Ligand-induced transmembrane conformational coupling in monomeric EGFR

Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomer...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 13; no. 1; p. 3709
Main Authors: Srinivasan, Shwetha, Regmi, Raju, Lin, Xingcheng, Dreyer, Courtney A., Chen, Xuyan, Quinn, Steven D., He, Wei, Coleman, Matthew A., Carraway, Kermit L., Zhang, Bin, Schlau-Cohen, Gabriela S.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 06-07-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins. EGFR regulates cellular processes across the animal kingdom. Here, the authors show that transmembrane conformational coupling is the first step in EGFR signaling, providing evidence for the existence of transmembrane intramolecular conformational changes in a single pass membrane protein.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-31299-z