Refractive plasma optics for relativistic laser beams

The high intensities reached today by powerful lasers enable us to explore the interaction with matter in the relativistic regime, unveiling a fertile domain of modern science that is pushing far away the frontiers of plasma physics. In this context, refractive-plasma optics are being utilized in we...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 14; no. 1; p. 3296
Main Authors: Seemann, Omri, Wan, Yang, Tata, Sheroy, Kroupp, Eyal, Malka, Victor
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 06-06-2023
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high intensities reached today by powerful lasers enable us to explore the interaction with matter in the relativistic regime, unveiling a fertile domain of modern science that is pushing far away the frontiers of plasma physics. In this context, refractive-plasma optics are being utilized in well established wave guiding schemes in laser plasma accelerators. However, their use for spatial phase control of the laser beam has never been successfully implemented, partly due to the complication in manufacturing such optics. We here demonstrate this concept which enables phase manipulation near the focus position, where the intensity is already relativistic. Offering such flexible control, high-intensity high-density interaction is becoming accessible, allowing for example, to produce multiple energetic electron beams with high pointing stability and reproducibility. Cancelling the refractive effect with adaptive mirrors at the far field confirms this concept and furthermore improves the coupling of the laser to the plasma in comparison to the null test case, with potential benefits in dense-target applications. Intense laser interaction with matter creates plasma which can act as a nonlinear optical medium. Here the authors demonstrate plasma as a refractive optics for relativistic intensity radiation, evident by the acceleration of multiple electron beams from a single laser pulse passing through the plasma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38937-0