High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode
Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm 2 . Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm 2 ) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cat...
Saved in:
Published in: | Nature communications Vol. 14; no. 1; p. 4680 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
04-08-2023
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm
2
. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm
2
) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm
2
at 1.69 V and 3.6 A/cm
2
at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm
2
for over 300 h) and intermittent modes. A total production cost of US$2.09/kg
H2
is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2–2.5/kg
H2
). Hence, the use of a small amount of Ru in cathodes (~0.04 g
Ru
per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals.
Achieving high-efficiency alkaline water electrolyzer operating at large current densities remains a critical challenge. Here the authors report Ru nanoparticle-perturbed Cu nanoplatelets as cathode for hydrogen evolution reaction coupled with stainless steel anode in alkaline electrolyzer with high performance, long-term stability and relatively low-capital expenditures. |
---|---|
AbstractList | Abstract Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm2) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm2 at 1.69 V and 3.6 A/cm2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kgH2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2–2.5/kgH2). Hence, the use of a small amount of Ru in cathodes (~0.04 gRu per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals. Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm . Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm ) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm at 1.69 V and 3.6 A/cm at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm for over 300 h) and intermittent modes. A total production cost of US$2.09/kg is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2-2.5/kg ). Hence, the use of a small amount of Ru in cathodes (~0.04 g per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals. Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm2) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm2 at 1.69 V and 3.6 A/cm2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kgH2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2-2.5/kgH2). Hence, the use of a small amount of Ru in cathodes (~0.04 gRu per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals. Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm 2 . Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm 2 ) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm 2 at 1.69 V and 3.6 A/cm 2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm 2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kg H2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2–2.5/kg H2 ). Hence, the use of a small amount of Ru in cathodes (~0.04 g Ru per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals. Achieving high-efficiency alkaline water electrolyzer operating at large current densities remains a critical challenge. Here the authors report Ru nanoparticle-perturbed Cu nanoplatelets as cathode for hydrogen evolution reaction coupled with stainless steel anode in alkaline electrolyzer with high performance, long-term stability and relatively low-capital expenditures. Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm2) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm2 at 1.69 V and 3.6 A/cm2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kgH2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2–2.5/kgH2). Hence, the use of a small amount of Ru in cathodes (~0.04 gRu per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals.Achieving high-efficiency alkaline water electrolyzer operating at large current densities remains a critical challenge. Here the authors report Ru nanoparticle-perturbed Cu nanoplatelets as cathode for hydrogen evolution reaction coupled with stainless steel anode in alkaline electrolyzer with high performance, long-term stability and relatively low-capital expenditures. Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm 2 . Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm 2 ) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm 2 at 1.69 V and 3.6 A/cm 2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm 2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kg H2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2–2.5/kg H2 ). Hence, the use of a small amount of Ru in cathodes (~0.04 g Ru per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals. |
ArticleNumber | 4680 |
Author | Bellani, Sebastiano Prato, Mirko Saleh, Gabriele Shinde, Dipak V. Zappia, Marilena Isabella Infante, Ivan Zuo, Yong Bonaccorso, Francesco Brescia, Rosaria De Trizio, Luca Ferri, Michele Manna, Liberato |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0003-1564-467X surname: Zuo fullname: Zuo, Yong organization: Nanochemistry Department, Istituto Italiano di Tecnologia – sequence: 2 givenname: Sebastiano surname: Bellani fullname: Bellani, Sebastiano email: s.bellani@bedimensional.it organization: BeDimensional S.p.A, Via Lungotorrente Secca, 30R – sequence: 3 givenname: Michele orcidid: 0000-0002-3862-6709 surname: Ferri fullname: Ferri, Michele organization: Nanochemistry Department, Istituto Italiano di Tecnologia – sequence: 4 givenname: Gabriele surname: Saleh fullname: Saleh, Gabriele organization: Nanochemistry Department, Istituto Italiano di Tecnologia – sequence: 5 givenname: Dipak V. surname: Shinde fullname: Shinde, Dipak V. organization: Nanochemistry Department, Istituto Italiano di Tecnologia, National Physical Laboratory – sequence: 6 givenname: Marilena Isabella surname: Zappia fullname: Zappia, Marilena Isabella organization: BeDimensional S.p.A, Via Lungotorrente Secca, 30R – sequence: 7 givenname: Rosaria orcidid: 0000-0003-0607-0627 surname: Brescia fullname: Brescia, Rosaria organization: Electron Microscopy Facility, Istituto Italiano di Tecnologia – sequence: 8 givenname: Mirko orcidid: 0000-0002-2188-8059 surname: Prato fullname: Prato, Mirko organization: Materials Characterization Facility, Istituto Italiano di Tecnologia – sequence: 9 givenname: Luca surname: De Trizio fullname: De Trizio, Luca organization: Nanochemistry Department, Istituto Italiano di Tecnologia – sequence: 10 givenname: Ivan surname: Infante fullname: Infante, Ivan organization: BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Ikerbasque Basque Foundation for Science – sequence: 11 givenname: Francesco surname: Bonaccorso fullname: Bonaccorso, Francesco email: f.bonaccorso@bedimensional.it organization: BeDimensional S.p.A, Via Lungotorrente Secca, 30R, Graphene Labs, Istituto Italiano di Tecnologia – sequence: 12 givenname: Liberato orcidid: 0000-0003-4386-7985 surname: Manna fullname: Manna, Liberato email: Liberato.Manna@iit.it organization: Nanochemistry Department, Istituto Italiano di Tecnologia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37542064$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1UREvpH-CAInHhErDjz5wQWgGtVAkJwQ3JcuzxbhavvdhJUfn1eJtSWg744rHnnccf8z5FRzFFQOg5wa8JpupNYYQJ2eKOtgxT0rf8ETrpMCMtkR09uhcfo7NStrgO2hPF2BN0TCVnHRbsBH07H9ebdg_Zp7wz0UJjwncTxgjNTzNBbiCAnXIK178gl2YwBVyTYvN5PhRNcx7qejU30cS0D7UiwFQaa6ZNcvAMPfYmFDi7nU_R1w_vv6zO28tPHy9W7y5byxmZWi6Ut1aInnQDs65X4C14bqSCAQx1vAPBJXHgqGFScWc7IMAHpzDuubL0FF0sXJfMVu_zuDP5Wicz6puNlNfa5Gm0AbRi3hsFXApRQ8cHw70flPQe6EA9qay3C2s_DztwFuKUTXgAfZiJ40av05UmuPaBS1wJr24JOf2YoUx6NxYLIZgIaS66U0z0lAjOq_TlP9JtmnOsf3VQ8V72rGdV1S0qm1MpGfzdbQjWBzPoxQy6mkHfmEEf0C_uv-Ou5E_rq4AuglJTcQ3579n_wf4GqxrDxQ |
CitedBy_id | crossref_primary_10_1021_jacs_3c06726 crossref_primary_10_1016_j_coche_2023_100981 crossref_primary_10_1016_j_jechem_2024_04_003 crossref_primary_10_1002_adma_202312071 crossref_primary_10_1002_chem_202303826 crossref_primary_10_1021_acs_langmuir_4c00687 crossref_primary_10_1016_j_cej_2024_151295 crossref_primary_10_1021_acsmaterialslett_4c00690 crossref_primary_10_1016_j_gee_2024_02_001 crossref_primary_10_1016_j_ijhydene_2024_04_136 crossref_primary_10_1021_acsami_4c05286 crossref_primary_10_1021_acsmaterialslett_4c00699 crossref_primary_10_1016_j_nanoen_2024_109805 crossref_primary_10_1016_j_cej_2024_152547 crossref_primary_10_3390_nano14100853 crossref_primary_10_1002_aenm_202304269 crossref_primary_10_1016_j_ijhydene_2024_03_238 |
Cites_doi | 10.1021/acsami.8b09493 10.1016/j.apcatb.2019.117963 10.1149/1945-7111/abda57 10.1002/elsa.202100190 10.1021/acsami.0c10476 10.1016/j.rser.2017.09.003 10.1039/C9SE01240K 10.1038/s41467-022-28953-x 10.1021/acsenergylett.1c01869 10.1016/j.joule.2021.05.006 10.1149/2.1101807jes 10.1149/2.0231611jes 10.1039/D2EE00099G 10.1016/j.jece.2022.108486 10.1016/j.ijhydene.2010.04.035 10.1039/C5EE01601K 10.1021/acscatal.0c03692 10.3389/fchem.2022.1045212 10.1149/2.0501514jes 10.1021/acs.chemmater.9b04883 10.1039/D1EE02642A 10.1016/j.ijhydene.2021.05.088 10.1007/s12274-017-1886-7 10.1021/acsami.9b14213 10.1149/2.0541807jes 10.1039/C8NR02071J 10.1038/s41560-019-0326-1 10.1016/j.enconman.2020.113649 10.1103/PhysRevB.59.1758 10.1039/C8EE03282C 10.1016/j.electacta.2019.134687 10.1039/C9EE01202H 10.1039/D0EE01133A 10.1038/nnano.2016.304 10.1016/j.nanoen.2018.03.015 10.1016/j.rser.2017.09.071 10.1038/s41560-019-0462-7 10.1021/acssuschemeng.7b04173 10.1021/acsnano.0c10788 10.1021/acsenergylett.7b00219 10.1021/acsnano.1c06662 10.1016/j.ijhydene.2017.10.050 10.1016/j.jece.2021.106349 10.1021/acs.jpcc.7b08672 10.1016/j.joule.2019.07.006 10.1126/science.aao5023 10.1016/j.jcat.2019.06.008 10.1038/s41467-020-15069-3 10.1021/ja407115p 10.1016/0927-0256(96)00008-0 10.1039/D0CY01179G 10.1016/j.jpowsour.2019.227350 10.1016/j.elecom.2020.106902 10.1149/1.1856988 10.1016/j.jallcom.2020.157265 10.1002/bbpc.19740780802 10.1039/C9SC03831K 10.1021/acsenergylett.0c01537 10.1039/D0TA03475D 10.1038/s41560-020-0577-x 10.1103/PhysRevLett.77.3865 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. Springer Nature Limited. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. Springer Nature Limited. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Springer Nature Limited 2023 |
DBID | C6C NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-40319-5 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 4680 |
ExternalDocumentID | oai_doaj_org_article_84ffa8e576684fd5ba5ffb87ffe3b3f1 10_1038_s41467_023_40319_5 37542064 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 899412; 899412; 881603; 881603 funderid: https://doi.org/10.13039/100010661 – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 881603 – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 899412 – fundername: ; grantid: 899412; 899412; 881603; 881603 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c541t-568fcc66912b4cd98efcef5a78ebea3d52e6571ded3a4785dc2e1e5bd800958c3 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:15:25 EDT 2024 Tue Sep 17 21:31:12 EDT 2024 Sat Oct 05 05:06:44 EDT 2024 Fri Nov 08 23:35:16 EST 2024 Thu Nov 21 23:29:43 EST 2024 Sat Sep 28 08:10:28 EDT 2024 Fri Oct 11 20:48:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. Springer Nature Limited. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-568fcc66912b4cd98efcef5a78ebea3d52e6571ded3a4785dc2e1e5bd800958c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0607-0627 0000-0003-1564-467X 0000-0002-3862-6709 0000-0003-4386-7985 0000-0002-2188-8059 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403570/ |
PMID | 37542064 |
PQID | 2845979494 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_84ffa8e576684fd5ba5ffb87ffe3b3f1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10403570 proquest_miscellaneous_2846931655 proquest_journals_2845979494 crossref_primary_10_1038_s41467_023_40319_5 pubmed_primary_37542064 springer_journals_10_1038_s41467_023_40319_5 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-04 |
PublicationDateYYYYMMDD | 2023-08-04 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Glenk, Reichelstein (CR8) 2019; 4 Xing, Wang, Meng, Yang (CR26) 2020; 12 Perdew, Burke, Ernzerhof (CR65) 1996; 77 Liu (CR45) 2017; 42 Kang (CR58) 2018; 47 Lamy, Millet (CR72) 2020; 447 Wang (CR28) 2018; 10 Najafi (CR62) 2022; 16 Trinke (CR14) 2018; 165 Shinde (CR22) 2020; 8 Lee, Bang (CR61) 2020; 5 Al Ghafri (CR5) 2022; 15 Todoroki, Wadayama (CR40) 2021; 122 Ju (CR42) 2018; 6 Gannon, Dunnill (CR50) 2019; 322 Chen (CR60) 2017; 2 Qiu, Tai, Niklasson, Edvinsson (CR7) 2019; 12 Mullins (CR35) 2021; 15 Hodges (CR49) 2022; 13 Kweon (CR19) 2020; 11 Mandal, Valls, Gangnus, Secanell (CR73) 2018; 165 Zhu (CR25) 2019; 10 Lyu (CR46) 2022; 10 Razmjooei (CR6) 2021; 5 Morozan (CR44) 2020; 10 Sengodan (CR3) 2018; 82 McCrory, Jung, Peters, Jaramillo (CR63) 2013; 135 Miller (CR12) 2020; 4 Zhai (CR24) 2021; 12 Zheng, Yan, Xu (CR29) 2015; 162 Chen (CR37) 2021; 14 Zimbro, Power, Miller, Wilson, Johnson (CR54) 2009; 40 Brauns (CR13) 2021; 168 Nørskov (CR31) 2005; 152 Etzi Coller Pascuzzi, Man, Goryachev, Hofmann, Hensen (CR41) 2020; 10 CR18 Alexander, Pritchard (CR68) 1972; 68 Nösberger (CR43) 2023; 3 Zappia (CR71) 2022; 10 CR57 CR56 CR55 CR51 Shinde (CR23) 2018; 10 Liu (CR32) 2018; 9 Upham (CR2) 2017; 358 Dotan (CR48) 2019; 4 Wang, Yang, Liu, Cao (CR27) 2019; 375 Mustain, Chatenet, Page, Kim (CR16) 2020; 13 Kresse, Furthmüller (CR64) 1996; 6 Buttler, Spliethoff (CR11) 2018; 82 Guerra, Eichman, Kurtz, Hodge (CR1) 2019; 3 Zhang, Tan, He, Fu (CR21) 2021; 853 Najafi (CR53) 2020; 32 Lu, Zhao (CR59) 2015; 6 Hu, Zhang, Gong (CR10) 2019; 12 Dubouis, Grimaud (CR30) 2019; 10 Lee (CR52) 2021; 9 Kraemer, Menzel (CR70) 1974; 78 CR69 Li (CR36) 2020; 5 Mahmood (CR20) 2017; 12 Bartels, Pate, Olson (CR9) 2010; 35 Hubert, King, Jaramillo (CR15) 2022; 7 Kresse, Joubert (CR66) 1999; 59 Bernt, Gasteiger (CR38) 2016; 163 Todoroki, Wadayama (CR39) 2019; 11 Nanba, Ishimoto, Koyama (CR67) 2017; 121 Midilli, Kucuk, Topal, Akbulut, Dincer (CR4) 2021; 46 Yin (CR33) 2018; 11 Schäfer (CR34) 2015; 8 Moureaux, Stevens, Toussaint, Chatenet (CR47) 2019; 258 Kakoulaki (CR17) 2021; 228 WE Mustain (40319_CR16) 2020; 13 M Bernt (40319_CR38) 2016; 163 OJ Guerra (40319_CR1) 2019; 3 MA Hubert (40319_CR15) 2022; 7 SZ Al Ghafri (40319_CR5) 2022; 15 WJF Gannon (40319_CR50) 2019; 322 JP Perdew (40319_CR65) 1996; 77 A Buttler (40319_CR11) 2018; 82 Z Xing (40319_CR26) 2020; 12 P Trinke (40319_CR14) 2018; 165 X Lu (40319_CR59) 2015; 6 K Kraemer (40319_CR70) 1974; 78 G Glenk (40319_CR8) 2019; 4 N Todoroki (40319_CR39) 2019; 11 G Kresse (40319_CR66) 1999; 59 40319_CR51 D Wang (40319_CR27) 2019; 375 40319_CR55 H Yin (40319_CR33) 2018; 11 M Etzi Coller Pascuzzi (40319_CR41) 2020; 10 HA Miller (40319_CR12) 2020; 4 H Schäfer (40319_CR34) 2015; 8 CCL McCrory (40319_CR63) 2013; 135 DC Upham (40319_CR2) 2017; 358 DV Shinde (40319_CR23) 2018; 10 W Ju (40319_CR42) 2018; 6 S Nösberger (40319_CR43) 2023; 3 L Najafi (40319_CR62) 2022; 16 G Kresse (40319_CR64) 1996; 6 N Dubouis (40319_CR30) 2019; 10 H Dotan (40319_CR48) 2019; 4 Z Wang (40319_CR28) 2018; 10 J Lee (40319_CR61) 2020; 5 DV Shinde (40319_CR22) 2020; 8 Y Zhu (40319_CR25) 2019; 10 F Razmjooei (40319_CR6) 2021; 5 40319_CR57 40319_CR56 40319_CR18 Y Liu (40319_CR32) 2018; 9 D Li (40319_CR36) 2020; 5 A Hodges (40319_CR49) 2022; 13 MJ Zimbro (40319_CR54) 2009; 40 J Zheng (40319_CR29) 2015; 162 J Mahmood (40319_CR20) 2017; 12 P Zhang (40319_CR21) 2021; 853 G Kakoulaki (40319_CR17) 2021; 228 Z Kang (40319_CR58) 2018; 47 S Sengodan (40319_CR3) 2018; 82 P Zhai (40319_CR24) 2021; 12 N Todoroki (40319_CR40) 2021; 122 A Midilli (40319_CR4) 2021; 46 MI Zappia (40319_CR71) 2022; 10 C Lamy (40319_CR72) 2020; 447 JR Bartels (40319_CR9) 2010; 35 Z Qiu (40319_CR7) 2019; 12 40319_CR69 J Brauns (40319_CR13) 2021; 168 M Mandal (40319_CR73) 2018; 165 JK Nørskov (40319_CR31) 2005; 152 X Lyu (40319_CR46) 2022; 10 Y Nanba (40319_CR67) 2017; 121 B Lee (40319_CR52) 2021; 9 Z Liu (40319_CR45) 2017; 42 CS Alexander (40319_CR68) 1972; 68 C Hu (40319_CR10) 2019; 12 CB Mullins (40319_CR35) 2021; 15 A Morozan (40319_CR44) 2020; 10 R Chen (40319_CR60) 2017; 2 L Najafi (40319_CR53) 2020; 32 DH Kweon (40319_CR19) 2020; 11 N Chen (40319_CR37) 2021; 14 F Moureaux (40319_CR47) 2019; 258 |
References_xml | – volume: 5 start-page: 2706 year: 2020 end-page: 2710 ident: CR61 article-title: Reliable counter electrodes for the hydrogen evolution reaction in acidic media publication-title: ACS Energy Lett. contributor: fullname: Bang – volume: 853 start-page: 157265 year: 2021 ident: CR21 article-title: Binder-free quaternary Ni–Fe–W–Mo alloy as a highly efficient electrocatalyst for oxygen evolution reaction publication-title: J. Alloys Compd. contributor: fullname: Fu – volume: 11 start-page: 44161 year: 2019 end-page: 44169 ident: CR39 article-title: Heterolayered Ni-Fe hydroxide/oxide nanostructures generated on a stainless-steel substrate for efficient alkaline water splitting publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Wadayama – volume: 8 start-page: 2685 year: 2015 end-page: 2697 ident: CR34 article-title: Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics publication-title: Energy Environ. Sci. contributor: fullname: Schäfer – volume: 121 start-page: 27445 year: 2017 end-page: 27452 ident: CR67 article-title: Structural stability of Ruthenium nanoparticles: a density functional theory study publication-title: J. Phys. Chem. C contributor: fullname: Koyama – volume: 12 start-page: 572 year: 2019 end-page: 581 ident: CR7 article-title: Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting publication-title: Energy Environ. Sci. contributor: fullname: Edvinsson – volume: 165 start-page: F502 year: 2018 end-page: F513 ident: CR14 article-title: Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies publication-title: J. Electrochem. Soc. contributor: fullname: Trinke – ident: CR51 – volume: 78 start-page: 728 year: 1974 end-page: 733 ident: CR70 article-title: Adsorption of gases on Ruthenium field emitters II. Hydrogen publication-title: Ber. Bunsenges. Phys. Chemie contributor: fullname: Menzel – volume: 10 start-page: 12302 year: 2018 end-page: 12307 ident: CR28 article-title: An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution publication-title: Nanoscale contributor: fullname: Wang – volume: 10 start-page: 14336 year: 2020 end-page: 14348 ident: CR44 article-title: Nonprecious bimetallic iron−molybdenum sulfide electrocatalysts for the hydrogen evolution reaction in proton exchange membrane electrolyzers publication-title: ACS Catal. contributor: fullname: Morozan – volume: 15 start-page: 2690 year: 2022 end-page: 2731 ident: CR5 article-title: Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities publication-title: Energy Environ. Sci. contributor: fullname: Al Ghafri – volume: 10 start-page: 108486 year: 2022 ident: CR46 article-title: Investigation of oxygen evolution reaction with Ni foam and stainless-steel mesh electrodes in alkaline seawater electrolysis publication-title: J. Environ. Chem. Eng. contributor: fullname: Lyu – volume: 10 start-page: 1362 year: 2022 ident: CR71 article-title: High-current density alkaline electrolyzers: the role of Nafion binder content in the catalyst coatings and techno-economic analysis publication-title: Front. Chem. contributor: fullname: Zappia – volume: 7 start-page: 17 year: 2022 end-page: 23 ident: CR15 article-title: Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers publication-title: ACS Energy Lett. contributor: fullname: Jaramillo – volume: 4 start-page: 2114 year: 2020 end-page: 2133 ident: CR12 article-title: Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions publication-title: Sustain. Energy Fuels contributor: fullname: Miller – volume: 165 start-page: F543 year: 2018 end-page: F552 ident: CR73 article-title: Analysis of inkjet printed catalyst coated membranes for polymer electrolyte electrolyzers publication-title: J. Electrochem. Soc. contributor: fullname: Secanell – volume: 228 start-page: 113649 year: 2021 ident: CR17 article-title: Green hydrogen in Europe—a regional assessment: substituting existing production with electrolysis powered by renewables publication-title: Energy Convers. Manag. contributor: fullname: Kakoulaki – volume: 59 start-page: 1758 year: 1999 ident: CR66 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B contributor: fullname: Joubert – volume: 40 start-page: 289 year: 2009 ident: CR54 article-title: Difco & BBL manual: manual of microbiological culture media publication-title: Citeseer contributor: fullname: Johnson – volume: 3 start-page: 2425 year: 2019 end-page: 2443 ident: CR1 article-title: Cost competitiveness of electrolytic hydrogen publication-title: Joule contributor: fullname: Hodge – volume: 46 start-page: 25385 year: 2021 end-page: 25412 ident: CR4 article-title: A comprehensive review on hydrogen production from coal gasification: challenges and opportunities publication-title: Int. J. Hydrogen Energy contributor: fullname: Dincer – volume: 32 start-page: 2420 year: 2020 end-page: 2429 ident: CR53 article-title: Octapod-shaped CdSe nanocrystals hosting Pt with high mass activity for the hydrogen evolution reaction publication-title: Chem. Mater. contributor: fullname: Najafi – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR64 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. contributor: fullname: Furthmüller – volume: 447 start-page: 227350 year: 2020 ident: CR72 article-title: A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions publication-title: J. Power Sources contributor: fullname: Millet – volume: 6 start-page: 4829 year: 2018 end-page: 4837 ident: CR42 article-title: Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation publication-title: ACS Sustain. Chem. Eng. contributor: fullname: Ju – ident: CR57 – volume: 12 start-page: 441 year: 2017 end-page: 446 ident: CR20 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat. Nanotechnol. contributor: fullname: Mahmood – volume: 4 start-page: 786 year: 2019 end-page: 795 ident: CR48 article-title: Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting publication-title: Nat. Energy contributor: fullname: Dotan – volume: 77 start-page: 3865 year: 1996 ident: CR65 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. contributor: fullname: Ernzerhof – volume: 10 start-page: 29583 year: 2018 end-page: 29592 ident: CR23 article-title: In situ dynamic nanostructuring of the Cu-Ti catalyst-support system promotes hydrogen evolution under alkaline conditions publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Shinde – volume: 10 year: 2019 ident: CR25 article-title: Unusual synergistic effect in layered Ruddlesden−Popper oxide enables ultrafast hydrogen evolution publication-title: Nat. Commun. contributor: fullname: Zhu – volume: 47 start-page: 434 year: 2018 end-page: 441 ident: CR58 article-title: Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells publication-title: Nano Energy contributor: fullname: Kang – volume: 68 start-page: 202 year: 1972 end-page: 215 ident: CR68 article-title: Chemisorption of hydrogen on evaporated copper films publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases contributor: fullname: Pritchard – volume: 13 start-page: 2805 year: 2020 end-page: 2838 ident: CR16 article-title: Durability challenges of anion exchange membrane fuel cells publication-title: Energy Environ. Sci. contributor: fullname: Kim – volume: 3 start-page: e2100190 year: 2023 ident: CR43 article-title: The gas diffusion electrode setup as a testing platform for evaluating fuel cell catalysts: a comparative RDE‐GDE study publication-title: Electrochem. Sci. Adv. contributor: fullname: Nösberger – volume: 5 start-page: 1776 year: 2021 end-page: 1799 ident: CR6 article-title: Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer publication-title: Joule contributor: fullname: Razmjooei – volume: 122 start-page: 106902 year: 2021 ident: CR40 article-title: Electrochemical stability of stainless-steel-made anode for alkaline water electrolysis: Surface catalyst nanostructures and oxygen evolution overpotentials under applying potential cycle loading publication-title: Electrochem. Commun. contributor: fullname: Wadayama – ident: CR18 – volume: 35 start-page: 8371 year: 2010 end-page: 8384 ident: CR9 article-title: An economic survey of hydrogen production from conventional and alternative energy sources publication-title: Int. J. Hydrogen Energy contributor: fullname: Olson – volume: 12 start-page: 39163 year: 2020 end-page: 39169 ident: CR26 article-title: Superb hydrogen evolution by a Pt nanoparticle-decorated Ni3S2Microrod array publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Yang – volume: 10 start-page: 9165 year: 2019 end-page: 9181 ident: CR30 article-title: The hydrogen evolution reaction: from material to interfacial descriptors publication-title: Chem. Sci. contributor: fullname: Grimaud – volume: 5 start-page: 378 year: 2020 end-page: 385 ident: CR36 article-title: Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers publication-title: Nat. Energy contributor: fullname: Li – volume: 6 year: 2015 ident: CR59 article-title: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities publication-title: Nat. Commun. contributor: fullname: Zhao – volume: 4 start-page: 216 year: 2019 end-page: 222 ident: CR8 article-title: Economics of converting renewable power to hydrogen publication-title: Nat. Energy contributor: fullname: Reichelstein – volume: 258 start-page: 117963 year: 2019 ident: CR47 article-title: Timely-activated 316L stainless steel: a low cost, durable and active electrode for oxygen evolution reaction in concentrated alkaline environments publication-title: Appl. Catal. B Environ. contributor: fullname: Chatenet – volume: 14 start-page: 6338 year: 2021 end-page: 6348 ident: CR37 article-title: High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm and a durability of 1000 hours publication-title: Energy Environ. Sci. contributor: fullname: Chen – volume: 2 start-page: 1070 year: 2017 end-page: 1075 ident: CR60 article-title: Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction publication-title: ACS Energy Lett. contributor: fullname: Chen – ident: CR56 – volume: 163 start-page: F3179 year: 2016 end-page: F3189 ident: CR38 article-title: Influence of ionomer content in IrO /TiO electrodes on PEM water electrolyzer performance publication-title: J. Electrochem. Soc. contributor: fullname: Gasteiger – volume: 375 start-page: 249 year: 2019 end-page: 256 ident: CR27 article-title: Polyaniline-coated Ru/Ni(OH) nanosheets for hydrogen evolution reaction over a wide pH range publication-title: J. Catal. contributor: fullname: Cao – volume: 11 year: 2020 ident: CR19 article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency publication-title: Nat. Commun. contributor: fullname: Kweon – volume: 42 start-page: 29661 year: 2017 end-page: 29665 ident: CR45 article-title: The effect of membrane on an alkaline water electrolyzer publication-title: Int. J. Hydrogen Energy contributor: fullname: Liu – volume: 152 start-page: J23 year: 2005 ident: CR31 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. contributor: fullname: Nørskov – ident: CR69 – volume: 82 start-page: 761 year: 2018 end-page: 780 ident: CR3 article-title: Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Sengodan – volume: 10 start-page: 5593 year: 2020 end-page: 5601 ident: CR41 article-title: Investigation of the stability of NiFe-(oxy)hydroxide anodes in alkaline water electrolysis under industrially relevant conditions publication-title: Catal. Sci. Technol. contributor: fullname: Hensen – volume: 358 start-page: 917 year: 2017 end-page: 921 ident: CR2 article-title: Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon publication-title: Science contributor: fullname: Upham – volume: 82 start-page: 2440 year: 2018 end-page: 2454 ident: CR11 article-title: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Spliethoff – volume: 162 start-page: F1470 year: 2015 end-page: F1481 ident: CR29 article-title: Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics publication-title: J. Electrochem. Soc. contributor: fullname: Xu – volume: 16 start-page: 351 year: 2022 end-page: 367 ident: CR62 article-title: Topochemical transformation of two-dimensional VSe into metallic nonlayered VO for water splitting reactions in acidic and alkaline media publication-title: ACS Nano contributor: fullname: Najafi – volume: 168 start-page: 014510 year: 2021 ident: CR13 article-title: Evaluation of diaphragms and membranes as separators for alkaline water electrolysis publication-title: J. Electrochem. Soc. contributor: fullname: Brauns – volume: 12 year: 2021 ident: CR24 article-title: Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting publication-title: Nat. Commun. contributor: fullname: Zhai – volume: 11 start-page: 3959 year: 2018 end-page: 3971 ident: CR33 article-title: Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution publication-title: Nano Res. contributor: fullname: Yin – volume: 12 start-page: 2620 year: 2019 end-page: 2645 ident: CR10 article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting publication-title: Energy Environ. Sci. contributor: fullname: Gong – volume: 9 start-page: 106349 year: 2021 ident: CR52 article-title: Integrative techno-economic and environmental assessment for green H production by alkaline water electrolysis based on experimental data publication-title: J. Environ. Chem. Eng. contributor: fullname: Lee – ident: CR55 – volume: 322 start-page: 134687 year: 2019 ident: CR50 article-title: Raney Nickel 2.0: development of a high-performance bifunctional electrocatalyst publication-title: Electrochim. Acta contributor: fullname: Dunnill – volume: 8 start-page: 10787 year: 2020 end-page: 10795 ident: CR22 article-title: A robust and highly active hydrogen evolution catalyst based on Ru nanocrystals supported on vertically oriented Cu nanoplates publication-title: J. Mater. Chem. A contributor: fullname: Shinde – volume: 15 start-page: 3468 year: 2021 end-page: 3480 ident: CR35 article-title: Anodized nickel foam for oxygen evolution reaction in fe-free and unpurified alkaline electrolytes at high current densities publication-title: ACS Nano contributor: fullname: Mullins – volume: 13 year: 2022 ident: CR49 article-title: A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen publication-title: Nat. Commun. contributor: fullname: Hodges – volume: 9 year: 2018 ident: CR32 article-title: Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours publication-title: Nat. Commun. contributor: fullname: Liu – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: CR63 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. contributor: fullname: Jaramillo – volume: 10 start-page: 29583 year: 2018 ident: 40319_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09493 contributor: fullname: DV Shinde – volume: 258 start-page: 117963 year: 2019 ident: 40319_CR47 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117963 contributor: fullname: F Moureaux – volume: 168 start-page: 014510 year: 2021 ident: 40319_CR13 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abda57 contributor: fullname: J Brauns – volume: 3 start-page: e2100190 year: 2023 ident: 40319_CR43 publication-title: Electrochem. Sci. Adv. doi: 10.1002/elsa.202100190 contributor: fullname: S Nösberger – ident: 40319_CR18 – volume: 12 start-page: 39163 year: 2020 ident: 40319_CR26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10476 contributor: fullname: Z Xing – volume: 82 start-page: 2440 year: 2018 ident: 40319_CR11 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.003 contributor: fullname: A Buttler – volume: 4 start-page: 2114 year: 2020 ident: 40319_CR12 publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE01240K contributor: fullname: HA Miller – volume: 13 year: 2022 ident: 40319_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28953-x contributor: fullname: A Hodges – volume: 6 year: 2015 ident: 40319_CR59 publication-title: Nat. Commun. contributor: fullname: X Lu – volume: 7 start-page: 17 year: 2022 ident: 40319_CR15 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01869 contributor: fullname: MA Hubert – volume: 5 start-page: 1776 year: 2021 ident: 40319_CR6 publication-title: Joule doi: 10.1016/j.joule.2021.05.006 contributor: fullname: F Razmjooei – volume: 165 start-page: F543 year: 2018 ident: 40319_CR73 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1101807jes contributor: fullname: M Mandal – volume: 163 start-page: F3179 year: 2016 ident: 40319_CR38 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0231611jes contributor: fullname: M Bernt – volume: 15 start-page: 2690 year: 2022 ident: 40319_CR5 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00099G contributor: fullname: SZ Al Ghafri – volume: 10 start-page: 108486 year: 2022 ident: 40319_CR46 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108486 contributor: fullname: X Lyu – volume: 35 start-page: 8371 year: 2010 ident: 40319_CR9 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.035 contributor: fullname: JR Bartels – ident: 40319_CR56 – volume: 8 start-page: 2685 year: 2015 ident: 40319_CR34 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01601K contributor: fullname: H Schäfer – volume: 10 start-page: 14336 year: 2020 ident: 40319_CR44 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03692 contributor: fullname: A Morozan – volume: 10 start-page: 1362 year: 2022 ident: 40319_CR71 publication-title: Front. Chem. doi: 10.3389/fchem.2022.1045212 contributor: fullname: MI Zappia – volume: 162 start-page: F1470 year: 2015 ident: 40319_CR29 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501514jes contributor: fullname: J Zheng – volume: 32 start-page: 2420 year: 2020 ident: 40319_CR53 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04883 contributor: fullname: L Najafi – volume: 14 start-page: 6338 year: 2021 ident: 40319_CR37 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02642A contributor: fullname: N Chen – volume: 46 start-page: 25385 year: 2021 ident: 40319_CR4 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.088 contributor: fullname: A Midilli – volume: 11 start-page: 3959 year: 2018 ident: 40319_CR33 publication-title: Nano Res. doi: 10.1007/s12274-017-1886-7 contributor: fullname: H Yin – volume: 11 start-page: 44161 year: 2019 ident: 40319_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14213 contributor: fullname: N Todoroki – volume: 165 start-page: F502 year: 2018 ident: 40319_CR14 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0541807jes contributor: fullname: P Trinke – volume: 10 start-page: 12302 year: 2018 ident: 40319_CR28 publication-title: Nanoscale doi: 10.1039/C8NR02071J contributor: fullname: Z Wang – volume: 4 start-page: 216 year: 2019 ident: 40319_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-019-0326-1 contributor: fullname: G Glenk – volume: 228 start-page: 113649 year: 2021 ident: 40319_CR17 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113649 contributor: fullname: G Kakoulaki – ident: 40319_CR57 – volume: 59 start-page: 1758 year: 1999 ident: 40319_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 contributor: fullname: G Kresse – volume: 12 start-page: 572 year: 2019 ident: 40319_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03282C contributor: fullname: Z Qiu – volume: 322 start-page: 134687 year: 2019 ident: 40319_CR50 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134687 contributor: fullname: WJF Gannon – volume: 12 start-page: 2620 year: 2019 ident: 40319_CR10 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01202H contributor: fullname: C Hu – volume: 68 start-page: 202 year: 1972 ident: 40319_CR68 publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases contributor: fullname: CS Alexander – volume: 13 start-page: 2805 year: 2020 ident: 40319_CR16 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01133A contributor: fullname: WE Mustain – volume: 12 start-page: 441 year: 2017 ident: 40319_CR20 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 contributor: fullname: J Mahmood – volume: 47 start-page: 434 year: 2018 ident: 40319_CR58 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.015 contributor: fullname: Z Kang – volume: 82 start-page: 761 year: 2018 ident: 40319_CR3 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.071 contributor: fullname: S Sengodan – volume: 12 year: 2021 ident: 40319_CR24 publication-title: Nat. Commun. contributor: fullname: P Zhai – volume: 4 start-page: 786 year: 2019 ident: 40319_CR48 publication-title: Nat. Energy doi: 10.1038/s41560-019-0462-7 contributor: fullname: H Dotan – volume: 6 start-page: 4829 year: 2018 ident: 40319_CR42 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04173 contributor: fullname: W Ju – volume: 15 start-page: 3468 year: 2021 ident: 40319_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.0c10788 contributor: fullname: CB Mullins – ident: 40319_CR51 – volume: 2 start-page: 1070 year: 2017 ident: 40319_CR60 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00219 contributor: fullname: R Chen – volume: 16 start-page: 351 year: 2022 ident: 40319_CR62 publication-title: ACS Nano doi: 10.1021/acsnano.1c06662 contributor: fullname: L Najafi – volume: 42 start-page: 29661 year: 2017 ident: 40319_CR45 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.050 contributor: fullname: Z Liu – volume: 9 start-page: 106349 year: 2021 ident: 40319_CR52 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106349 contributor: fullname: B Lee – volume: 121 start-page: 27445 year: 2017 ident: 40319_CR67 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08672 contributor: fullname: Y Nanba – volume: 3 start-page: 2425 year: 2019 ident: 40319_CR1 publication-title: Joule doi: 10.1016/j.joule.2019.07.006 contributor: fullname: OJ Guerra – volume: 358 start-page: 917 year: 2017 ident: 40319_CR2 publication-title: Science doi: 10.1126/science.aao5023 contributor: fullname: DC Upham – volume: 375 start-page: 249 year: 2019 ident: 40319_CR27 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.06.008 contributor: fullname: D Wang – volume: 11 year: 2020 ident: 40319_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15069-3 contributor: fullname: DH Kweon – volume: 135 start-page: 16977 year: 2013 ident: 40319_CR63 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p contributor: fullname: CCL McCrory – volume: 9 year: 2018 ident: 40319_CR32 publication-title: Nat. Commun. contributor: fullname: Y Liu – volume: 6 start-page: 15 year: 1996 ident: 40319_CR64 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 contributor: fullname: G Kresse – volume: 10 start-page: 5593 year: 2020 ident: 40319_CR41 publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY01179G contributor: fullname: M Etzi Coller Pascuzzi – volume: 447 start-page: 227350 year: 2020 ident: 40319_CR72 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227350 contributor: fullname: C Lamy – volume: 122 start-page: 106902 year: 2021 ident: 40319_CR40 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2020.106902 contributor: fullname: N Todoroki – volume: 152 start-page: J23 year: 2005 ident: 40319_CR31 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 contributor: fullname: JK Nørskov – volume: 40 start-page: 289 year: 2009 ident: 40319_CR54 publication-title: Citeseer contributor: fullname: MJ Zimbro – volume: 853 start-page: 157265 year: 2021 ident: 40319_CR21 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157265 contributor: fullname: P Zhang – volume: 78 start-page: 728 year: 1974 ident: 40319_CR70 publication-title: Ber. Bunsenges. Phys. Chemie doi: 10.1002/bbpc.19740780802 contributor: fullname: K Kraemer – volume: 10 year: 2019 ident: 40319_CR25 publication-title: Nat. Commun. contributor: fullname: Y Zhu – volume: 10 start-page: 9165 year: 2019 ident: 40319_CR30 publication-title: Chem. Sci. doi: 10.1039/C9SC03831K contributor: fullname: N Dubouis – ident: 40319_CR69 – volume: 5 start-page: 2706 year: 2020 ident: 40319_CR61 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01537 contributor: fullname: J Lee – volume: 8 start-page: 10787 year: 2020 ident: 40319_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03475D contributor: fullname: DV Shinde – ident: 40319_CR55 – volume: 5 start-page: 378 year: 2020 ident: 40319_CR36 publication-title: Nat. Energy doi: 10.1038/s41560-020-0577-x contributor: fullname: D Li – volume: 77 start-page: 3865 year: 1996 ident: 40319_CR65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: JP Perdew |
SSID | ssj0000391844 |
Score | 2.576129 |
Snippet | Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm
2
. Here, we design a cost-effective and robust cathode, consisting of... Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm . Here, we design a cost-effective and robust cathode, consisting of... Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of... Abstract Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode,... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4680 |
SubjectTerms | 119/118 140/146 147/135 147/137 147/143 639/301/299 639/4077 639/638/77/886 Alkaline water Capital expenditures Catalysts Cathodes Copper Current density Expenditures Humanities and Social Sciences Hydrogen evolution reactions Iron compounds Metals multidisciplinary Nanoparticles Nickel compounds Platelets (materials) Production costs Ruthenium Science Science (multidisciplinary) Stainless steel Stainless steels |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEB60IPgitd7WVongmy7d3dwftbb0yQcv4IMQckXxsHvo6SLtr-8ku-fU44W--JbdJDDMl2S-IZMZgJfOSyVChwgwzmtmta8tF6kOMknhqI6S54fCpx_l-y_q3XFOk7Mp9ZVjwqb0wJPiDhVLyaqItFhgM3BneUpOyZQidTRNjk8jfnGmyhlMNboubH4l01B1uGLlTEAThS5TfrnDtyxRSdj_N5b5Z7DkbzemxRCd7MK9mUGSN5Pk9-FW7PfgzlRT8uIBfM2RG_Xy-j0AsYsfNpNJ8hN55RmZC98sLi6R-ZFsxQIZevJhzJPQADn8PhpJb_thucAZCOyK5OyuQ4gP4fPJ8aej03ouoVB7ztrzmguVvBdCt51jPmgVk4-JW6kQPEsD76Lgsg0xUMuk4sF3sY3cBZW5l_L0Eez0Qx-fAEnBu8ZRdL6FZw5piUzYjJQGLWSjdAWv1uo0yylThik33FSZSfkGlW-K8g2v4G3W-GZkznJdfiD2Zsbe3IR9BQdrvMy89VYG7S06SZppVsGLTTdumnwTYvs4jGWM0LQVHOV4PMG7kaTUBEaiVoHaAn5L1O2e_vu3kpgbXduGctlU8Hq9Rq7l-rcunv4PXezD3S4v7hzNwg5g5_xsjM_g9iqMz8vWuAJeTRVi priority: 102 providerName: Directory of Open Access Journals |
Title | High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode |
URI | https://link.springer.com/article/10.1038/s41467-023-40319-5 https://www.ncbi.nlm.nih.gov/pubmed/37542064 https://www.proquest.com/docview/2845979494 https://search.proquest.com/docview/2846931655 https://pubmed.ncbi.nlm.nih.gov/PMC10403570 https://doaj.org/article/84ffa8e576684fd5ba5ffb87ffe3b3f1 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYSkhcEG8CpTISN0g3id9HWFr1AkI8JA5Ilp-0Ypusdhuh8usZO8mW5XHhlsS2PPI39szE80DomXVCct8AApSxkhrlSsN4LL2IgluigmApUPjkg3j7Wb4-Smly-BQLk532nT07bJfnh-3ZafatXJ27-eQnNn_3ZgEmREWYqOYzNAPl8BcbPZ-_RIHZQscImYrI-Ybm8wDEE5hLKWon1avJtV8rTncEUs7b_zdl80-fyd8uTrM8Or6Fbo6KJH45EHwbXQvtHXR9KC15eRd9SQ4c5eoqLACb5TeTdEr8HdTLNR7r3ywvf4ACiJMw87hr8fs-DQI5ZOF90ePWtN1qCSMA3w1OSV47H-6hT8dHHxcn5VhJoXSM1hcl4zI6x7mqG0udVzJEFyIzQgKGhnjWBM5E7YMnhgrJvGtCHZj1Mqlg0pH7aK_t2vAQ4eidrSwBG5w7akE7EREeAyFecVFJVaDn03Lq1ZAwQ-eLbiL1gIMGHHTGQbMCvUorvu2Zkl3nD936qx4h15LGaGQAy4jDo2fWsBgtTBwDsSTWBdqf8NLjDtxoELtgKymqaIGebpth76QLEdOGrs99uCI1Z0DHgwHeLSUTexRI7gC_Q-puC7Brzs89sWeBXkw8ckXXv9fi0f_P9BjdaBJ3J1cWuo_2LtZ9eIJmG98f5J8MB3mH_ARLIxVM |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZoEaIv3EeggJF4g3ST-MwjLK0W0VYIisQDkuUTqm6T1W4jVH49Y2-yZTle-pbEtuz4m_HMyHMg9MJYIbmrAAHKWE51bXPNeMidCIIbUnvBYqDw5JM4_CLf7sY0OXyIhUlO-9Yc7zTT053m-HvyrZyd2tHgJzb6cDAGE6IgTBSjDXQVGLYofrPS0wlMajBcaB8jUxA5WtB0IoCAAoMpxu3EijWp-mvB6ZpISpn7_6Vu_u01-cfVaZJIezcv-y-30I1eB8Wvl-230RXf3EHXllUpz--ir9H3I59dRBRgPT3RUR3FP0AzneO-dM70_CfojjjKQYfbBn_s4iAQYQbexx1udNPOpjACSGOBY37Y1vl76PPe7tF4kvdFGHLLaHmWMy6DtZzXZWWodbX0wfrAtJAAvyaOVZ4zUTrviKZCMmcrX3pmnIzam7TkPtps2sY_RDg4awpDwHznlhpQbESAR0-Iq7koZJ2hlwMOarbMtaHSHTmRagmgAgBVAlCxDL2JUK16xjzZ6UM7_6b6HVaShqClB6OKw6NjRrMQDEwcPDEklBnaHoBWPfMuFEhsMLNqWtMMPV81A9vFuxTd-LZLfXhNSs5gHQ-WdLFayUBXGZJrFLO21PUWoI6U2nughgy9GojrYl3_34tHl5_pGbo-OTrYV_vvDt8_RltVZJHoEUO30ebZvPNP0MbCdU8Tg_0CUcUqBA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZoEYgX7iNQIEi8QZrDZ3iDbVdFQFVxSDwgWT5p1W0S7TZC5dcz9iZbluMF3pLYlh3PN54ZeQ6EnmrDBbMVUIBQmhFVm0xR5jPLPWca147TECi894HvfxY7uyFNzosxFiY67Rt9tN3MTrabo8PoW9mdmHz0E8sP3k3AhCgw5UXeWZ9voIvAtEX1k6UeT2Fcg_FChjiZAot8QeKpAEIKjKYQuxOq1sQKsAUja2IpZu__k8r5u-fkL9enUSpNr_3P_1xHVwddNH257HMDXXDNTXRpWZ3y7Bb6EnxAsu48siBVs2MV1NL0G2io83QooTM7-w46ZBrkoU3bJn3fh0EgyjS8T_q0UU3bzWAEQGSRhjyxrXW30afp7sfJXjYUY8gMJeVpRpnwxjBWl5UmxtbCeeM8VVwADBS2tHKM8tI6ixXhglpTudJRbUXQ4oTBd9Bm0zbuHkq9NbrQGMx4ZogGBYd7eHQY25rxQtQJejbSQnbLnBsy3pVjIZdElEBEGYkoaYJeBXKteoZ82fFDO_8qh12WgnivhAPjisGjpVpR7zVM7B3W2JcJ2hqJLQcmXkiQ3GBu1aQmCXqyagb2C3cqqnFtH_uwGpeMwjruLrGxWsmIrQSJNdSsLXW9BRASU3yPiEjQ8xFg5-v6-17c__eZHqPLBztT-fb1_psH6EoVuCQ4xpAttHk6791DtLGw_aPIYz8ApDcshA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+alkaline+water+electrolyzers+based+on+Ru-perturbed+Cu+nanoplatelets+cathode&rft.jtitle=Nature+communications&rft.au=Zuo%2C+Yong&rft.au=Bellani%2C+Sebastiano&rft.au=Ferri%2C+Michele&rft.au=Saleh%2C+Gabriele&rft.date=2023-08-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40319-5&rft.externalDocID=10_1038_s41467_023_40319_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |