A lightweight magnetically shielded room with active shielding

Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the developme...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; pp. 13561 - 13
Main Authors: Holmes, Niall, Rea, Molly, Chalmers, James, Leggett, James, Edwards, Lucy J., Nell, Paul, Pink, Stephen, Patel, Prashant, Wood, Jack, Murby, Nick, Woolger, David, Dawson, Eliot, Mariani, Christopher, Tierney, Tim M., Mellor, Stephanie, O’Neill, George C., Boto, Elena, Hill, Ryan M., Shah, Vishal, Osborne, James, Pardington, Rosemarie, Fierlinger, Peter, Barnes, Gareth R., Glover, Paul, Brookes, Matthew J., Bowtell, Richard
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09-08-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40–60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a ‘window coil’ active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just | B |= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.
AbstractList Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40–60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a ‘window coil’ active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just | B |= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.
Abstract Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40–60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a ‘window coil’ active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.
Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.
Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.
ArticleNumber 13561
Author Chalmers, James
Hill, Ryan M.
O’Neill, George C.
Brookes, Matthew J.
Boto, Elena
Glover, Paul
Nell, Paul
Pink, Stephen
Barnes, Gareth R.
Bowtell, Richard
Mellor, Stephanie
Dawson, Eliot
Patel, Prashant
Tierney, Tim M.
Leggett, James
Mariani, Christopher
Osborne, James
Rea, Molly
Holmes, Niall
Wood, Jack
Murby, Nick
Shah, Vishal
Woolger, David
Pardington, Rosemarie
Edwards, Lucy J.
Fierlinger, Peter
Author_xml – sequence: 1
  givenname: Niall
  surname: Holmes
  fullname: Holmes, Niall
  email: niall.holmes@nottingham.ac.uk
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 2
  givenname: Molly
  surname: Rea
  fullname: Rea, Molly
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 3
  givenname: James
  surname: Chalmers
  fullname: Chalmers, James
  organization: Magnetic Shields Limited
– sequence: 4
  givenname: James
  surname: Leggett
  fullname: Leggett, James
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 5
  givenname: Lucy J.
  surname: Edwards
  fullname: Edwards, Lucy J.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 6
  givenname: Paul
  surname: Nell
  fullname: Nell, Paul
  organization: Magnetic Shields Limited
– sequence: 7
  givenname: Stephen
  surname: Pink
  fullname: Pink, Stephen
  organization: Magnetic Shields Limited
– sequence: 8
  givenname: Prashant
  surname: Patel
  fullname: Patel, Prashant
  organization: Magnetic Shields Limited
– sequence: 9
  givenname: Jack
  surname: Wood
  fullname: Wood, Jack
  organization: Magnetic Shields Limited
– sequence: 10
  givenname: Nick
  surname: Murby
  fullname: Murby, Nick
  organization: Magnetic Shields Limited
– sequence: 11
  givenname: David
  surname: Woolger
  fullname: Woolger, David
  organization: Magnetic Shields Limited
– sequence: 12
  givenname: Eliot
  surname: Dawson
  fullname: Dawson, Eliot
  organization: Cerca Magnetics Limited
– sequence: 13
  givenname: Christopher
  surname: Mariani
  fullname: Mariani, Christopher
  organization: Cerca Magnetics Limited
– sequence: 14
  givenname: Tim M.
  surname: Tierney
  fullname: Tierney, Tim M.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology
– sequence: 15
  givenname: Stephanie
  surname: Mellor
  fullname: Mellor, Stephanie
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology
– sequence: 16
  givenname: George C.
  surname: O’Neill
  fullname: O’Neill, George C.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology
– sequence: 17
  givenname: Elena
  surname: Boto
  fullname: Boto, Elena
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 18
  givenname: Ryan M.
  surname: Hill
  fullname: Hill, Ryan M.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 19
  givenname: Vishal
  surname: Shah
  fullname: Shah, Vishal
  organization: QuSpin Inc
– sequence: 20
  givenname: James
  surname: Osborne
  fullname: Osborne, James
  organization: QuSpin Inc
– sequence: 21
  givenname: Rosemarie
  surname: Pardington
  fullname: Pardington, Rosemarie
  organization: Young Epilepsy
– sequence: 22
  givenname: Peter
  surname: Fierlinger
  fullname: Fierlinger, Peter
  organization: Department of Physics, Technical University Munich
– sequence: 23
  givenname: Gareth R.
  surname: Barnes
  fullname: Barnes, Gareth R.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology
– sequence: 24
  givenname: Paul
  surname: Glover
  fullname: Glover, Paul
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 25
  givenname: Matthew J.
  surname: Brookes
  fullname: Brookes, Matthew J.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 26
  givenname: Richard
  surname: Bowtell
  fullname: Bowtell, Richard
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35945239$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu3CAQhlGVqknTvEAPlaVeenELAxhziRRFbRMpUi_tGWE8eFl5TQreRHn7sutNmvRQDoCYfz5m5n9LjqY4ISHvGf3MKG-_ZMGkbmsKUDPFRVOzV-QEqJA1cICjZ_djcpbzmpYlQQum35BjLrWQwPUJOb-oxjCs5nvc7dXGDhPOwdlxfKjyKuDYY1-lGDfVfZhXlXVzuMNDJEzDO_La2zHj2eE8Jb--ff15eVXf_Ph-fXlxUzsp6Fw7zRyXCqVEKQTVCsApRXtsoekYeKebvum6XpdGVG-FR9WAAGY73TS6Y_yUXC_cPtq1uU1hY9ODiTaY_UNMg7Gp1D2i8cx7j9zZttBQiQ48l2j7hjHnAaGwzhfW7bbbYO9wmpMdX0BfRqawMkO8M5o3XGhdAJ8OgBR_bzHPZhOyw3G0E8ZtNqAobQRVQIv04z_SddymqYxqr2It43sVLCqXYs4J_VMxjJqd22Zx2xS3zd5tsxvJh-dtPKU8elsEfBHkEpoGTH___g_2D021tnc
CitedBy_id crossref_primary_10_1016_j_sna_2024_115538
crossref_primary_10_1016_j_measurement_2024_114266
crossref_primary_10_1111_epi_17806
crossref_primary_10_3390_s23125454
crossref_primary_10_3389_fnins_2023_1284262
crossref_primary_10_1109_TIM_2023_3323996
crossref_primary_10_1088_1361_6463_ad4b2c
crossref_primary_10_1109_TIM_2023_3284138
crossref_primary_10_1016_j_jmmm_2023_170509
crossref_primary_10_1038_s41597_023_02454_y
crossref_primary_10_3390_s23052801
crossref_primary_10_3390_ma16155238
crossref_primary_10_1088_1402_4896_ad302f
crossref_primary_10_1016_j_measurement_2024_114594
crossref_primary_10_7759_cureus_45361
crossref_primary_10_1109_JSEN_2024_3395694
crossref_primary_10_1002_hbm_26596
crossref_primary_10_1109_JSEN_2023_3329043
crossref_primary_10_1109_TIM_2023_3293540
crossref_primary_10_1109_TIM_2024_3385809
crossref_primary_10_1080_00107514_2023_2182950
crossref_primary_10_1109_TIM_2024_3375985
crossref_primary_10_1016_j_neuroimage_2023_120024
crossref_primary_10_1109_JSEN_2023_3297109
crossref_primary_10_1063_5_0173725
crossref_primary_10_1016_j_measurement_2023_113904
crossref_primary_10_1088_1361_6463_ad5aa7
crossref_primary_10_1063_5_0167372
crossref_primary_10_3390_s24113503
crossref_primary_10_7759_cureus_42544
crossref_primary_10_1016_j_physo_2024_100227
crossref_primary_10_1016_j_sna_2024_115043
crossref_primary_10_1088_1361_6463_acc412
crossref_primary_10_1002_ana_26562
crossref_primary_10_1162_imag_a_00179
crossref_primary_10_3390_machines12050317
crossref_primary_10_1111_dmcn_15689
Cites_doi 10.1126/science.161.3843.784
10.1016/j.neuroimage.2018.07.028
10.2478/mms-2013-0021
10.1016/j.neuroimage.2021.118401
10.3390/en11030608
10.1063/1.4886146
10.1016/j.neuroimage.2019.03.022
10.1103/PhysRevApplied.14.054004
10.1038/nature26147
10.1109/15.477342
10.1371/journal.pone.0227684
10.1063/5.0016087
10.1103/PhysRevLett.123.143003
10.1103/RevModPhys.65.413
10.1088/0031-9155/58/22/8153
10.1103/physrevlett.89.130801
10.1016/j.neuroimage.2019.06.010
10.1038/s41598-021-01894-z
10.1016/0375-9601(69)90480-0
10.1038/nn.4504
10.1117/12.2299197
10.2478/amcs-2014-0018
10.1063/1.4922671
10.1016/j.neuroimage.2020.116995
10.1016/j.jmr.2013.08.015
10.1038/s41598-019-50697-w
10.1016/j.neuron.2019.07.001
10.1016/j.neuroimage.2014.11.011
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-17346-1
DatabaseName Springer Nature Open Access Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_f1fffe3ca8934e74b2f35ead611cf2e2
10_1038_s41598_022_17346_1
35945239
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Innovate UK
  grantid: 104604
  funderid: http://dx.doi.org/10.13039/501100006041
– fundername: Wellcome Trust
  grantid: 203257/Z/16/Z
  funderid: http://dx.doi.org/10.13039/100004440
