A promising approach using Fibonacci sequence-based optimization algorithms and advanced computing
In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and up-to-date computing techniques is investigated for a large-scale railway bridge. During recent decades, numerous metaheuristic intelligent OAs have b...
Saved in:
Published in: | Scientific reports Vol. 13; no. 1; p. 3405 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
28-02-2023
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and up-to-date computing techniques is investigated for a large-scale railway bridge. During recent decades, numerous metaheuristic intelligent OAs have been proposed and immediately gained a lot of momentum. However, the major concern is how to employ OAs to deal with real-world problems, especially the SHM of large-scale structures. In addition to the requirement of high accuracy, a high computational cost is putting up a major barrier to the real application of OAs. Therefore, this article aims at addressing these two aforementioned issues. First, we propose employing the optimal ability of the golden ratio formulated by the well-known FS to remedy the shortcomings and improve the accuracy of OAs, specifically, a recently proposed new algorithm, namely Salp Swarm Algorithm (SSA). On the other hand, to deal with the high computational cost problems of OAs, we propose employing an up-to-date computing technique, termed superscalar processor to conduct a series of iterations in parallel. Moreover, in this work, the vectorization technique is also applied to reduce the size of the data. The obtained results show that the proposed approach is highly potential to apply for SHM of real large-scale structures. |
---|---|
AbstractList | Abstract
In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and up-to-date computing techniques is investigated for a large-scale railway bridge. During recent decades, numerous metaheuristic intelligent OAs have been proposed and immediately gained a lot of momentum. However, the major concern is how to employ OAs to deal with real-world problems, especially the SHM of large-scale structures. In addition to the requirement of high accuracy, a high computational cost is putting up a major barrier to the real application of OAs. Therefore, this article aims at addressing these two aforementioned issues. First, we propose employing the optimal ability of the golden ratio formulated by the well-known FS to remedy the shortcomings and improve the accuracy of OAs, specifically, a recently proposed new algorithm, namely Salp Swarm Algorithm (SSA). On the other hand, to deal with the high computational cost problems of OAs, we propose employing an up-to-date computing technique, termed superscalar processor to conduct a series of iterations in parallel. Moreover, in this work, the vectorization technique is also applied to reduce the size of the data. The obtained results show that the proposed approach is highly potential to apply for SHM of real large-scale structures. In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and up-to-date computing techniques is investigated for a large-scale railway bridge. During recent decades, numerous metaheuristic intelligent OAs have been proposed and immediately gained a lot of momentum. However, the major concern is how to employ OAs to deal with real-world problems, especially the SHM of large-scale structures. In addition to the requirement of high accuracy, a high computational cost is putting up a major barrier to the real application of OAs. Therefore, this article aims at addressing these two aforementioned issues. First, we propose employing the optimal ability of the golden ratio formulated by the well-known FS to remedy the shortcomings and improve the accuracy of OAs, specifically, a recently proposed new algorithm, namely Salp Swarm Algorithm (SSA). On the other hand, to deal with the high computational cost problems of OAs, we propose employing an up-to-date computing technique, termed superscalar processor to conduct a series of iterations in parallel. Moreover, in this work, the vectorization technique is also applied to reduce the size of the data. The obtained results show that the proposed approach is highly potential to apply for SHM of real large-scale structures. Abstract In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and up-to-date computing techniques is investigated for a large-scale railway bridge. During recent decades, numerous metaheuristic intelligent OAs have been proposed and immediately gained a lot of momentum. However, the major concern is how to employ OAs to deal with real-world problems, especially the SHM of large-scale structures. In addition to the requirement of high accuracy, a high computational cost is putting up a major barrier to the real application of OAs. Therefore, this article aims at addressing these two aforementioned issues. First, we propose employing the optimal ability of the golden ratio formulated by the well-known FS to remedy the shortcomings and improve the accuracy of OAs, specifically, a recently proposed new algorithm, namely Salp Swarm Algorithm (SSA). On the other hand, to deal with the high computational cost problems of OAs, we propose employing an up-to-date computing technique, termed superscalar processor to conduct a series of iterations in parallel. Moreover, in this work, the vectorization technique is also applied to reduce the size of the data. The obtained results show that the proposed approach is highly potential to apply for SHM of real large-scale structures. |
ArticleNumber | 3405 |
Author | De Roeck, G. Abdel Wahab, Magd Le-Xuan, T. Khatir, S. Bui-Tien, T. Tran-Ngoc, H. |
Author_xml | – sequence: 1 givenname: H. surname: Tran-Ngoc fullname: Tran-Ngoc, H. organization: Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications – sequence: 2 givenname: T. surname: Le-Xuan fullname: Le-Xuan, T. organization: Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications – sequence: 3 givenname: S. surname: Khatir fullname: Khatir, S. organization: Faculty of Civil Engineering, Ho Chi Minh City Open University – sequence: 4 givenname: G. surname: De Roeck fullname: De Roeck, G. organization: Department of Civil Engineering, KU Leuven – sequence: 5 givenname: T. surname: Bui-Tien fullname: Bui-Tien, T. organization: Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications – sequence: 6 givenname: Magd surname: Abdel Wahab fullname: Abdel Wahab, Magd email: magd.abdelwahab@ugent.be organization: Soete Laboratory, Department of Electrical Energy, Metals, Mechanical Constructions, and Systems, Faculty of Engineering and Architecture, Ghent University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36854757$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhiemxtbaP-DCTOLGzSiHr4GNSdNYbdLEja4JA8xcbmZghJkm-uvl3qm1dSEJ4QDveYDD-7I6CTG4qnoN6D0gIj5kCkyKBmHSYEF428hn1RlGlDWYYHzyKD6tLnLeo9IYlhTki-qUcMFoy9qzqrus5xQnn30Yaj2XWJtdvR6n176LQRvj6-x-rC4Y13Q6O1vHefGT_6UXH0OtxyEmv-ymXOtga23vdFHa2sRpXpfCeVU97_WY3cX9eF59v_707epLc_v1883V5W1jGEVLYzvheuAADvWlt5QJbgnrWy0BcSuoAWDIIkGspRYbyyTvkXBtB5Q7DeS8utm4Nuq9mpOfdPqpovbquBDToHRavBmd0px3xvQcrOupBNkdANBzbImxuEOF9XFjzWs3OWtcWJIen0Cf7gS_U0O8U1K2VLa8AN7dA1IstcuLKjU2bhx1cHHNCrcCMBCQrEjf_iPdxzWFUqqDCnHAlJKiwpvKpJhzcv3DZQCpgyPU5ghVHKGOjlCyJL15_IyHlD__XwRkE-SyFQaX_p79H-xv7hjE8g |
CitedBy_id | crossref_primary_10_3390_bioengineering10070866 crossref_primary_10_1590_1679_78257696 crossref_primary_10_1002_srin_202300369 crossref_primary_10_1007_s12205_024_2048_6 crossref_primary_10_1007_s12206_023_1015_3 crossref_primary_10_1016_j_knosys_2023_111273 crossref_primary_10_1080_23311916_2023_2298764 |
Cites_doi | 10.1109/TEVC.2008.919004 10.3390/electronics10162002 10.1109/JIOT.2017.2664072 10.1016/j.advengsoft.2017.07.002 10.1038/s41598-022-09126-8 10.1007/s10462-016-9486-6 10.1088/0964-1726/10/3/314 10.1007/s00521-018-3613-z 10.1016/j.ymssp.2007.09.004 10.1038/s41598-020-69282-7 10.1016/j.knosys.2018.05.009 10.1177/1475921720973953 10.5755/j01.itc.48.3.20627 10.3390/s18124131 10.1016/S0020-7225(02)00376-2 10.1038/s41598-022-16991-w 10.1016/j.eswa.2020.113873 10.1016/j.knosys.2015.07.006 10.1038/s41598-022-16606-4 10.1002/stc.2663 10.1177/1475921718800306 10.1177/1475921710388971 10.1038/s41598-022-15940-x 10.1016/j.ijengsci.2018.04.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-28367-9 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 3405 |
ExternalDocumentID | oai_doaj_org_article_a66bccf61def4919b6ea11f62d3cd2b0 10_1038_s41598_023_28367_9 36854757 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-db8ef1611e0f1e074586d35f7a9106d84c1150d083dd4d2cd596f08e7b146ea13 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:15:25 EDT 2024 Tue Sep 17 21:31:48 EDT 2024 Fri Oct 25 03:11:31 EDT 2024 Sat Nov 09 15:44:45 EST 2024 Fri Aug 23 01:49:41 EDT 2024 Wed Oct 16 00:39:06 EDT 2024 Fri Oct 11 20:48:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-db8ef1611e0f1e074586d35f7a9106d84c1150d083dd4d2cd596f08e7b146ea13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974976/ |
PMID | 36854757 |
PQID | 2780612443 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a66bccf61def4919b6ea11f62d3cd2b0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9974976 proquest_miscellaneous_2781213195 proquest_journals_2780612443 crossref_primary_10_1038_s41598_023_28367_9 pubmed_primary_36854757 springer_journals_10_1038_s41598_023_28367_9 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Entezami, Shariatmadar, Karamodin (CR7) 2019; 18 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (CR18) 2017; 114 Tran-Ngoc, Khatir, Le-Xuan, Tran-Viet, De Roeck, Bui-Tien, Wahab (CR1) 2022; 12 Mirjalili (CR23) 2015; 89 Tran-Ngoc, Khatir, De Roeck, Bui-Tien, Nguyen-Ngoc, Abdel Wahab (CR25) 2018; 18 Figueiredo, Park, Farrar, Worden, Figueiras (CR5) 2011; 10 Alatas, Bingol (CR16) 2020; 28 Sarmadi, Entezami, Saeedi Razavi, Yuen (CR6) 2021; 28 Fan, Diao, Hu, Zhang, Huang, Kang, Yan (CR10) 2020; 10 Hjiaj, Fortin, de Saxcé (CR13) 2003; 41 Trofimov, Abaimov, Sevostianov (CR14) 2018; 129 Simon (CR22) 2008; 12 Rizk-Allah, Hassanien, Elhoseny, Gunasekaran (CR19) 2019; 31 Ben Chaabane, Belazi, Kharbech, Bouallegue, Clavier (CR24) 2021; 10 Entezami, Sarmadi, Salar, De Michele, Arslan (CR4) 2021; 20 Reynders, De Roeck (CR11) 2008; 22 Peeters, Maeck, De Roeck (CR12) 2001; 10 Alatas, Bingol (CR17) 2019; 48 Akyol, Alatas (CR15) 2017; 47 Teng, Wang, Tang, Wang, Li, Qiu (CR8) 2022; 12 Faris, Mafarja, Heidari, Aljarah, Ala, Mirjalili, Fujita (CR21) 2018; 154 Roohezamin, Kalatehjari, Hajihassani, Kharghani, Dias (CR9) 2022; 12 Gaute-Alonso, Garcia-Sanchez, Ramos-Gutierrez (CR2) 2022; 12 Tokognon, Gao, Tian, Yan (CR3) 2017; 4 Tubishat, Ja'afar, Alswaitti, Mirjalili, Idris, Ismail, Omar (CR20) 2021; 164 RM Rizk-Allah (28367_CR19) 2019; 31 Y Teng (28367_CR8) 2022; 12 S Mirjalili (28367_CR18) 2017; 114 B Peeters (28367_CR12) 2001; 10 D Simon (28367_CR22) 2008; 12 M Tubishat (28367_CR20) 2021; 164 S Ben Chaabane (28367_CR24) 2021; 10 A Trofimov (28367_CR14) 2018; 129 S Akyol (28367_CR15) 2017; 47 H Sarmadi (28367_CR6) 2021; 28 A Entezami (28367_CR7) 2019; 18 A Entezami (28367_CR4) 2021; 20 CA Tokognon (28367_CR3) 2017; 4 B Alatas (28367_CR17) 2019; 48 H Tran-Ngoc (28367_CR25) 2018; 18 M Hjiaj (28367_CR13) 2003; 41 B Alatas (28367_CR16) 2020; 28 S Mirjalili (28367_CR23) 2015; 89 A Gaute-Alonso (28367_CR2) 2022; 12 H Faris (28367_CR21) 2018; 154 E Reynders (28367_CR11) 2008; 22 A Roohezamin (28367_CR9) 2022; 12 Z Fan (28367_CR10) 2020; 10 E Figueiredo (28367_CR5) 2011; 10 H Tran-Ngoc (28367_CR1) 2022; 12 |
References_xml | – volume: 12 start-page: 702 issue: 6 year: 2008 end-page: 713 ident: CR22 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 contributor: fullname: Simon – volume: 10 start-page: 2002 issue: 16 year: 2021 ident: CR24 article-title: Improved salp swarm optimization algorithm: Application in feature weighting for blind modulation identification publication-title: Electronics doi: 10.3390/electronics10162002 contributor: fullname: Clavier – volume: 4 start-page: 619 issue: 3 year: 2017 end-page: 635 ident: CR3 article-title: Structural health monitoring framework based on Internet of Things: A survey publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2664072 contributor: fullname: Yan – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: CR18 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 contributor: fullname: Mirjalili – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 12 ident: CR1 article-title: Damage assessment in structures using artificial neural network working and a hybrid stochastic optimization publication-title: Sci. Rep. doi: 10.1038/s41598-022-09126-8 contributor: fullname: Wahab – volume: 47 start-page: 417 issue: 4 year: 2017 end-page: 462 ident: CR15 article-title: Plant intelligence based metaheuristic optimization algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9486-6 contributor: fullname: Alatas – volume: 28 start-page: 6 year: 2020 ident: CR16 article-title: Comparative assessment of light-based intelligent search and optimization algorithms publication-title: Light Eng. contributor: fullname: Bingol – volume: 10 start-page: 518 issue: 3 year: 2001 ident: CR12 article-title: Vibration-based damage detection in civil engineering: Excitation sources and temperature effects publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/3/314 contributor: fullname: De Roeck – volume: 31 start-page: 1641 issue: 5 year: 2019 end-page: 1663 ident: CR19 article-title: A new binary salp swarm algorithm: Development and application for optimization tasks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3613-z contributor: fullname: Gunasekaran – volume: 22 start-page: 617 issue: 3 year: 2008 end-page: 637 ident: CR11 article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2007.09.004 contributor: fullname: De Roeck – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 13 ident: CR10 article-title: Structural health monitoring of metal-to-glass–ceramics penetration during thermal cycling aging using femto-laser inscribed FBG sensors publication-title: Sci. Rep. doi: 10.1038/s41598-020-69282-7 contributor: fullname: Yan – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: CR21 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.009 contributor: fullname: Fujita – volume: 20 start-page: 1475921720973953 year: 2021 ident: CR4 article-title: A novel data-driven method for structural health monitoring under ambient vibration and high-dimensional features by robust multidimensional scaling publication-title: Struct. Health Monit. doi: 10.1177/1475921720973953 contributor: fullname: Arslan – volume: 48 start-page: 373 issue: 3 year: 2019 end-page: 388 ident: CR17 article-title: A physics based novel approach for travelling tournament problem: Optics inspired optimization publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.48.3.20627 contributor: fullname: Bingol – volume: 18 start-page: 4131 issue: 12 year: 2018 ident: CR25 article-title: Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm publication-title: Sensors doi: 10.3390/s18124131 contributor: fullname: Abdel Wahab – volume: 41 start-page: 1109 issue: 10 year: 2003 end-page: 1143 ident: CR13 article-title: A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex publication-title: Int. J. Eng. Sci. doi: 10.1016/S0020-7225(02)00376-2 contributor: fullname: de Saxcé – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 15 ident: CR9 article-title: Investigation of acoustic waves behavior of an underground tunnel in a multilayer soil publication-title: Sci. Rep. doi: 10.1038/s41598-022-16991-w contributor: fullname: Dias – volume: 164 start-page: 113873 year: 2021 ident: CR20 article-title: Dynamic salp swarm algorithm for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113873 contributor: fullname: Omar – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: CR23 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 contributor: fullname: Mirjalili – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 18 ident: CR2 article-title: Novel method for an optimised calculation of modal analysis of girder bridge decks publication-title: Sci. Rep. doi: 10.1038/s41598-022-16606-4 contributor: fullname: Ramos-Gutierrez – volume: 28 start-page: e2663 issue: 2 year: 2021 ident: CR6 article-title: Ensemble learning-based structural health monitoring by Mahalanobis distance metrics publication-title: Struct. Contr. Health Monit. doi: 10.1002/stc.2663 contributor: fullname: Yuen – volume: 18 start-page: 1416 issue: 5–6 year: 2019 end-page: 1443 ident: CR7 article-title: Data-driven damage diagnosis under environmental and operational variability by novel statistical pattern recognition methods publication-title: Struct. Health Monit. doi: 10.1177/1475921718800306 contributor: fullname: Karamodin – volume: 10 start-page: 559 issue: 6 year: 2011 end-page: 572 ident: CR5 article-title: Machine learning algorithms for damage detection under operational and environmental variability publication-title: Struct. Health Monit. doi: 10.1177/1475921710388971 contributor: fullname: Figueiras – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 13 ident: CR8 article-title: A new L-shaped rigid beam FBG acceleration sensor publication-title: Sci. Rep. doi: 10.1038/s41598-022-15940-x contributor: fullname: Qiu – volume: 129 start-page: 34 year: 2018 end-page: 46 ident: CR14 article-title: Inverse homogenization problem: Evaluation of elastic and electrical (thermal) properties of composite constituents publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2018.04.001 contributor: fullname: Sevostianov – volume: 20 start-page: 147592172097395 year: 2021 ident: 28367_CR4 publication-title: Struct. Health Monit. doi: 10.1177/1475921720973953 contributor: fullname: A Entezami – volume: 4 start-page: 619 issue: 3 year: 2017 ident: 28367_CR3 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2664072 contributor: fullname: CA Tokognon – volume: 10 start-page: 2002 issue: 16 year: 2021 ident: 28367_CR24 publication-title: Electronics doi: 10.3390/electronics10162002 contributor: fullname: S Ben Chaabane – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 28367_CR1 publication-title: Sci. Rep. doi: 10.1038/s41598-022-09126-8 contributor: fullname: H Tran-Ngoc – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 28367_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-022-16606-4 contributor: fullname: A Gaute-Alonso – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 28367_CR22 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 contributor: fullname: D Simon – volume: 28 start-page: e2663 issue: 2 year: 2021 ident: 28367_CR6 publication-title: Struct. Contr. Health Monit. doi: 10.1002/stc.2663 contributor: fullname: H Sarmadi – volume: 28 start-page: 6 year: 2020 ident: 28367_CR16 publication-title: Light Eng. contributor: fullname: B Alatas – volume: 164 start-page: 113873 year: 2021 ident: 28367_CR20 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113873 contributor: fullname: M Tubishat – volume: 22 start-page: 617 issue: 3 year: 2008 ident: 28367_CR11 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2007.09.004 contributor: fullname: E Reynders – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 28367_CR8 publication-title: Sci. Rep. doi: 10.1038/s41598-022-15940-x contributor: fullname: Y Teng – volume: 47 start-page: 417 issue: 4 year: 2017 ident: 28367_CR15 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9486-6 contributor: fullname: S Akyol – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 28367_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-020-69282-7 contributor: fullname: Z Fan – volume: 114 start-page: 163 year: 2017 ident: 28367_CR18 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 contributor: fullname: S Mirjalili – volume: 48 start-page: 373 issue: 3 year: 2019 ident: 28367_CR17 publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.48.3.20627 contributor: fullname: B Alatas – volume: 18 start-page: 4131 issue: 12 year: 2018 ident: 28367_CR25 publication-title: Sensors doi: 10.3390/s18124131 contributor: fullname: H Tran-Ngoc – volume: 31 start-page: 1641 issue: 5 year: 2019 ident: 28367_CR19 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3613-z contributor: fullname: RM Rizk-Allah – volume: 10 start-page: 518 issue: 3 year: 2001 ident: 28367_CR12 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/3/314 contributor: fullname: B Peeters – volume: 18 start-page: 1416 issue: 5–6 year: 2019 ident: 28367_CR7 publication-title: Struct. Health Monit. doi: 10.1177/1475921718800306 contributor: fullname: A Entezami – volume: 154 start-page: 43 year: 2018 ident: 28367_CR21 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.009 contributor: fullname: H Faris – volume: 10 start-page: 559 issue: 6 year: 2011 ident: 28367_CR5 publication-title: Struct. Health Monit. doi: 10.1177/1475921710388971 contributor: fullname: E Figueiredo – volume: 89 start-page: 228 year: 2015 ident: 28367_CR23 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 contributor: fullname: S Mirjalili – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 28367_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-022-16991-w contributor: fullname: A Roohezamin – volume: 41 start-page: 1109 issue: 10 year: 2003 ident: 28367_CR13 publication-title: Int. J. Eng. Sci. doi: 10.1016/S0020-7225(02)00376-2 contributor: fullname: M Hjiaj – volume: 129 start-page: 34 year: 2018 ident: 28367_CR14 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2018.04.001 contributor: fullname: A Trofimov |
SSID | ssj0000529419 |
Score | 2.469247 |
Snippet | In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and... Abstract In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and... Abstract In this paper, the feasibility of Structural Health Monitoring (SHM) employing a novel Fibonacy Sequence (FS)-based Optimization Algorithms (OAs) and... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3405 |
SubjectTerms | 639/166/986 639/705/1042 Algorithms Computer applications Humanities and Social Sciences multidisciplinary Optimization algorithms Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VSkhcEIUWQltkJG40amI7fhwL7aonLhSJm-VX6Eo0i7q7h_57xnay7fIQFw45JHas0czY81me-QzwTlPZOm51bYNwNY8R10GeCpiDV5EH29lcx335WX76qs4vEk3O5qqvlBNW6IGL4k6tEM77XrQh9ly32olo27YXNDAfqCu79UY92EwVVm-qeavHKpmGqdMlRqpUTUZZjREVVwe9FYkyYf-fUObvyZK_nJjmQDR7Bk9HBEnOiuR7sBOH5_C43Cl59wLcGcHR0Xr4M5kYw8k6v87mDoG393MyZVDXKYoFssCF42asyCT2-7fF7Xx1fbMkdghkyhIgPl8AgePsw5fZxdXHy3q8SKH2CMhWdXAq9gjt2tj0-EjeKRFY10uLYEEExX3ChQHRWAg8UB86LfpGRelwHUV1swPYHRZDfAUEf2LO91bIBoGUVs7JyBT1OJ7XlnUVvJ-Uan4UvgyTz7mZMsUEBk1gsgmMruBD0vumZ-K6zh_QA8zoAeZfHlDB0WQ1M07ApaFSJfDGOavg7aYZlZ_OQ-wQF-vcJxHatRqlflmMvJEk8fJz2ckK5Jb5t0Tdbhnm15meW-MWDUFeBSeTo9yL9XdVvP4fqjiEJzR5eC65P4Ld1e06HsOjZVi_yfPjJ14RFh8 priority: 102 providerName: Directory of Open Access Journals |
Title | A promising approach using Fibonacci sequence-based optimization algorithms and advanced computing |
URI | https://link.springer.com/article/10.1038/s41598-023-28367-9 https://www.ncbi.nlm.nih.gov/pubmed/36854757 https://www.proquest.com/docview/2780612443 https://search.proquest.com/docview/2781213195 https://pubmed.ncbi.nlm.nih.gov/PMC9974976 https://doaj.org/article/a66bccf61def4919b6ea11f62d3cd2b0 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlZC4IMoztFRG4gbpJrET28dSuuoFhARI3Cy_0kbqJtU-Dvx7xk68dHlcOOSQ2LFHnrHnSzzzGeCNrHhpmJa5do3Jmfe4DrKQwOys8MzpWsc87ssv_NN38eEi0OTUKRcmBu1b0532N8vTvruOsZW3SztPcWLzzx_PJYJgdKPzGcwQG975RB8JvSvJSjklyBRUzNfopEIiWUVzdKa4MASq0EC8znjwSnf8UaTt_xvW_DNk8rd90-iOFo_g4YQjydko7yHc8_1juD-eLPnjCZgzgq2jDvFlknjDyTbeLjqD8NvajqQ46jz4MkcGXD6WU14m0TdXw6rbXC_XRPeOpFgBYuMxENjOU_i2uPh6fplPxynkFmHZJndG-BYBXumLFi_OatE4WrdcI2RonGA2oEOHmMw55irratm0hfDc4GrqdUmfwUE_9P4FEHyJGtvqhhcIp6QwhnsqKovtWalpncHbNKjqdmTNUHG3mwo1akOhNlTUhpIZvA_jvqsZGK_jg2F1pSa9K900xtq2KZ1vmSylCSKVbVNhl64yRQbHSWtqmoZrVXERIBxjNIPXu2Ic_LArons_bGOdQGtXSpT6-ajknSTJSDLge-rfE3W_BG02knRPNprBu2Qov8T691C8_O-OjuBBFSw8Ztsfw8FmtfWvYLZ225P4n-EkzpKffEkWPQ |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgSX8iwNFDASN0g3iZ3YPpbS1SLaCokicbP8Shupm632ceDfM3aSpcvj0kMOiR174hl7vsgznwHeyYLnhmmZaleZlHmP6yALCczOCs-cLnXM455842c_xKfjQJNTDrkwMWjfmuagvZoetM1ljK28ntrRECc2-np6JBEEoxsdbcFdnK8ZvfGT3lF6F5Llsk-RyagYLdBNhVSygqboTnFpCGShgXqd8eCXbnikSNz_L7T5d9DkHzun0SGNH97yUx7BTo9AyWFX_Bju-PYJ3OvOpPz5FMwhQalQ-9gpGRjHySrejhuDwN3ahgwR2Gnwgo7McOGZ9hmdRF9dzObN8nK6ILp1ZIgyIDYeIIHtPIPv4-Pzo0naH8SQWgR0y9QZ4WuEhrnParw4K0XlaFlzjWCjcoLZgCsdojnnmCusK2VVZ8Jzg-uw1zndhe121vo9IPgSNbbWFc8QiElhDPdUFBbbs1LTMoH3gzLUdce3oeI-ORWq06JCLaqoRSUT-Bj0ta4ZuLLjg9n8QvXDrHRVGWvrKne-ZjKXJoiU11WBXbrCZAnsD9pW_QReqIKLAP4Yowm8XRfj4If9FN362SrWCYR4uUSpn3fGsZZkMK4E-IbZbIi6WYImEum9e5NI4MNgYL_F-v9QvLh1R2_g_uT89ESdfD778hIeFGGWxJz9fdhezlf-FWwt3Op1nGO_AGNTKuY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAXypvQAkbiBmleTmwfS9tVEVBVAiRull9pI3WT1T4O_HvGTrJ0Kb3AIYfEjj3xjD1f5JnPAG9FzjJNlYiVrXRMncN1kPoEZmu4o1aVKuRxn3xlpz_40bGnyVkf9RWC9o1u9tvL6X7bXITYytnUJGOcWHL25VAgCEY3msxsnWzBbZyzaXnlR72n9c4FzcSQJpMWPFmgq_LpZHkRo0vF5cEThnr6dcq8b7rilQJ5_98Q5_XAyT92T4NTmuz8x-c8gPsDEiUHfZWHcMu1j-BOfzblz8egDwhKhlaAHZOReZyswu2k0QjgjWnIGIkde29oSYcL0HTI7CTq8rybN8uL6YKo1pIx2oCYcJAEtvMEvk-Ovx2exMOBDLFBYLeMreauRoiYubTGi9GSV7Yoa6YQdFSWU-PxpUVUZy21ubGlqOqUO6ZxPXYqK57Cdtu17jkQfKnQplYVSxGQCa41cwXPDbZnhCrKCN6NCpGznndDhv3ygstekxI1KYMmpYjgg9fZuqbnzA4Puvm5HIZaqqrSxtRVZl1NRSa0Fymrqxy7tLlOI9gbNS6HibyQOeMeBFJaRPBmXYyD7_dVVOu6VajjifEygVI_6w1kLcloYBGwDdPZEHWzBM0k0HwPZhHB-9HIfot181C8-OeOXsPds6OJ_Pzx9NMu3Mv9RAmp-3uwvZyv3EvYWtjVqzDNfgG_LC1m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+promising+approach+using+Fibonacci+sequence-based+optimization+algorithms+and+advanced+computing&rft.jtitle=Scientific+reports&rft.au=Tran-Ngoc%2C+H.&rft.au=Le-Xuan%2C+T.&rft.au=Khatir%2C+S.&rft.au=De+Roeck%2C+G.&rft.date=2023-02-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-28367-9&rft.externalDocID=10_1038_s41598_023_28367_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |