Diagnosing oral and maxillofacial diseases using deep learning

The classification and localization of odontogenic lesions from panoramic radiographs is a challenging task due to the positional biases and class imbalances of the lesions. To address these challenges, a novel neural network, DOLNet , is proposed that uses mutually influencing hierarchical attentio...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 2497 - 14
Main Authors: Kang, Junegyu, Le, Van Nhat Thang, Lee, Dae-Woo, Kim, Sungchan
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30-01-2024
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The classification and localization of odontogenic lesions from panoramic radiographs is a challenging task due to the positional biases and class imbalances of the lesions. To address these challenges, a novel neural network, DOLNet , is proposed that uses mutually influencing hierarchical attention across different image scales to jointly learn the global representation of the entire jaw and the local discrepancy between normal tissue and lesions. The proposed approach uses local attention to learn representations within a patch. From the patch-level representations, we generate inter-patch, i.e., global, attention maps to represent the positional prior of lesions in the whole image. Global attention enables the reciprocal calibration of path-level representations by considering non-local information from other patches, thereby improving the generation of whole-image-level representation. To address class imbalances, we propose an effective data augmentation technique that involves merging lesion crops with normal images, thereby synthesizing new abnormal cases for effective model training. Our approach outperforms recent studies, enhancing the classification performance by up to 42.4% and 44.2% in recall and F1 scores, respectively, and ensuring robust lesion localization with respect to lesion size variations and positional biases. Our approach further outperforms human expert clinicians in classification by 10.7 % and 10.8 % in recall and F1 score, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-52929-0