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/T001046/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: NIMH NIH HHS
  grantid: R44 MH110288
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 203257/Z/16/Z
– fundername: Wellcome Trust
  grantid: 203257/B/16/Z
– fundername: ;
  grantid: 104604
– fundername: ;
  grantid: EP/T001046/1
– fundername: ;
  grantid: 203257/Z/16/Z
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c540t-c91c357e55e54409722c770de826b12fc96d6bbd93467da4fe762421ab9669b13
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:15:39 EDT 2024
Tue Sep 17 21:01:02 EDT 2024
Sat Oct 26 04:05:20 EDT 2024
Fri Nov 08 22:41:33 EST 2024
Thu Nov 21 23:37:40 EST 2024
Sat Nov 02 12:03:08 EDT 2024
Fri Oct 11 20:53:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-c91c357e55e54409722c770de826b12fc96d6bbd93467da4fe762421ab9669b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363499/
PMID 35945239
PQID 2700181320
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_f1fffe3ca8934e74b2f35ead611cf2e2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9363499
proquest_miscellaneous_2700640720
proquest_journals_2700181320
crossref_primary_10_1038_s41598_022_17346_1
pubmed_primary_35945239
springer_journals_10_1038_s41598_022_17346_1
PublicationCentury 2000
PublicationDate 2022-08-09
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Borna (CR7) 2020; 15
Allred, Lyman, Kornack, Romalis (CR12) 2002
Hoburg (CR13) 1995
Iivanainen, Zetter, Grön, Hakkarainen, Parkkonen (CR8) 2019
Mellor (CR29) 2021; 97
Sachdeva (CR1) 2019; 123
Baillet (CR4) 2017
Juchem, Green, De Graaf (CR23) 2013
Cohen (CR3) 1968; 161
Juhas, Pekari, Toepfer (CR26) 2014; 11
Voigt, Knappe-Grüneberg, Schnabel, Körber, Burghoff (CR15) 2013
Altarev (CR17) 2014
Shah, Osborne, Orton, Alem (CR11) 2018
Packer (CR21) 2020; 14
Hill (CR22) 2020
Rea (CR28) 2021; 241
Juchem, Umesh Rudrapatna, Nixon, de Graaf (CR24) 2015
Holmes (CR14) 2018
Garda, Galias (CR25) 2014
Kutschka, Doeller, Haueisen, Maess (CR30) 2021
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (CR2) 1993; 65
Boto (CR6) 2018; 555
Shah, Wakai (CR10) 2013
Zetter (CR20) 2020; 128
Holmes (CR19) 2019
Qinjie (CR27) 2018; 11
Gross (CR5) 2019; 104
Altarev (CR16) 2015
Dupont-Roc, Haroche, Cohen-Tannoudji (CR9) 1969; 28
Roberts (CR18) 2019
N Holmes (17346_CR14) 2018
I Altarev (17346_CR17) 2014
JF Hoburg (17346_CR13) 1995
C Juchem (17346_CR23) 2013
J Voigt (17346_CR15) 2013
M Rea (17346_CR28) 2021; 241
D Cohen (17346_CR3) 1968; 161
JC Allred (17346_CR12) 2002
SJ Mellor (17346_CR29) 2021; 97
H Kutschka (17346_CR30) 2021
N Holmes (17346_CR19) 2019
R Zetter (17346_CR20) 2020; 128
N Sachdeva (17346_CR1) 2019; 123
M Hämäläinen (17346_CR2) 1993; 65
C Juchem (17346_CR24) 2015
J Gross (17346_CR5) 2019; 104
J Dupont-Roc (17346_CR9) 1969; 28
C Qinjie (17346_CR27) 2018; 11
M Packer (17346_CR21) 2020; 14
E Boto (17346_CR6) 2018; 555
RM Hill (17346_CR22) 2020
A Juhas (17346_CR26) 2014; 11
I Altarev (17346_CR16) 2015
G Roberts (17346_CR18) 2019
A Borna (17346_CR7) 2020; 15
B Garda (17346_CR25) 2014
V Shah (17346_CR11) 2018
S Baillet (17346_CR4) 2017
VK Shah (17346_CR10) 2013
J Iivanainen (17346_CR8) 2019
References_xml – volume: 161
  start-page: 784
  year: 1968
  end-page: 786
  ident: CR3
  article-title: Magnetoencephalography: Evidence of magnetic fields produced by alpha rhythm currents
  publication-title: Science
  doi: 10.1126/science.161.3843.784
  contributor:
    fullname: Cohen
– year: 2018
  ident: CR14
  article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.028
  contributor:
    fullname: Holmes
– year: 2013
  ident: CR15
  article-title: Measures to reduce the residual field and field gradient inside a magnetically shielded room by a factor of more than 10
  publication-title: Metrol. Meas. Syst.
  doi: 10.2478/mms-2013-0021
  contributor:
    fullname: Burghoff
– volume: 241
  start-page: 118401
  year: 2021
  ident: CR28
  article-title: Precision magnetic field modelling and control for wearable magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118401
  contributor:
    fullname: Rea
– volume: 11
  start-page: 608
  year: 2018
  ident: CR27
  article-title: Optimization of a Coil system for generating uniform magnetic fields inside a cubic
  publication-title: Energies
  doi: 10.3390/en11030608
  contributor:
    fullname: Qinjie
– year: 2014
  ident: CR17
  article-title: A magnetically shielded room with ultra low residual field and gradient
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4886146
  contributor:
    fullname: Altarev
– year: 2019
  ident: CR8
  article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.022
  contributor:
    fullname: Parkkonen
– volume: 14
  start-page: 1
  year: 2020
  ident: CR21
  article-title: Optimal inverse design of magnetic field profiles in a magnetically shielded cylinder
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.054004
  contributor:
    fullname: Packer
– volume: 555
  start-page: 657
  year: 2018
  end-page: 661
  ident: CR6
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
  contributor:
    fullname: Boto
– year: 1995
  ident: CR13
  article-title: Principles of quasistatic magnetic shielding with cylindrical and spherical shields
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/15.477342
  contributor:
    fullname: Hoburg
– volume: 15
  start-page: 1
  year: 2020
  end-page: 24
  ident: CR7
  article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227684
  contributor:
    fullname: Borna
– volume: 128
  start-page: 063905
  year: 2020
  ident: CR20
  article-title: Magnetic field modeling with surface currentsL: Part II: Implementation and usage of bfieldtools
  publication-title: J Appl Phys.
  doi: 10.1063/5.0016087
  contributor:
    fullname: Zetter
– volume: 123
  start-page: 143003
  year: 2019
  ident: CR1
  article-title: New Limit on the Permanent Electric Dipole Moment of Xe 129 Using He 3 Comagnetometry and SQUID Detection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.143003
  contributor:
    fullname: Sachdeva
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: CR2
  article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
  contributor:
    fullname: Lounasmaa
– year: 2013
  ident: CR10
  article-title: A compact, high performance atomic magnetometer for biomedical applications
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/22/8153
  contributor:
    fullname: Wakai
– year: 2002
  ident: CR12
  article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.89.130801
  contributor:
    fullname: Romalis
– year: 2019
  ident: CR18
  article-title: Towards magnetoencephalography in a virtual reality environment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.010
  contributor:
    fullname: Roberts
– year: 2021
  ident: CR30
  article-title: Magnetic field compensation coil design for magnetoencephalography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-01894-z
  contributor:
    fullname: Maess
– volume: 11
  start-page: 701
  year: 2014
  end-page: 717
  ident: CR26
  article-title: Magnetic field of rectangular current loop with sides parallel and perpendicular to the surface of high-permeability material
  publication-title: SJEE
  contributor:
    fullname: Toepfer
– volume: 28
  start-page: 638
  year: 1969
  end-page: 639
  ident: CR9
  article-title: Detection of very weak magnetic fields (10–9gauss) by 87Rb zero-field level crossing resonances
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(69)90480-0
  contributor:
    fullname: Cohen-Tannoudji
– year: 2017
  ident: CR4
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
  contributor:
    fullname: Baillet
– volume: 97
  start-page: 243703
  year: 2021
  ident: CR29
  article-title: Magnetic Field Mapping and Correction for Moving OP-MEG
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Mellor
– year: 2018
  ident: CR11
  article-title: Fully integrated, standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Steep Dispers. Eng. Opto-Atomic Precis. Metrol.
  doi: 10.1117/12.2299197
  contributor:
    fullname: Alem
– year: 2014
  ident: CR25
  article-title: Tikhonov regularization and constrained quadratic programming for magnetic coil design problems
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/amcs-2014-0018
  contributor:
    fullname: Galias
– year: 2015
  ident: CR16
  article-title: Minimizing magnetic fields for precision experiments
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4922671
  contributor:
    fullname: Altarev
– year: 2020
  ident: CR22
  article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116995
  contributor:
    fullname: Hill
– year: 2013
  ident: CR23
  article-title: Multi-coil magnetic field modeling
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2013.08.015
  contributor:
    fullname: De Graaf
– year: 2019
  ident: CR19
  article-title: Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50697-w
  contributor:
    fullname: Holmes
– volume: 104
  start-page: 189
  year: 2019
  end-page: 204
  ident: CR5
  article-title: Magnetoencephalography in cognitive neuroscience: A primer
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.07.001
  contributor:
    fullname: Gross
– year: 2015
  ident: CR24
  article-title: Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.011
  contributor:
    fullname: de Graaf
– year: 2018
  ident: 17346_CR14
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.028
  contributor:
    fullname: N Holmes
– volume: 161
  start-page: 784
  year: 1968
  ident: 17346_CR3
  publication-title: Science
  doi: 10.1126/science.161.3843.784
  contributor:
    fullname: D Cohen
– volume: 14
  start-page: 1
  year: 2020
  ident: 17346_CR21
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.054004
  contributor:
    fullname: M Packer
– year: 2017
  ident: 17346_CR4
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
  contributor:
    fullname: S Baillet
– year: 2019
  ident: 17346_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50697-w
  contributor:
    fullname: N Holmes
– year: 2015
  ident: 17346_CR16
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4922671
  contributor:
    fullname: I Altarev
– volume: 11
  start-page: 701
  year: 2014
  ident: 17346_CR26
  publication-title: SJEE
  contributor:
    fullname: A Juhas
– volume: 128
  start-page: 063905
  year: 2020
  ident: 17346_CR20
  publication-title: J Appl Phys.
  doi: 10.1063/5.0016087
  contributor:
    fullname: R Zetter
– volume: 65
  start-page: 413
  year: 1993
  ident: 17346_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
  contributor:
    fullname: M Hämäläinen
– year: 2013
  ident: 17346_CR10
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/22/8153
  contributor:
    fullname: VK Shah
– volume: 97
  start-page: 243703
  year: 2021
  ident: 17346_CR29
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: SJ Mellor
– year: 2013
  ident: 17346_CR15
  publication-title: Metrol. Meas. Syst.
  doi: 10.2478/mms-2013-0021
  contributor:
    fullname: J Voigt
– year: 2021
  ident: 17346_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-01894-z
  contributor:
    fullname: H Kutschka
– year: 1995
  ident: 17346_CR13
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/15.477342
  contributor:
    fullname: JF Hoburg
– volume: 28
  start-page: 638
  year: 1969
  ident: 17346_CR9
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(69)90480-0
  contributor:
    fullname: J Dupont-Roc
– year: 2013
  ident: 17346_CR23
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2013.08.015
  contributor:
    fullname: C Juchem
– year: 2015
  ident: 17346_CR24
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.011
  contributor:
    fullname: C Juchem
– year: 2018
  ident: 17346_CR11
  publication-title: Steep Dispers. Eng. Opto-Atomic Precis. Metrol.
  doi: 10.1117/12.2299197
  contributor:
    fullname: V Shah
– year: 2002
  ident: 17346_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.89.130801
  contributor:
    fullname: JC Allred
– year: 2014
  ident: 17346_CR25
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/amcs-2014-0018
  contributor:
    fullname: B Garda
– volume: 241
  start-page: 118401
  year: 2021
  ident: 17346_CR28
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118401
  contributor:
    fullname: M Rea
– volume: 104
  start-page: 189
  year: 2019
  ident: 17346_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.07.001
  contributor:
    fullname: J Gross
– volume: 11
  start-page: 608
  year: 2018
  ident: 17346_CR27
  publication-title: Energies
  doi: 10.3390/en11030608
  contributor:
    fullname: C Qinjie
– volume: 15
  start-page: 1
  year: 2020
  ident: 17346_CR7
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0227684
  contributor:
    fullname: A Borna
– year: 2020
  ident: 17346_CR22
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116995
  contributor:
    fullname: RM Hill
– year: 2019
  ident: 17346_CR18
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.010
  contributor:
    fullname: G Roberts
– volume: 555
  start-page: 657
  year: 2018
  ident: 17346_CR6
  publication-title: Nature
  doi: 10.1038/nature26147
  contributor:
    fullname: E Boto
– year: 2019
  ident: 17346_CR8
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.022
  contributor:
    fullname: J Iivanainen
– volume: 123
  start-page: 143003
  year: 2019
  ident: 17346_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.143003
  contributor:
    fullname: N Sachdeva
– year: 2014
  ident: 17346_CR17
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4886146
  contributor:
    fullname: I Altarev
SSID ssj0000529419
Score 2.5801785
Snippet Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high...
Abstract Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13561
SubjectTerms 631/378
639/766/25
692/700/1421
692/700/1421/65
Brain
Functional Neuroimaging
Humanities and Social Sciences
Humans
Magnetic Fields
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Magnetoencephalography
Magnetoencephalography - methods
multidisciplinary
Neuroimaging
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxUxEJ8oiYkXA-LHApIl8aYbtt_thQQFwokLmHhr2m4rJrgQHy-G_55pu-_p8yNeuG6b7Oxv2s7MzsyvAG9p4loo47o-MN9x7WWnhVAdlV6KQIjU5RaF03N19lkfHWeanOVVX7kmrNIDV-D2E0kpRRYcGlYeFfc0MYGfLwkJicZ6-vbyl2CqsnpTw4mZumR6pvdnaKlyNxnGXkQxLjuyYokKYf_fvMw_iyV_y5gWQ3SyDs8mD7I9rJJvwKM4Pocn9U7Ju004OGyvcsD9o_zzbL-5L2PtU7y6a2eXuV4tDm12l9v8C7Z15bybRvB9L-DTyfHFx9NuuiShC-hs3XbBkMCEikJEwTN5FaVBqX6IGDd4QlMwcpDeD4ieVIPjKarcEkKcx0DHeMJewtp4PcbX0AqVEDPt-gGNviPR5_1NEX8fNVp13cC7BWD2pnJh2JLDZtpWeC3Cawu8ljTwIWO6nJl5rMsD1K6dtGv_p90GdhYasdPmmtmSK9e597uBveUwbouc63BjvJ7XOTlHmee8qgpcSsKE4Rh_mwbUimpXRF0dGb9eFuptwyTDGLGB94tF8FOsf0Ox9RBQbMNTmldvKVfZgbXb7_P4Bh7PhvluWfv3HQcGQg
  priority: 102
  providerName: Directory of Open Access Journals
Title A lightweight magnetically shielded room with active shielding
URI https://link.springer.com/article/10.1038/s41598-022-17346-1
https://www.ncbi.nlm.nih.gov/pubmed/35945239
https://www.proquest.com/docview/2700181320
https://www.proquest.com/docview/2700640720
https://pubmed.ncbi.nlm.nih.gov/PMC9363499
https://doaj.org/article/f1fffe3ca8934e74b2f35ead611cf2e2
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcMRWQuKCKM9AqYLEDdJdv-0LUimtegEhARI3y3bsttJutup2hfr3HTvJwvK4cI2teDKPzIznBfCaJq6FMq6ZBeYbrr1stBCqodJLEQiRukxROP2iPn3XH45zmxwx1sKUpP3gLw66-eKguzgvuZWXizAd88Smnz8eGSYZWurTCUzQNvzFRe8belPDiRkKZGZMT1eopHIhGbpdRDEumzwehgnD0QkzW_qotO3_m635Z8rkb3HToo5OHsD9wY6sD3t4d-FO7B7C3X6y5M0jeHdYz7Pb_aPcfNYLd9b11Yrzm3p1nrPWYltno7nOF7G1K3-9YQXPewzfTo6_Hp02w6iEJqDJdd0EQwITKgoRBc8trCgNSs3aiN6DJzQFI1vpfWvw81XreIoqF4YQ59HdMZ6wJ7DTLbv4DGqhEqJPu1mLqt-R6LOUU5KSjxp1u67gzYgwe9l3xLAlks207TFtEdO2YNqSCt5nnG525m7W5cHy6swONLUJ354iCw6NJx4V9zQxgSwuCQmJRlrB3kgRO4jYypaIuc4V4BW82iyjcOSIh-vict3vyZHKvOdpT8ANJCMDVKC2SLsF6vYK8mNpwD3wXwVvRyb4Cda_UfH8vw96Afdo5t6SqbIHO9dX6_gSJqt2vV_uEPaLBNwCEzwGNw
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgQX3oVAgSBxg3TjV2xfkEpptYi2QqJI3KzYsdtKu9mq21XVf9-xkywsj0uvGSuZzOexZzwPA7yjgSshdV2UjtmCK1sVSghZ0MpWwhFSqXSLwvi7PPypPu_GNjliqIVJSfvOnm61k-lWe3qScivPpm405ImNvh3saFYxtNRHa3Ab9bUsf3PSu5beVHOi-xKZkqnRHLepWEqGjheRjFdFvCCGCc3RDdMrO1Jq3P8va_PvpMk_IqdpQ9p7cMNfeQj3ews03-7Ij-CWbx_Dne5Oyqsn8HE7n0SH_TKdmebT-rjt6hwnV_n8JOa7-SaP5nYej3DzOq2XPQX5fAo_9naPdsZFf8lC4dBYuyicJo4J6YXwgsfmV5Q6KcvGo99hCQ1OV01lbaNRbLKpefAylpSQ2qKjpC1hG7Dezlr_HHIhA4pd1WWDRkNNvI3rAyUhWK_QKlAZvB8Ebc66XhomxcCZMh1CBhEyCSFDMvgUsViOjH2w04PZ-bHpRWgCvj145mo0u7iX3NLABCpHRYgL1NMMNgckTa-cc5Ni7SrWjmfwdklGtYqxkrr1s0U3JsY445hnHfBLToaJk4FcmRIrrK5SEP7UuruHO4MPw-T5xdb_RfHixh96A3fHRwf7Zv_L4deXcI9GDUj5LpuwfnG-8K9gbd4sXif9uQaWpBrV
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcESLQFxa3oQWCBI3SBPbcWxfKpW2qyKgqgRI3KzYsdtKu9lVt6uqf8_YSbYsjwtc41EymYc943kBvKG-lFyoOissM1kpTZVJzkVGK1NxS0gl4xSFoy_i-Ls8OAxtcpajvmLSvjXnO-14stOen8XcytnE5kOeWH7yeV-xiqGlns8an6_BbdTZgv7kqHdtvakqierLZAom8zkeVaGcDJ0vIlhZZWFIDOOqRFdMrZxKsXn_nyzO3xMnf4mexkNptPkfv3MfNnpLNN3rQB7ALdc-hDvdbMrrR7C7l46D434V707TSX3advWO4-t0fhby3lyTBrM7DVe5aR33zX4FcX0M30aHX_ePsn7YQmbRaLvMrCKWceE4d7wMTbAotUIUjUP_wxDqraqayphGIelEU5feiVBaQmqDDpMyhD2B9XbaumeQcuGR9LIuGjQeauJM2Cco8d44idaBTODtQGw963pq6BgLZ1J3XNLIJR25pEkC7wM_lpChH3Z8ML041T0Ztce3e8dsjeZX6URpqGcclaQixHrqaALbAzd1r6RzHWPuMtSQJ_B6uYzqFWImdeumiw4mxDoDzNOO-UtMBuFJQKyIxQqqqysoArGFd8_yBN4NAnSD1t9J8fyfP_QK7p4cjPSnD8cft-AeDUoQ0162Yf3yYuFewNq8WbyMKvQDkmodVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lightweight+magnetically+shielded+room+with+active+shielding&rft.jtitle=Scientific+reports&rft.au=Holmes%2C+Niall&rft.au=Rea%2C+Molly&rft.au=Chalmers%2C+James&rft.au=Leggett%2C+James&rft.date=2022-08-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-17346-1&rft.externalDocID=10_1038_s41598_022_17346_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon