Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning

Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monit...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; p. 15565
Main Authors: Balaskas, Konstantinos, Glinton, S., Keenan, T. D. L., Faes, L., Liefers, B., Zhang, G., Pontikos, N., Struyven, R., Wagner, S. K., McKeown, A., Patel, P. J., Keane, P. A., Fu, D. J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 16-09-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure–function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r 2 ) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r 2 0.40 MAE 11.7 ETDRS letters) and LLVA (r 2 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic.
AbstractList Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure–function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r 2 ) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r 2 0.40 MAE 11.7 ETDRS letters) and LLVA (r 2 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic.
Abstract Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure–function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r2) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r2 0.40 MAE 11.7 ETDRS letters) and LLVA (r2 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic.
Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure-function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r2) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r2 0.40 MAE 11.7 ETDRS letters) and LLVA (r2 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic.
Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure-function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r ) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r 0.40 MAE 11.7 ETDRS letters) and LLVA (r 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic.
ArticleNumber 15565
Author Glinton, S.
Struyven, R.
Balaskas, Konstantinos
Liefers, B.
McKeown, A.
Faes, L.
Patel, P. J.
Wagner, S. K.
Fu, D. J.
Pontikos, N.
Keenan, T. D. L.
Zhang, G.
Keane, P. A.
Author_xml – sequence: 1
  givenname: Konstantinos
  surname: Balaskas
  fullname: Balaskas, Konstantinos
  email: k.balaskas@nhs.net
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 2
  givenname: S.
  surname: Glinton
  fullname: Glinton, S.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 3
  givenname: T. D. L.
  surname: Keenan
  fullname: Keenan, T. D. L.
  organization: Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health
– sequence: 4
  givenname: L.
  surname: Faes
  fullname: Faes, L.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 5
  givenname: B.
  surname: Liefers
  fullname: Liefers, B.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub, Department of Ophthalmology, Erasmus University Medical Center
– sequence: 6
  givenname: G.
  surname: Zhang
  fullname: Zhang, G.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 7
  givenname: N.
  surname: Pontikos
  fullname: Pontikos, N.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 8
  givenname: R.
  surname: Struyven
  fullname: Struyven, R.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 9
  givenname: S. K.
  surname: Wagner
  fullname: Wagner, S. K.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 10
  givenname: A.
  surname: McKeown
  fullname: McKeown, A.
  organization: Apellis Pharmaceuticals, Inc
– sequence: 11
  givenname: P. J.
  surname: Patel
  fullname: Patel, P. J.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 12
  givenname: P. A.
  surname: Keane
  fullname: Keane, P. A.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
– sequence: 13
  givenname: D. J.
  surname: Fu
  fullname: Fu, D. J.
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36114218$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuFDEQRVsoiISQH2CBLLFh0-BnPzZIKOIRKRIsYG2VPeUeDz32xO5OlHwM34ozHULCAm9sVZ26rrLv8-ogxIBV9ZLRt4yK7l2WTPVdTTmvWS-ZqG-eVEecSlVzwfnBg_NhdZLzhpaleCH7Z9WhaBiTnHVH1a9vCVfeTj4GEh259HmGkbg5LCGX4pbAPMUtTN7COF6TixnC5J3HFYm7fZDYuMaEwSIpYBwS7NbXxPhSlH5iysQHsiv1GKZMrvy0JgMulLcEphRv8Tn7MJAt2LUPSEaEFErgRfXUwZjx5G4_rn58-vj99Et9_vXz2emH89oqSafamI4y5RQYKaygnBkQnDLZgGloy5lrmFOoZNtyoMKg4dg41bfCcuhU78RxdbboriJs9C750vq1juD1PhDToCGVYUfUtMMODBPGUZTYM2Pa_WOuhDBK9rRovV-0drPZ4sqWsROMj0QfZ4Jf6yFe6l52rBGsCLy5E0jxYsY86a3PFscRAsY5a94yJWXTcl7Q1_-gmzinUJ5qT5Uvb1tZKL5QNsWcE7r7ZhjVt27Si5t0cZPeu0nflKJXD8e4L_njnQKIBcglFQZMf-_-j-xvrl3b2g
CitedBy_id crossref_primary_10_1002_14651858_CD009300_pub3
crossref_primary_10_1007_s00417_023_06052_x
crossref_primary_10_1186_s40662_024_00389_y
crossref_primary_10_1007_s00417_023_06054_9
crossref_primary_10_1038_s41598_024_54619_3
crossref_primary_10_17925_USOR_2023_17_2_4
crossref_primary_10_1001_jamaophthalmol_2024_1269
crossref_primary_10_1186_s12886_024_03381_1
crossref_primary_10_1016_j_oret_2024_01_025
crossref_primary_10_17925_USOR_2023_17_2_1
crossref_primary_10_3390_photonics10020149
crossref_primary_10_1080_08820538_2024_2308248
Cites_doi 10.1167/iovs.15-18962
10.1016/j.ajo.2017.03.031
10.1136/bjophthalmol-2015-306621
10.1016/j.ophtha.2016.12.002
10.1177/2474126419859454
10.1007/s100440200009
10.1097/IAE.0000000000001258
10.1016/j.ophtha.2020.02.009
10.1016/j.ophtha.2017.09.028
10.1016/j.ajo.2020.04.003
10.1016/S2589-7500(21)00134-5
10.2147/OPTH.S246245
10.1034/j.1600-0420.1999.770613.x
10.1016/j.oret.2020.01.019
10.1111/opo.12775
10.1093/mutage/ger039
10.1016/j.ophtha.2019.09.035
10.1016/j.oret.2021.01.009
10.1111/j.1475-1313.2006.00325.x
10.1001/jamaophthalmol.2014.5963
10.1016/j.ophtha.2018.05.028
10.1007/s00417-018-4017-6
10.1001/archopht.1973.01000050208006
10.1167/iovs.08-1935
10.1016/j.ajo.2020.12.034
10.1097/IAE.0000000000002789
10.1167/iovs.16-21210
10.1016/j.ophtha.2019.07.011
10.1001/jamaophthalmol.2013.5799
10.1136/bjophthalmol-2020-317447
10.2147/OPTH.S92359
10.1016/j.oret.2017.03.015
10.1167/iovs.17-22339
10.1159/000330420
10.1097/00006324-200008000-00008
10.1177/0145482X0810201103
10.1016/j.ajo.2016.04.012
10.21203/rs.3.rs-68760/v1
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-19413-z
DatabaseName Springer Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef
MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15565
ExternalDocumentID oai_doaj_org_article_08e8ab13bf0e4e91bb711421d33b5490
10_1038_s41598_022_19413_z
36114218
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Apellis Pharmaceuticals
  grantid: KBALGA1
  funderid: http://dx.doi.org/10.13039/100019531
– fundername: Medical Research Council
  grantid: MR/T000953/1
– fundername: Medical Research Council
  grantid: MR/T019050/1
– fundername: ;
  grantid: KBALGA1
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c540t-bb8015f5ab43c3021ba320146ab60721f61f5e54772a03beb2e6f5973c2a859f3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 14:52:06 EDT 2024
Tue Sep 17 21:36:33 EDT 2024
Fri Oct 25 00:41:47 EDT 2024
Fri Nov 22 09:24:17 EST 2024
Thu Nov 21 21:39:12 EST 2024
Sat Nov 02 12:21:11 EDT 2024
Fri Oct 11 20:56:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-bb8015f5ab43c3021ba320146ab60721f61f5e54772a03beb2e6f5973c2a859f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481631/
PMID 36114218
PQID 2715005774
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_08e8ab13bf0e4e91bb711421d33b5490
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9481631
proquest_miscellaneous_2715446722
proquest_journals_2715005774
crossref_primary_10_1038_s41598_022_19413_z
pubmed_primary_36114218
springer_journals_10_1038_s41598_022_19413_z
PublicationCentury 2000
PublicationDate 2022-09-16
PublicationDateYYYYMMDD 2022-09-16
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Stockman, Sharpe (CR9) 2006; 26
Ho (CR34) 2002; 5
Liao, Grossi, El Mehdi, Gerber, Brown, Heier (CR11) 2020; 127
Pfau, von der Emde, Dysli, Möller, Thiele, Lindner (CR18) 2020; 217
Gallo, Egger, McCormack, Farmer, Ioannidis, Kirsch-Volders (CR20) 2011; 27
Zele, Cao (CR10) 2014; 5
Lovie-Kitchin, Brown (CR35) 2000
Sunness (CR8) 2008; 102
Bagheri, Lains, Silverman, Kim, Eliott, Silva (CR27) 2019; 3
CR33
Sayegh, Sacu, Dunavölgyi, Kroh, Roberts, Mitsch (CR19) 2017; 179
Zhang, Fu, Liefers, Faes, Glinton, Wagner (CR17) 2021; 3
Owsley, Clark, Huisingh, Curcio, McGwin (CR41) 2016
Holz, Sadda, Staurenghi, Lindner, Bird, Blodi (CR14) 2017; 124
Patel, Chen, Rubin, Tufail (CR26) 2008; 49
Bird (CR39) 2020
Schmidt-Erfurth, Bogunovic, Sadeghipour, Schlegl, Langs, Gerendas (CR24) 2018; 2
Wu, Ayton, Luu, Guymer (CR37) 2015; 133
Göbel, Fleckenstein, Schmitz-Valckenberg, Brinkmann, Holz (CR22) 2011; 226
Keenan, Agrón, Domalpally, Clemons, van Asten, Wong (CR7) 2018; 125
Liefers, Colijn, González-Gonzalo, Verzijden, Wang, Joachim (CR31) 2020; 127
Schmitz-Valckenberg, Sadda, Staurenghi, Chew, Fleckenstein, Holz (CR1) 2016; 36
Allingham, Mettu, Cousins (CR13) 2019; 24
CR29
Guymer, Rosenfeld, Curcio, Holz, Staurenghi, Freund (CR16) 2020; 127
Burguera-Giménez, García-Lázaro, España-Gregori, Gallego-Pinazo, Burguera-Giménez, Rodríguez-Vallejo (CR43) 2020; 14
Pluháček, Siderov (CR36) 2018; 256
Wu, Guymer, Finger (CR38) 2016; 100
Siderov, Tiu (CR25) 1999; 77
Steinle, Hamdani (CR21) 2019; 60
Gass (CR2) 1973
Fu, Faes, Wagner, Moraes, Chopra, Patel (CR23) 2021
Liefers, Taylor, Alsaedi, Bailey, Balaskas, Dhingra (CR32) 2021; 226
Lindner, Nadal, Mauschitz, Lüning, Czauderna, Pfau (CR28) 2017; 58
Rodrigues, Sprinkhuizen, Barthelmes, Blumenkranz, Cheung, Haller (CR3) 2016; 168
Kuppermann, Patel, Boyer, Augustin, Freeman, Kerr (CR12) 2021; 41
Csaky, Ferris, Chew, Nair, Cheetham, Duncan (CR42) 2017; 58
Bird, Phillips, Hageman (CR40) 2014; 132
Wood, Jolly, Buckley, Josan, MacLaren (CR5) 2021; 41
Danis, Lavine, Domalpally (CR6) 2015; 9
Sunness, Rubin, Broman, Applegate, Bressler, Hawkins (CR4) 2008; 115
Sadda, Guymer, Holz, Schmitz-Valckenberg, Curcio, Bird (CR15) 2018; 125
Heier, Pieramici, Chakravarthy, Patel, Gupta, Lotery (CR30) 2020; 4
MJ Allingham (19413_CR13) 2019; 24
N Steinle (19413_CR21) 2019; 60
G Zhang (19413_CR17) 2021; 3
JDM Gass (19413_CR2) 1973
J Siderov (19413_CR25) 1999; 77
DS Liao (19413_CR11) 2020; 127
M Pfau (19413_CR18) 2020; 217
U Schmidt-Erfurth (19413_CR24) 2018; 2
JS Sunness (19413_CR8) 2008; 102
JE Lovie-Kitchin (19413_CR35) 2000
A Bird (19413_CR39) 2020
N Burguera-Giménez (19413_CR43) 2020; 14
JS Heier (19413_CR30) 2020; 4
AC Bird (19413_CR40) 2014; 132
F Pluháček (19413_CR36) 2018; 256
RH Guymer (19413_CR16) 2020; 127
C Owsley (19413_CR41) 2016
BD Kuppermann (19413_CR12) 2021; 41
DJ Fu (19413_CR23) 2021
B Liefers (19413_CR31) 2020; 127
K Csaky (19413_CR42) 2017; 58
LJ Wood (19413_CR5) 2021; 41
FG Holz (19413_CR14) 2017; 124
19413_CR29
AJ Zele (19413_CR10) 2014; 5
IA Rodrigues (19413_CR3) 2016; 168
TD Keenan (19413_CR7) 2018; 125
PJ Patel (19413_CR26) 2008; 49
Z Wu (19413_CR37) 2015; 133
RG Sayegh (19413_CR19) 2017; 179
V Gallo (19413_CR20) 2011; 27
Z Wu (19413_CR38) 2016; 100
AP Göbel (19413_CR22) 2011; 226
TK Ho (19413_CR34) 2002; 5
RP Danis (19413_CR6) 2015; 9
A Stockman (19413_CR9) 2006; 26
B Liefers (19413_CR32) 2021; 226
JS Sunness (19413_CR4) 2008; 115
S Schmitz-Valckenberg (19413_CR1) 2016; 36
S Bagheri (19413_CR27) 2019; 3
19413_CR33
M Lindner (19413_CR28) 2017; 58
SR Sadda (19413_CR15) 2018; 125
References_xml – year: 2016
  ident: CR41
  article-title: Visual function in older eyes in normal macular health: Association with incident early age-related macular degeneration 3 years later
  publication-title: Investig. Opthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-18962
  contributor:
    fullname: McGwin
– volume: 179
  start-page: 118
  year: 2017
  end-page: 128
  ident: CR19
  article-title: Geographic atrophy and foveal-sparing changes related to visual acuity in patients with dry age-related macular degeneration over time
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2017.03.031
  contributor:
    fullname: Mitsch
– volume: 100
  start-page: 395
  year: 2016
  end-page: 398
  ident: CR38
  article-title: Low luminance deficit and night vision symptoms in intermediate age-related macular degeneration
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2015-306621
  contributor:
    fullname: Finger
– volume: 124
  start-page: 464
  year: 2017
  end-page: 478
  ident: CR14
  article-title: Imaging protocols in clinical studies in advanced age-related macular degeneration: Recommendations from classification of atrophy consensus meetings
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.12.002
  contributor:
    fullname: Blodi
– volume: 5
  start-page: 1594
  year: 2014
  ident: CR10
  article-title: Vision under mesopic and scotopic illumination
  publication-title: Front. Psychol.
  contributor:
    fullname: Cao
– volume: 3
  start-page: 278
  year: 2019
  end-page: 282
  ident: CR27
  article-title: Percentage of foveal vs total macular geographic atrophy as a predictor of visual acuity in age-related macular degeneration
  publication-title: J. Vitreoretin. Dis.
  doi: 10.1177/2474126419859454
  contributor:
    fullname: Silva
– volume: 5
  start-page: 102
  issue: 2
  year: 2002
  end-page: 112
  ident: CR34
  article-title: A data complexity analysis of the comparative advantages of decision forest constructors
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s100440200009
  contributor:
    fullname: Ho
– volume: 36
  start-page: 2250
  year: 2016
  end-page: 2264
  ident: CR1
  article-title: GEOGRAPHIC ATROPHY: Semantic considerations and literature review
  publication-title: Retina
  doi: 10.1097/IAE.0000000000001258
  contributor:
    fullname: Holz
– volume: 24
  start-page: 60
  year: 2019
  end-page: 60
  ident: CR13
  article-title: Elamipretide, a mitochondrial-targeted drug, for the treatment of vision loss in dry AMD with high risk drusen: Results of the Phase 1 ReCLAIM Study
  publication-title: Ethnicity.
  contributor:
    fullname: Cousins
– volume: 127
  start-page: 1086
  year: 2020
  end-page: 1096
  ident: CR31
  article-title: A deep learning model for segmentation of geographic atrophy to study its long-term natural history
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.02.009
  contributor:
    fullname: Joachim
– ident: CR33
– volume: 125
  start-page: 537
  year: 2018
  end-page: 548
  ident: CR15
  article-title: Consensus definition for atrophy associated with age-related macular degeneration on OCT: Classification of atrophy report 3
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.09.028
  contributor:
    fullname: Bird
– volume: 217
  start-page: 162
  year: 2020
  end-page: 173
  ident: CR18
  article-title: Determinants of cone and rod functions in geographic atrophy: AI-based structure-function correlation
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.04.003
  contributor:
    fullname: Lindner
– ident: CR29
– volume: 3
  start-page: e665
  year: 2021
  end-page: e675
  ident: CR17
  article-title: Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: A model development and external validation study
  publication-title: Lancet Digit. Health.
  doi: 10.1016/S2589-7500(21)00134-5
  contributor:
    fullname: Wagner
– volume: 60
  start-page: 973
  year: 2019
  end-page: 973
  ident: CR21
  article-title: Evaluation of baseline factors on progression in a large phase-2 clinical trial for geographic atrophy (FILLY Study)
  publication-title: Investig. Ophthalmol. Vis. Sci.
  contributor:
    fullname: Hamdani
– volume: 14
  start-page: 1533
  year: 2020
  end-page: 1545
  ident: CR43
  article-title: Multimodal evaluation of visual function in geographic atrophy versus normal eyes
  publication-title: Clin. Ophthalmol.
  doi: 10.2147/OPTH.S246245
  contributor:
    fullname: Rodríguez-Vallejo
– volume: 77
  start-page: 673
  year: 1999
  end-page: 676
  ident: CR25
  article-title: Variability of measurements of visual acuity in a large eye clinic
  publication-title: Acta Ophthalmol. Scand.
  doi: 10.1034/j.1600-0420.1999.770613.x
  contributor:
    fullname: Tiu
– volume: 4
  start-page: 673
  year: 2020
  end-page: 688
  ident: CR30
  article-title: Visual function decline resulting from geographic atrophy: Results from the chroma and spectri phase 3 trials
  publication-title: Ophthalmol. Retina.
  doi: 10.1016/j.oret.2020.01.019
  contributor:
    fullname: Lotery
– volume: 41
  start-page: 213
  year: 2021
  end-page: 223
  ident: CR5
  article-title: Low luminance visual acuity as a clinical measure and clinical trial outcome measure: A scoping review
  publication-title: Ophthalmic Physiol. Opt.
  doi: 10.1111/opo.12775
  contributor:
    fullname: MacLaren
– volume: 27
  start-page: 17
  year: 2011
  end-page: 29
  ident: CR20
  article-title: STrengthening the Reporting of OBservational studies in epidemiology—Molecular epidemiology (STROBE-ME): An extension of the STROBE statement
  publication-title: Mutagenesis
  doi: 10.1093/mutage/ger039
  contributor:
    fullname: Kirsch-Volders
– volume: 115
  start-page: 1488.e1
  issue: 1480–8
  year: 2008
  end-page: 2
  ident: CR4
  article-title: Low luminance visual dysfunction as a predictor of subsequent visual acuity loss from geographic atrophy in age-related macular degeneration
  publication-title: Ophthalmology
  contributor:
    fullname: Hawkins
– volume: 127
  start-page: 394
  year: 2020
  end-page: 409
  ident: CR16
  article-title: Incomplete retinal pigment epithelial and outer retinal atrophy in age-related macular degeneration: Classification of atrophy meeting report 4
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2019.09.035
  contributor:
    fullname: Freund
– year: 2021
  ident: CR23
  article-title: Predicting incremental and future visual change in neovascular age-related macular degeneration using deep learning
  publication-title: Ophthalmol. Retina.
  doi: 10.1016/j.oret.2021.01.009
  contributor:
    fullname: Patel
– volume: 26
  start-page: 225
  year: 2006
  end-page: 239
  ident: CR9
  article-title: Into the twilight zone: The complexities of mesopic vision and luminous efficiency
  publication-title: Ophthalmic Physiol. Opt.
  doi: 10.1111/j.1475-1313.2006.00325.x
  contributor:
    fullname: Sharpe
– volume: 133
  start-page: 442
  year: 2015
  end-page: 448
  ident: CR37
  article-title: Longitudinal changes in microperimetry and low luminance visual acuity in age-related macular degeneration
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2014.5963
  contributor:
    fullname: Guymer
– volume: 125
  start-page: 1913
  year: 2018
  end-page: 1928
  ident: CR7
  article-title: Progression of geographic atrophy in age-related macular degeneration: AREDS2 Report number 16
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.05.028
  contributor:
    fullname: Wong
– volume: 256
  start-page: 1739
  year: 2018
  end-page: 1746
  ident: CR36
  article-title: Mesopic visual acuity is less crowded
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol.
  doi: 10.1007/s00417-018-4017-6
  contributor:
    fullname: Siderov
– year: 1973
  ident: CR2
  article-title: Drusen and disciform macular detachment and degeneration
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.1973.01000050208006
  contributor:
    fullname: Gass
– volume: 49
  start-page: 4347
  year: 2008
  end-page: 4352
  ident: CR26
  article-title: Intersession repeatability of visual acuity scores in age-related macular degeneration
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.08-1935
  contributor:
    fullname: Tufail
– volume: 226
  start-page: 1
  year: 2021
  end-page: 12
  ident: CR32
  article-title: Quantification of key retinal features in early and late age-related macular degeneration using deep learning
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.12.034
  contributor:
    fullname: Dhingra
– volume: 41
  start-page: 144
  year: 2021
  end-page: 155
  ident: CR12
  article-title: Phase 2 study of the safety and efficacy of brimonidine drug delivery system (BRIMO DDS) generation 1 in patients with geographic atrophy secondary to age-related macular degeneration
  publication-title: Retina
  doi: 10.1097/IAE.0000000000002789
  contributor:
    fullname: Kerr
– volume: 58
  start-page: 61
  year: 2017
  end-page: 67
  ident: CR28
  article-title: Combined fundus autofluorescence and near infrared reflectance as prognostic biomarkers for visual acuity in foveal-sparing geographic atrophy
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.16-21210
  contributor:
    fullname: Pfau
– volume: 127
  start-page: 186
  year: 2020
  end-page: 195
  ident: CR11
  article-title: Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: A randomized phase 2 trial
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2019.07.011
  contributor:
    fullname: Heier
– volume: 132
  start-page: 338
  year: 2014
  end-page: 345
  ident: CR40
  article-title: Geographic atrophy: A histopathological assessment
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2013.5799
  contributor:
    fullname: Hageman
– year: 2020
  ident: CR39
  article-title: Role of retinal pigment epithelium in age-related macular disease: A systematic review
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2020-317447
  contributor:
    fullname: Bird
– volume: 9
  start-page: 2159
  year: 2015
  end-page: 2174
  ident: CR6
  article-title: Geographic atrophy in patients with advanced dry age-related macular degeneration: Current challenges and future prospects
  publication-title: Clin. Ophthalmol.
  doi: 10.2147/OPTH.S92359
  contributor:
    fullname: Domalpally
– volume: 2
  start-page: 24
  year: 2018
  end-page: 30
  ident: CR24
  article-title: Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration
  publication-title: Ophthalmol. Retina.
  doi: 10.1016/j.oret.2017.03.015
  contributor:
    fullname: Gerendas
– volume: 58
  start-page: 3456
  year: 2017
  end-page: 3463
  ident: CR42
  article-title: Report from the NEI/FDA endpoints workshop on age-related macular degeneration and inherited retinal diseases
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-22339
  contributor:
    fullname: Duncan
– volume: 226
  start-page: 182
  year: 2011
  end-page: 190
  ident: CR22
  article-title: Imaging geographic atrophy in age-related macular degeneration
  publication-title: Ophthalmologica
  doi: 10.1159/000330420
  contributor:
    fullname: Holz
– year: 2000
  ident: CR35
  article-title: Repeatability and intercorrelations of standard vision tests as a function of age
  publication-title: Optom. Vis. Sci.
  doi: 10.1097/00006324-200008000-00008
  contributor:
    fullname: Brown
– volume: 102
  start-page: 679
  year: 2008
  end-page: 689
  ident: CR8
  article-title: Face fields and microperimetry for estimating the location of fixation in eyes with macular disease
  publication-title: J. Vis. Impair. Blind.
  doi: 10.1177/0145482X0810201103
  contributor:
    fullname: Sunness
– volume: 168
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR3
  article-title: Defining a minimum set of standardized patient-centered outcome measures for macular degeneration
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2016.04.012
  contributor:
    fullname: Haller
– volume: 124
  start-page: 464
  year: 2017
  ident: 19413_CR14
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.12.002
  contributor:
    fullname: FG Holz
– ident: 19413_CR29
  doi: 10.21203/rs.3.rs-68760/v1
– volume: 100
  start-page: 395
  year: 2016
  ident: 19413_CR38
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2015-306621
  contributor:
    fullname: Z Wu
– volume: 41
  start-page: 213
  year: 2021
  ident: 19413_CR5
  publication-title: Ophthalmic Physiol. Opt.
  doi: 10.1111/opo.12775
  contributor:
    fullname: LJ Wood
– volume: 60
  start-page: 973
  year: 2019
  ident: 19413_CR21
  publication-title: Investig. Ophthalmol. Vis. Sci.
  contributor:
    fullname: N Steinle
– volume: 58
  start-page: 3456
  year: 2017
  ident: 19413_CR42
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-22339
  contributor:
    fullname: K Csaky
– volume: 256
  start-page: 1739
  year: 2018
  ident: 19413_CR36
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol.
  doi: 10.1007/s00417-018-4017-6
  contributor:
    fullname: F Pluháček
– volume: 27
  start-page: 17
  year: 2011
  ident: 19413_CR20
  publication-title: Mutagenesis
  doi: 10.1093/mutage/ger039
  contributor:
    fullname: V Gallo
– year: 2020
  ident: 19413_CR39
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2020-317447
  contributor:
    fullname: A Bird
– volume: 168
  start-page: 1
  year: 2016
  ident: 19413_CR3
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2016.04.012
  contributor:
    fullname: IA Rodrigues
– volume: 127
  start-page: 394
  year: 2020
  ident: 19413_CR16
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2019.09.035
  contributor:
    fullname: RH Guymer
– volume: 26
  start-page: 225
  year: 2006
  ident: 19413_CR9
  publication-title: Ophthalmic Physiol. Opt.
  doi: 10.1111/j.1475-1313.2006.00325.x
  contributor:
    fullname: A Stockman
– volume: 3
  start-page: e665
  year: 2021
  ident: 19413_CR17
  publication-title: Lancet Digit. Health.
  doi: 10.1016/S2589-7500(21)00134-5
  contributor:
    fullname: G Zhang
– volume: 9
  start-page: 2159
  year: 2015
  ident: 19413_CR6
  publication-title: Clin. Ophthalmol.
  doi: 10.2147/OPTH.S92359
  contributor:
    fullname: RP Danis
– volume: 5
  start-page: 102
  issue: 2
  year: 2002
  ident: 19413_CR34
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s100440200009
  contributor:
    fullname: TK Ho
– volume: 41
  start-page: 144
  year: 2021
  ident: 19413_CR12
  publication-title: Retina
  doi: 10.1097/IAE.0000000000002789
  contributor:
    fullname: BD Kuppermann
– year: 2016
  ident: 19413_CR41
  publication-title: Investig. Opthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-18962
  contributor:
    fullname: C Owsley
– volume: 24
  start-page: 60
  year: 2019
  ident: 19413_CR13
  publication-title: Ethnicity.
  contributor:
    fullname: MJ Allingham
– volume: 14
  start-page: 1533
  year: 2020
  ident: 19413_CR43
  publication-title: Clin. Ophthalmol.
  doi: 10.2147/OPTH.S246245
  contributor:
    fullname: N Burguera-Giménez
– volume: 36
  start-page: 2250
  year: 2016
  ident: 19413_CR1
  publication-title: Retina
  doi: 10.1097/IAE.0000000000001258
  contributor:
    fullname: S Schmitz-Valckenberg
– volume: 2
  start-page: 24
  year: 2018
  ident: 19413_CR24
  publication-title: Ophthalmol. Retina.
  doi: 10.1016/j.oret.2017.03.015
  contributor:
    fullname: U Schmidt-Erfurth
– ident: 19413_CR33
– year: 2000
  ident: 19413_CR35
  publication-title: Optom. Vis. Sci.
  doi: 10.1097/00006324-200008000-00008
  contributor:
    fullname: JE Lovie-Kitchin
– volume: 49
  start-page: 4347
  year: 2008
  ident: 19413_CR26
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.08-1935
  contributor:
    fullname: PJ Patel
– volume: 125
  start-page: 537
  year: 2018
  ident: 19413_CR15
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.09.028
  contributor:
    fullname: SR Sadda
– volume: 179
  start-page: 118
  year: 2017
  ident: 19413_CR19
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2017.03.031
  contributor:
    fullname: RG Sayegh
– volume: 4
  start-page: 673
  year: 2020
  ident: 19413_CR30
  publication-title: Ophthalmol. Retina.
  doi: 10.1016/j.oret.2020.01.019
  contributor:
    fullname: JS Heier
– volume: 125
  start-page: 1913
  year: 2018
  ident: 19413_CR7
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.05.028
  contributor:
    fullname: TD Keenan
– volume: 132
  start-page: 338
  year: 2014
  ident: 19413_CR40
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2013.5799
  contributor:
    fullname: AC Bird
– year: 2021
  ident: 19413_CR23
  publication-title: Ophthalmol. Retina.
  doi: 10.1016/j.oret.2021.01.009
  contributor:
    fullname: DJ Fu
– volume: 58
  start-page: 61
  year: 2017
  ident: 19413_CR28
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.16-21210
  contributor:
    fullname: M Lindner
– volume: 226
  start-page: 182
  year: 2011
  ident: 19413_CR22
  publication-title: Ophthalmologica
  doi: 10.1159/000330420
  contributor:
    fullname: AP Göbel
– volume: 133
  start-page: 442
  year: 2015
  ident: 19413_CR37
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2014.5963
  contributor:
    fullname: Z Wu
– volume: 77
  start-page: 673
  year: 1999
  ident: 19413_CR25
  publication-title: Acta Ophthalmol. Scand.
  doi: 10.1034/j.1600-0420.1999.770613.x
  contributor:
    fullname: J Siderov
– volume: 115
  start-page: 1488.e1
  issue: 1480–8
  year: 2008
  ident: 19413_CR4
  publication-title: Ophthalmology
  contributor:
    fullname: JS Sunness
– volume: 5
  start-page: 1594
  year: 2014
  ident: 19413_CR10
  publication-title: Front. Psychol.
  contributor:
    fullname: AJ Zele
– volume: 127
  start-page: 186
  year: 2020
  ident: 19413_CR11
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2019.07.011
  contributor:
    fullname: DS Liao
– volume: 3
  start-page: 278
  year: 2019
  ident: 19413_CR27
  publication-title: J. Vitreoretin. Dis.
  doi: 10.1177/2474126419859454
  contributor:
    fullname: S Bagheri
– year: 1973
  ident: 19413_CR2
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.1973.01000050208006
  contributor:
    fullname: JDM Gass
– volume: 102
  start-page: 679
  year: 2008
  ident: 19413_CR8
  publication-title: J. Vis. Impair. Blind.
  doi: 10.1177/0145482X0810201103
  contributor:
    fullname: JS Sunness
– volume: 127
  start-page: 1086
  year: 2020
  ident: 19413_CR31
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.02.009
  contributor:
    fullname: B Liefers
– volume: 226
  start-page: 1
  year: 2021
  ident: 19413_CR32
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.12.034
  contributor:
    fullname: B Liefers
– volume: 217
  start-page: 162
  year: 2020
  ident: 19413_CR18
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.04.003
  contributor:
    fullname: M Pfau
SSID ssj0000529419
Score 2.4754243
Snippet Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally....
Abstract Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15565
SubjectTerms 639/705/117
639/705/794
692/53/2423
692/700/1421
Acuity
Age
Atrophy
Automation
Biomarkers
Cross-Sectional Studies
Diabetes mellitus
Diabetic retinopathy
Epithelium
Geographic Atrophy - diagnostic imaging
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Macular degeneration
multidisciplinary
Patients
Prediction models
Retina
Retinal degeneration
Retinal pigment epithelium
Retinopathy
Science
Science (multidisciplinary)
Segmentation
Structure-function relationships
Tomography
Tomography, Optical Coherence - methods
Visual discrimination learning
Visual perception
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDLZgJSQuiDeFBQWJG1SbNk3aHHnsak8ICZC4RUmbzIy0tMt0irT7Y_it2ElnYHiIC9fEUqPYlj839meAZ5q30tadyF0QVV7JmudO85BLb1XbVY3knJqTT9_Xbz81b46JJmc36otqwhI9cLq4I974xrpCuMB95XXhXE3tn0UnhMPcJmXrXP2UTCVW71JXhZ67ZLhojkaMVNRNhrkX5u2FyC_3IlEk7P8Tyvy9WPKXF9MYiE5uwo0ZQbKX6eS34Irvb8O1NFPy4g58e7emtxe6bzYE9nU1TihN4SsuUTsJs9NmiFSt9uzsgn2ZbKwY8h0bzuMia4dlagNkKDiTWjPq1KdinvXIVj2bCVlHRn9y2SLNUl-uWkY_10mcKuoX7HMs1vRsnk6xuAsfT44_vD7N5yEMeYtgbpM7hzFMBmldJVqBiMBZURLjjHWKuNWCKoL0skKUbrlwmKh7FTBLEW1pG6mDuAcH_dD7B8C0poJVhEzWt8TLZnVQwXrlCXdabTN4vlWIOU9cGya-kYvGJPUZVJ-J6jOXGbwine0kiSc7LqD1mNl6zL-sJ4PDrcbN7LyjKWtEyYhj6yqDp7ttdDt6S7G9H6Ykg5l0XZYZ3E8GsjuJUPEbTQb1nunsHXV_p18tI7U3cecoUWTwYmtkP47196t4-D-u4hFcL8k7aDyGOoSDzXryj-Hq2E1Pom99B1bVKrQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning
URI https://link.springer.com/article/10.1038/s41598-022-19413-z
https://www.ncbi.nlm.nih.gov/pubmed/36114218
https://www.proquest.com/docview/2715005774
https://search.proquest.com/docview/2715446722
https://pubmed.ncbi.nlm.nih.gov/PMC9481631
https://doaj.org/article/08e8ab13bf0e4e91bb711421d33b5490
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlUC9IN4ESmUkbpCuE8dJfITSqhdQJUDiZtleezfSbrJsNkjtj-G34nGSpcvjwtUeKVZmRvONPfMNwCtBDVfFjMXasSzOeEFjLaiLuVW5mWUlpxSbky8-FR-_lu_PkCaHj70woWjf6OqkXq5O6moRaivXKzMd68Smlx9OkWEkZ8l0AhOPDW-k6D2hdyqyRAwNMpSV09YHKWwk82mXT9kTFl8fwh2WYxcpzvq4EY8Cbf_fsOafJZO_vZuGcHR-D-4OOJK87c97H27Z-gHc7idLXj2EH5cbfIHBv04aR75XbeelMYiFJWwqIarbNoGwVS2XV-Rbp0LdkJ2RZh0WiWkWfTMg8YIDtTXBfn0s6dm0pKrJQMvaErzPJfN-ovqiMgSv2FEc6-rnZBVKNi0ZZlTMH8GX87PPpxfxMIohNh7SbWOtfSTjjiudMcM8LtCKpcg7o3SODGsuTxy3PPNYXVGmfbpuc-dzFWZSVXLh2GM4qJvaPgUiBJateuCkrEF2NiVc7pTNLaJPJVQEr0eFyHXPuCHDSzkrZa9J6TUpgybldQTvUGc7SWTLDgvNZi4Hm5G0tKXSCdOO2syKROsiKH_GmPb5MY3gaNS4HFy4lWnhsbJHs0UWwcvdtnc-fFFRtW26Xsbn00WaRvCkN5DdSUYDi6DYM529o-7veHsPBN-DfUfwZjSyX8f696949t8feg6HKXoHTsbIj-Bgu-nsC5i0s-443FEcBw_7CVynLI8
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIqAXngUCBYzEDdJ14jyPUFotoq0qUSRulu3Yu5F2k2WzQWp_DL8Vj5MsXR6XXu2R4mS-0czEM98AvMmpikVaMF8aFvlRnFJf5tT4sRaJKqIsphSbk8df0tNv2cdDpMmJh14YV7SvZLlfzeb7VTl1tZWLuRoNdWKjs5MDZBhJWDDagpvWXim9kqR3lN5hHgV53yJDWTZqrJvCVjKbeNmkPWD-5Q7cZgn2keK0jyseyRH3_yva_Lto8o-bU-eQju5d81Xuw90-AiXvu-0HcENXD-FWN5Py4hH8PFvi3Q3qi9SG_Cib1kqj-3NL2I5CRLuqHdWrmM0uyPdWuIojXZB64RaJqqddGyGxgj0pNsFOfywGWjakrEhP6NoQ_BNMJt0s9mmpCP6cR3GsyJ-QuSv21KSfbjHZha9Hh-cHY78f4uArGwyufCmtD4xNLGTEFLMRhRQsRMYaIRPkZjNJYGIdRzbKF5RJm-jrxNgsh6lQZHFu2GPYrupKPwWS51jwakMuoRXyuoncJEboRGPcKnLhwdtBkXzRcXVwd8fOMt4hgFsEcIcAfunBB9T1WhJ5tt1CvZzwXkWcZjoTMmDSUB3pPJAydaApGJM2s6Ye7A1I4b3xNzxMbZRt4-A08uD1etuaLd7FiErXbSdjM_E0DD140gFrfZIBmB6kG5DbOOrmjoWXowbv4eTBuwGcv4_1_0_x7NoPegV3xucnx_z40-nn57ATooXhfI1kD7ZXy1a_gK2maF86-_wF4ctBIg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqpeeBcCBYzEDdI4cZ5HaLsqAqqVAImbZTv27kq7ybLZILU_ht-Kx0mWLo8LXJ2R4sSfMzPxN98AvCioSkRWMl8aFvtxklFfFtT4iRapKuM8oRSLk88-Zudf8pNTlMnZtPpypH0lZ0fVfHFUzaaOW7lcqGDgiQXjD8eoMJKyMFiWJtiB63bP0uhKot7JekdFHBZ9mQxledBYV4XlZDb5sol7yPzLfdhjKdaSYsePK17Jiff_KeL8nTj5y-mpc0qjW__xOLfhZh-JktedyR24pqu7cKPrTXlxD76PV3iGg-tGakO-zZrWWqMbdENYlkJEu66d5KuYzy_I11Y45pEuSb10g0TV066ckFjDXhybYMU_koJWDZlVpBd2bQj-ESaTrif7dKYI_qRHc2TmT8jCkT416btcTO7D59Hpp-Mzv2_m4CsbFK59Ka0vTEwiZMwUs5GFFCxC5RohU9RoM2loEp3ENtoXlEmb8OvU2GyHqUjkSWHYAexWdaUfAikKJL7a0EtohfpuojCpETrVGL-KQnjwclhMvuw0O7g7a2c571DALQq4QwG_9OANrvfGEvW23UC9mvB-mTjNdS5kyKShOtZFKGXmgFMyJm2GTT04HNDC-49Aw6PMRts2Hs5iD55vLtvti2cyotJ129nYjDyLIg8edODazGQApwfZFuy2prp9xULMSYT3kPLg1QDQn9P6-6t49M83egZ745MRf__2_N1j2I9wk2GbjfQQdterVj-BnaZsn7ot-gPRDkOi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+visual+function+from+automatically+quantified+optical+coherence+tomography+biomarkers+in+patients+with+geographic+atrophy+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Balaskas%2C+Konstantinos&rft.au=Glinton%2C+S.&rft.au=Keenan%2C+T.+D.+L.&rft.au=Faes%2C+L.&rft.date=2022-09-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-19413-z&rft.externalDocID=10_1038_s41598_022_19413_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon