so5EZogQ_p18U_-PVO_jyNMzmLUV-wJy_DAmXGHDWdBcEykMHLgtnQu4PHKQlkrPGd5m5FAS_komcqo3pXmTPe3ZHDz4Rg9VbxNVtW0RjfH6WzJEyXA_peizOfNkk8qpskRnXyCtT6CJEeZ8nX40HYb8DHPlLz7DOGhjdBdteQ6NUu2pJ8OcU7mIOIEo1WS0Cw7mj566YntEUrIKJA0vI9gbpp-dhN_Nxk9Ljp8gdOT4_-__tB-mAL1grMJtaxxWrFYhitbha5R2op5TBYEa7T26NYdaxqlRVCidN4K6UPQIXjluPBoppsw6EZduw3Exel3ZVCuwZTWo0ik9FoNrbfaYwBZFnAwZ6y5yZgZJtW6a2WyGAyKwSQxmFkBPyPvFzsj3nV6gFpgei0wb2lBAbtzyZneCMeminPUWZzCU8D3xTKaT6yJ2K4dTdMeybjUkeqtLOgFJXWEqsflAtSSCiyRurzSXV4kiO7Ye4KZHb70x1xbHuh6nRdf34MXO7BaRTWP7UViFwaT22n7DVbGzXQvGck9gX8UrA
  priority: 102
  providerName: Directory of Open Access Journals
Title Interpretable machine learning approach for neuron-centric analysis of human cortical cytoarchitecture
URI https://link.springer.com/article/10.1038/s41598-023-32154-x
https://www.ncbi.nlm.nih.gov/pubmed/37019971
https://www.proquest.com/docview/2795917204
https://search.proquest.com/docview/2797147910
https://pubmed.ncbi.nlm.nih.gov/PMC10076420
https://doaj.org/article/d41f543384164a0bbf6781f0380674e4
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB51kSr1UpXSR8pDRuqNmo0Te20fgYK4UFUqlXqzbCemK7EJYncl-PeMnWRhS3vpNbbikWesb8Yz_gbg8yQShjA7oUEpS7lQjlpZaqq4ck6EKsiQri5-yG-_1NfTSJMzGd7CpKJ976aHzfXssJn-TrWVNzM_HurExt8vTmJmH_3mfDyCETqHT2L0jtG70Jzp_oVMXqrxHFEqviQrSloixHEa2afLSESuJVsDpMTb_zdn83nN5B-J04RHZ2_gde9IkqNO4E14UTdv4WXXWvJ-C8JjNaG7rsks1UzWpG8ScUUGLnGCTitJpJYNTYtOPbE9UQlpA0k9_AiGqOnOm_j7Rfs09_AOfp6dXp6c076nAvWCswW1rHJasZiNy2uFCCltwTzGDIJVWntEd8eqSmkRlMidt0L6EHQIXjkuPJ7W97DRtE39EYiLTfDyoFyFka3PnZPSazWx3mqPfmSewcGwseamo84wKeVdKtNpxKBGTNKIucvgOO79amakvU4f2tsr0yvfVJwFwTGqRjeSW1wyINaygH9E0OU1z2Bn0Jzpz-LcFLGdOovNeDLYXw3jKYqpEdvU7TLNkYxLHaX-0Cl6JclgKBmoNRNYE3V9BA03MXUPhprBl8FaHuX69158-v-VtuFVEe081haJHdhY3C7rXRjNq-Veum7YS2flAQb0F9U
link.rule.ids 230,315,729,782,786,866,887,2107,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfYJgQvML4LA4LEG2TXtMkleWRj0xDbhMSQeIuStBkn7dppdyex_x4nbW-7AS97baLEjW3Zjp2fAd6PI2AIs2MalLKUC-WolaWmiivnRKiCDOnq4rs8_qk-70WYnPHwFiYV7Xs32W7OptvN5FeqrTyf-tFQJzb6drQbM_voN-ejNdhAhc2La1F6h-ldaM50_0YmL9VohnYqviUrSlqikeM04k-XEYpcS7ZikhJy_7_czb-rJm-kTpNF2n9423_ZhAe9D0o-deOP4E7dPIa7XVfKyycQrgoR3VlNpqncsiZ9f4lTMsCQE_R3ScLDbGiiduKJ7TFOSBtIav9HMLpN1-XEX87b62mLp_Bjf-9k94D27RioF5zNqWWV04rFRF5eKzSu0hbMY7ghWKW1R8fAsapSWgQlcuetkD4EHYJXjguPiv4M1pu2qV8AcbF_Xh6UqzAo9rlzUnqtxtZb7dEFzTP4MHDEnHeoGyZly0tlOlYaZKVJrDS_M9iJTFvOjIjZ6UN7cWr6szYVZ0FwDMjRA-UWtwxoplnAFdFe85pnsDWw3PRqPDNF7MTOYh-fDN4th1EBY1bFNnW7SHMk41JHqp93ErKkZJCwDNSK7KyQujqCcpJAvge5yODjIGZXdP3_LF7efqe3cO_g5OjQHH45_voK7hdRWWKJktiC9fnFon4Na7Nq8Sap2h_lzCyP
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYEIgXvgeFAUHiDbI21-SS8AbbTiBgmgRIvEVJ2oyTdu1pdyex_x4nbW87Pl7gtYkSN7ZlO3Z-BngxjoAhzI5pUMpSLpSjVpaaKq6cE6EKMqSri8_y6Js6OIwwOa-HtzCpaN-76V5zOttrpt9TbeV85vOhTiw__rQfM_voNxf5vAr5FlxFpS34pUi9w_Ueac50_06mKFW-QFsV35ONSlqioeM0YlCXEY5cS7ZhlhJ6_59czt8rJ39JnyarNLn1P_9zG272vih50825A1fq5i5c67pTnt-DcFGQ6E5rMktllzXp-0yckAGOnKDfSxIuZkMTxVNPbI91QtpAUhtAglFuujYn_nzZXk5f3Ievk8Mv--9o35aBesHZklpWOa1YTOgVtUIjK-2IeQw7BKu09uggOFZVSougROG8FdKHoEPwynHhUeF3YLtpm_ohEBf76BVBuQqDY184J6XXamy91R5d0SKDlwNXzLxD3zApa14q07HTIDtNYqf5kcHbyLj1zIicnT60ZyemP29TcRYEx8AcPVFuccuA5poFXBHtNq95BrsD202vzgszih3ZWeznk8Hz9TAqYsyu2KZuV2mOZFzqSPWDTkrWlAxSloHakJ8NUjdHUFYS2PcgGxm8GkTtgq6_n8Wjf9_pGVw_PpiYj--PPjyGG6OoL7FSSezC9vJsVT-BrUW1epq07SdSGy8P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+machine+learning+approach+for+neuron-centric+analysis+of+human+cortical+cytoarchitecture&rft.jtitle=Scientific+reports&rft.au=%C5%A0tajduhar%2C+Andrija&rft.au=Lipi%C4%87%2C+Tomislav&rft.au=Lon%C4%8Dari%C4%87%2C+Sven&rft.au=Juda%C5%A1%2C+Milo%C5%A1&rft.date=2023-04-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-32154-x&rft.externalDocID=10_1038_s41598_023_32154_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon