Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning
Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monit...
Saved in:
Published in: | Scientific reports Vol. 12; no. 1; p. 15565 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
16-09-2022
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure–function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r
2
) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r
2
0.40 MAE 11.7 ETDRS letters) and LLVA (r
2
0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic. |
---|---|
AbstractList | Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure–function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r
2
) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r
2
0.40 MAE 11.7 ETDRS letters) and LLVA (r
2
0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic. Abstract Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure–function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r2) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r2 0.40 MAE 11.7 ETDRS letters) and LLVA (r2 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic. Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure-function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r2) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r2 0.40 MAE 11.7 ETDRS letters) and LLVA (r2 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic. Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure-function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r ) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r 0.40 MAE 11.7 ETDRS letters) and LLVA (r 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic. |
ArticleNumber | 15565 |
Author | Glinton, S. Struyven, R. Balaskas, Konstantinos Liefers, B. McKeown, A. Faes, L. Patel, P. J. Wagner, S. K. Fu, D. J. Pontikos, N. Keenan, T. D. L. Zhang, G. Keane, P. A. |
Author_xml | – sequence: 1 givenname: Konstantinos surname: Balaskas fullname: Balaskas, Konstantinos email: k.balaskas@nhs.net organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 2 givenname: S. surname: Glinton fullname: Glinton, S. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 3 givenname: T. D. L. surname: Keenan fullname: Keenan, T. D. L. organization: Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health – sequence: 4 givenname: L. surname: Faes fullname: Faes, L. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 5 givenname: B. surname: Liefers fullname: Liefers, B. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub, Department of Ophthalmology, Erasmus University Medical Center – sequence: 6 givenname: G. surname: Zhang fullname: Zhang, G. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 7 givenname: N. surname: Pontikos fullname: Pontikos, N. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 8 givenname: R. surname: Struyven fullname: Struyven, R. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 9 givenname: S. K. surname: Wagner fullname: Wagner, S. K. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 10 givenname: A. surname: McKeown fullname: McKeown, A. organization: Apellis Pharmaceuticals, Inc – sequence: 11 givenname: P. J. surname: Patel fullname: Patel, P. J. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 12 givenname: P. A. surname: Keane fullname: Keane, P. A. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub – sequence: 13 givenname: D. J. surname: Fu fullname: Fu, D. J. organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, Moorfields Reading Centre and Clinical AI Hub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36114218$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuFDEQRVsoiISQH2CBLLFh0-BnPzZIKOIRKRIsYG2VPeUeDz32xO5OlHwM34ozHULCAm9sVZ26rrLv8-ogxIBV9ZLRt4yK7l2WTPVdTTmvWS-ZqG-eVEecSlVzwfnBg_NhdZLzhpaleCH7Z9WhaBiTnHVH1a9vCVfeTj4GEh259HmGkbg5LCGX4pbAPMUtTN7COF6TixnC5J3HFYm7fZDYuMaEwSIpYBwS7NbXxPhSlH5iysQHsiv1GKZMrvy0JgMulLcEphRv8Tn7MJAt2LUPSEaEFErgRfXUwZjx5G4_rn58-vj99Et9_vXz2emH89oqSafamI4y5RQYKaygnBkQnDLZgGloy5lrmFOoZNtyoMKg4dg41bfCcuhU78RxdbboriJs9C750vq1juD1PhDToCGVYUfUtMMODBPGUZTYM2Pa_WOuhDBK9rRovV-0drPZ4sqWsROMj0QfZ4Jf6yFe6l52rBGsCLy5E0jxYsY86a3PFscRAsY5a94yJWXTcl7Q1_-gmzinUJ5qT5Uvb1tZKL5QNsWcE7r7ZhjVt27Si5t0cZPeu0nflKJXD8e4L_njnQKIBcglFQZMf-_-j-xvrl3b2g |
CitedBy_id | crossref_primary_10_1002_14651858_CD009300_pub3 crossref_primary_10_1007_s00417_023_06052_x crossref_primary_10_1186_s40662_024_00389_y crossref_primary_10_1007_s00417_023_06054_9 crossref_primary_10_1038_s41598_024_54619_3 crossref_primary_10_17925_USOR_2023_17_2_4 crossref_primary_10_1001_jamaophthalmol_2024_1269 crossref_primary_10_1186_s12886_024_03381_1 crossref_primary_10_1016_j_oret_2024_01_025 crossref_primary_10_17925_USOR_2023_17_2_1 crossref_primary_10_3390_photonics10020149 crossref_primary_10_1080_08820538_2024_2308248 |
Cites_doi | 10.1167/iovs.15-18962 10.1016/j.ajo.2017.03.031 10.1136/bjophthalmol-2015-306621 10.1016/j.ophtha.2016.12.002 10.1177/2474126419859454 10.1007/s100440200009 10.1097/IAE.0000000000001258 10.1016/j.ophtha.2020.02.009 10.1016/j.ophtha.2017.09.028 10.1016/j.ajo.2020.04.003 10.1016/S2589-7500(21)00134-5 10.2147/OPTH.S246245 10.1034/j.1600-0420.1999.770613.x 10.1016/j.oret.2020.01.019 10.1111/opo.12775 10.1093/mutage/ger039 10.1016/j.ophtha.2019.09.035 10.1016/j.oret.2021.01.009 10.1111/j.1475-1313.2006.00325.x 10.1001/jamaophthalmol.2014.5963 10.1016/j.ophtha.2018.05.028 10.1007/s00417-018-4017-6 10.1001/archopht.1973.01000050208006 10.1167/iovs.08-1935 10.1016/j.ajo.2020.12.034 10.1097/IAE.0000000000002789 10.1167/iovs.16-21210 10.1016/j.ophtha.2019.07.011 10.1001/jamaophthalmol.2013.5799 10.1136/bjophthalmol-2020-317447 10.2147/OPTH.S92359 10.1016/j.oret.2017.03.015 10.1167/iovs.17-22339 10.1159/000330420 10.1097/00006324-200008000-00008 10.1177/0145482X0810201103 10.1016/j.ajo.2016.04.012 10.21203/rs.3.rs-68760/v1 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-19413-z |
DatabaseName | Springer Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15565 |
ExternalDocumentID | oai_doaj_org_article_08e8ab13bf0e4e91bb711421d33b5490 10_1038_s41598_022_19413_z 36114218 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Apellis Pharmaceuticals grantid: KBALGA1 funderid: http://dx.doi.org/10.13039/100019531 – fundername: Medical Research Council grantid: MR/T000953/1 – fundername: Medical Research Council grantid: MR/T019050/1 – fundername: ; grantid: KBALGA1 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c540t-bb8015f5ab43c3021ba320146ab60721f61f5e54772a03beb2e6f5973c2a859f3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 14:52:06 EDT 2024 Tue Sep 17 21:36:33 EDT 2024 Fri Oct 25 00:41:47 EDT 2024 Fri Nov 22 09:24:17 EST 2024 Thu Nov 21 21:39:12 EST 2024 Sat Nov 02 12:21:11 EDT 2024 Fri Oct 11 20:56:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-bb8015f5ab43c3021ba320146ab60721f61f5e54772a03beb2e6f5973c2a859f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481631/ |
PMID | 36114218 |
PQID | 2715005774 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_08e8ab13bf0e4e91bb711421d33b5490 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9481631 proquest_miscellaneous_2715446722 proquest_journals_2715005774 crossref_primary_10_1038_s41598_022_19413_z pubmed_primary_36114218 springer_journals_10_1038_s41598_022_19413_z |
PublicationCentury | 2000 |
PublicationDate | 2022-09-16 |
PublicationDateYYYYMMDD | 2022-09-16 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Stockman, Sharpe (CR9) 2006; 26 Ho (CR34) 2002; 5 Liao, Grossi, El Mehdi, Gerber, Brown, Heier (CR11) 2020; 127 Pfau, von der Emde, Dysli, Möller, Thiele, Lindner (CR18) 2020; 217 Gallo, Egger, McCormack, Farmer, Ioannidis, Kirsch-Volders (CR20) 2011; 27 Zele, Cao (CR10) 2014; 5 Lovie-Kitchin, Brown (CR35) 2000 Sunness (CR8) 2008; 102 Bagheri, Lains, Silverman, Kim, Eliott, Silva (CR27) 2019; 3 CR33 Sayegh, Sacu, Dunavölgyi, Kroh, Roberts, Mitsch (CR19) 2017; 179 Zhang, Fu, Liefers, Faes, Glinton, Wagner (CR17) 2021; 3 Owsley, Clark, Huisingh, Curcio, McGwin (CR41) 2016 Holz, Sadda, Staurenghi, Lindner, Bird, Blodi (CR14) 2017; 124 Patel, Chen, Rubin, Tufail (CR26) 2008; 49 Bird (CR39) 2020 Schmidt-Erfurth, Bogunovic, Sadeghipour, Schlegl, Langs, Gerendas (CR24) 2018; 2 Wu, Ayton, Luu, Guymer (CR37) 2015; 133 Göbel, Fleckenstein, Schmitz-Valckenberg, Brinkmann, Holz (CR22) 2011; 226 Keenan, Agrón, Domalpally, Clemons, van Asten, Wong (CR7) 2018; 125 Liefers, Colijn, González-Gonzalo, Verzijden, Wang, Joachim (CR31) 2020; 127 Schmitz-Valckenberg, Sadda, Staurenghi, Chew, Fleckenstein, Holz (CR1) 2016; 36 Allingham, Mettu, Cousins (CR13) 2019; 24 CR29 Guymer, Rosenfeld, Curcio, Holz, Staurenghi, Freund (CR16) 2020; 127 Burguera-Giménez, García-Lázaro, España-Gregori, Gallego-Pinazo, Burguera-Giménez, Rodríguez-Vallejo (CR43) 2020; 14 Pluháček, Siderov (CR36) 2018; 256 Wu, Guymer, Finger (CR38) 2016; 100 Siderov, Tiu (CR25) 1999; 77 Steinle, Hamdani (CR21) 2019; 60 Gass (CR2) 1973 Fu, Faes, Wagner, Moraes, Chopra, Patel (CR23) 2021 Liefers, Taylor, Alsaedi, Bailey, Balaskas, Dhingra (CR32) 2021; 226 Lindner, Nadal, Mauschitz, Lüning, Czauderna, Pfau (CR28) 2017; 58 Rodrigues, Sprinkhuizen, Barthelmes, Blumenkranz, Cheung, Haller (CR3) 2016; 168 Kuppermann, Patel, Boyer, Augustin, Freeman, Kerr (CR12) 2021; 41 Csaky, Ferris, Chew, Nair, Cheetham, Duncan (CR42) 2017; 58 Bird, Phillips, Hageman (CR40) 2014; 132 Wood, Jolly, Buckley, Josan, MacLaren (CR5) 2021; 41 Danis, Lavine, Domalpally (CR6) 2015; 9 Sunness, Rubin, Broman, Applegate, Bressler, Hawkins (CR4) 2008; 115 Sadda, Guymer, Holz, Schmitz-Valckenberg, Curcio, Bird (CR15) 2018; 125 Heier, Pieramici, Chakravarthy, Patel, Gupta, Lotery (CR30) 2020; 4 MJ Allingham (19413_CR13) 2019; 24 N Steinle (19413_CR21) 2019; 60 G Zhang (19413_CR17) 2021; 3 JDM Gass (19413_CR2) 1973 J Siderov (19413_CR25) 1999; 77 DS Liao (19413_CR11) 2020; 127 M Pfau (19413_CR18) 2020; 217 U Schmidt-Erfurth (19413_CR24) 2018; 2 JS Sunness (19413_CR8) 2008; 102 JE Lovie-Kitchin (19413_CR35) 2000 A Bird (19413_CR39) 2020 N Burguera-Giménez (19413_CR43) 2020; 14 JS Heier (19413_CR30) 2020; 4 AC Bird (19413_CR40) 2014; 132 F Pluháček (19413_CR36) 2018; 256 RH Guymer (19413_CR16) 2020; 127 C Owsley (19413_CR41) 2016 BD Kuppermann (19413_CR12) 2021; 41 DJ Fu (19413_CR23) 2021 B Liefers (19413_CR31) 2020; 127 K Csaky (19413_CR42) 2017; 58 LJ Wood (19413_CR5) 2021; 41 FG Holz (19413_CR14) 2017; 124 19413_CR29 AJ Zele (19413_CR10) 2014; 5 IA Rodrigues (19413_CR3) 2016; 168 TD Keenan (19413_CR7) 2018; 125 PJ Patel (19413_CR26) 2008; 49 Z Wu (19413_CR37) 2015; 133 RG Sayegh (19413_CR19) 2017; 179 V Gallo (19413_CR20) 2011; 27 Z Wu (19413_CR38) 2016; 100 AP Göbel (19413_CR22) 2011; 226 TK Ho (19413_CR34) 2002; 5 RP Danis (19413_CR6) 2015; 9 A Stockman (19413_CR9) 2006; 26 B Liefers (19413_CR32) 2021; 226 JS Sunness (19413_CR4) 2008; 115 S Schmitz-Valckenberg (19413_CR1) 2016; 36 S Bagheri (19413_CR27) 2019; 3 19413_CR33 M Lindner (19413_CR28) 2017; 58 SR Sadda (19413_CR15) 2018; 125 |
References_xml | – year: 2016 ident: CR41 article-title: Visual function in older eyes in normal macular health: Association with incident early age-related macular degeneration 3 years later publication-title: Investig. Opthalmol. Vis. Sci. doi: 10.1167/iovs.15-18962 contributor: fullname: McGwin – volume: 179 start-page: 118 year: 2017 end-page: 128 ident: CR19 article-title: Geographic atrophy and foveal-sparing changes related to visual acuity in patients with dry age-related macular degeneration over time publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2017.03.031 contributor: fullname: Mitsch – volume: 100 start-page: 395 year: 2016 end-page: 398 ident: CR38 article-title: Low luminance deficit and night vision symptoms in intermediate age-related macular degeneration publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2015-306621 contributor: fullname: Finger – volume: 124 start-page: 464 year: 2017 end-page: 478 ident: CR14 article-title: Imaging protocols in clinical studies in advanced age-related macular degeneration: Recommendations from classification of atrophy consensus meetings publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.12.002 contributor: fullname: Blodi – volume: 5 start-page: 1594 year: 2014 ident: CR10 article-title: Vision under mesopic and scotopic illumination publication-title: Front. Psychol. contributor: fullname: Cao – volume: 3 start-page: 278 year: 2019 end-page: 282 ident: CR27 article-title: Percentage of foveal vs total macular geographic atrophy as a predictor of visual acuity in age-related macular degeneration publication-title: J. Vitreoretin. Dis. doi: 10.1177/2474126419859454 contributor: fullname: Silva – volume: 5 start-page: 102 issue: 2 year: 2002 end-page: 112 ident: CR34 article-title: A data complexity analysis of the comparative advantages of decision forest constructors publication-title: Pattern Anal. Appl. doi: 10.1007/s100440200009 contributor: fullname: Ho – volume: 36 start-page: 2250 year: 2016 end-page: 2264 ident: CR1 article-title: GEOGRAPHIC ATROPHY: Semantic considerations and literature review publication-title: Retina doi: 10.1097/IAE.0000000000001258 contributor: fullname: Holz – volume: 24 start-page: 60 year: 2019 end-page: 60 ident: CR13 article-title: Elamipretide, a mitochondrial-targeted drug, for the treatment of vision loss in dry AMD with high risk drusen: Results of the Phase 1 ReCLAIM Study publication-title: Ethnicity. contributor: fullname: Cousins – volume: 127 start-page: 1086 year: 2020 end-page: 1096 ident: CR31 article-title: A deep learning model for segmentation of geographic atrophy to study its long-term natural history publication-title: Ophthalmology doi: 10.1016/j.ophtha.2020.02.009 contributor: fullname: Joachim – ident: CR33 – volume: 125 start-page: 537 year: 2018 end-page: 548 ident: CR15 article-title: Consensus definition for atrophy associated with age-related macular degeneration on OCT: Classification of atrophy report 3 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.09.028 contributor: fullname: Bird – volume: 217 start-page: 162 year: 2020 end-page: 173 ident: CR18 article-title: Determinants of cone and rod functions in geographic atrophy: AI-based structure-function correlation publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.04.003 contributor: fullname: Lindner – ident: CR29 – volume: 3 start-page: e665 year: 2021 end-page: e675 ident: CR17 article-title: Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: A model development and external validation study publication-title: Lancet Digit. Health. doi: 10.1016/S2589-7500(21)00134-5 contributor: fullname: Wagner – volume: 60 start-page: 973 year: 2019 end-page: 973 ident: CR21 article-title: Evaluation of baseline factors on progression in a large phase-2 clinical trial for geographic atrophy (FILLY Study) publication-title: Investig. Ophthalmol. Vis. Sci. contributor: fullname: Hamdani – volume: 14 start-page: 1533 year: 2020 end-page: 1545 ident: CR43 article-title: Multimodal evaluation of visual function in geographic atrophy versus normal eyes publication-title: Clin. Ophthalmol. doi: 10.2147/OPTH.S246245 contributor: fullname: Rodríguez-Vallejo – volume: 77 start-page: 673 year: 1999 end-page: 676 ident: CR25 article-title: Variability of measurements of visual acuity in a large eye clinic publication-title: Acta Ophthalmol. Scand. doi: 10.1034/j.1600-0420.1999.770613.x contributor: fullname: Tiu – volume: 4 start-page: 673 year: 2020 end-page: 688 ident: CR30 article-title: Visual function decline resulting from geographic atrophy: Results from the chroma and spectri phase 3 trials publication-title: Ophthalmol. Retina. doi: 10.1016/j.oret.2020.01.019 contributor: fullname: Lotery – volume: 41 start-page: 213 year: 2021 end-page: 223 ident: CR5 article-title: Low luminance visual acuity as a clinical measure and clinical trial outcome measure: A scoping review publication-title: Ophthalmic Physiol. Opt. doi: 10.1111/opo.12775 contributor: fullname: MacLaren – volume: 27 start-page: 17 year: 2011 end-page: 29 ident: CR20 article-title: STrengthening the Reporting of OBservational studies in epidemiology—Molecular epidemiology (STROBE-ME): An extension of the STROBE statement publication-title: Mutagenesis doi: 10.1093/mutage/ger039 contributor: fullname: Kirsch-Volders – volume: 115 start-page: 1488.e1 issue: 1480–8 year: 2008 end-page: 2 ident: CR4 article-title: Low luminance visual dysfunction as a predictor of subsequent visual acuity loss from geographic atrophy in age-related macular degeneration publication-title: Ophthalmology contributor: fullname: Hawkins – volume: 127 start-page: 394 year: 2020 end-page: 409 ident: CR16 article-title: Incomplete retinal pigment epithelial and outer retinal atrophy in age-related macular degeneration: Classification of atrophy meeting report 4 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2019.09.035 contributor: fullname: Freund – year: 2021 ident: CR23 article-title: Predicting incremental and future visual change in neovascular age-related macular degeneration using deep learning publication-title: Ophthalmol. Retina. doi: 10.1016/j.oret.2021.01.009 contributor: fullname: Patel – volume: 26 start-page: 225 year: 2006 end-page: 239 ident: CR9 article-title: Into the twilight zone: The complexities of mesopic vision and luminous efficiency publication-title: Ophthalmic Physiol. Opt. doi: 10.1111/j.1475-1313.2006.00325.x contributor: fullname: Sharpe – volume: 133 start-page: 442 year: 2015 end-page: 448 ident: CR37 article-title: Longitudinal changes in microperimetry and low luminance visual acuity in age-related macular degeneration publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2014.5963 contributor: fullname: Guymer – volume: 125 start-page: 1913 year: 2018 end-page: 1928 ident: CR7 article-title: Progression of geographic atrophy in age-related macular degeneration: AREDS2 Report number 16 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.05.028 contributor: fullname: Wong – volume: 256 start-page: 1739 year: 2018 end-page: 1746 ident: CR36 article-title: Mesopic visual acuity is less crowded publication-title: Graefes Arch. Clin. Exp. Ophthalmol. doi: 10.1007/s00417-018-4017-6 contributor: fullname: Siderov – year: 1973 ident: CR2 article-title: Drusen and disciform macular detachment and degeneration publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.1973.01000050208006 contributor: fullname: Gass – volume: 49 start-page: 4347 year: 2008 end-page: 4352 ident: CR26 article-title: Intersession repeatability of visual acuity scores in age-related macular degeneration publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.08-1935 contributor: fullname: Tufail – volume: 226 start-page: 1 year: 2021 end-page: 12 ident: CR32 article-title: Quantification of key retinal features in early and late age-related macular degeneration using deep learning publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.12.034 contributor: fullname: Dhingra – volume: 41 start-page: 144 year: 2021 end-page: 155 ident: CR12 article-title: Phase 2 study of the safety and efficacy of brimonidine drug delivery system (BRIMO DDS) generation 1 in patients with geographic atrophy secondary to age-related macular degeneration publication-title: Retina doi: 10.1097/IAE.0000000000002789 contributor: fullname: Kerr – volume: 58 start-page: 61 year: 2017 end-page: 67 ident: CR28 article-title: Combined fundus autofluorescence and near infrared reflectance as prognostic biomarkers for visual acuity in foveal-sparing geographic atrophy publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-21210 contributor: fullname: Pfau – volume: 127 start-page: 186 year: 2020 end-page: 195 ident: CR11 article-title: Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: A randomized phase 2 trial publication-title: Ophthalmology doi: 10.1016/j.ophtha.2019.07.011 contributor: fullname: Heier – volume: 132 start-page: 338 year: 2014 end-page: 345 ident: CR40 article-title: Geographic atrophy: A histopathological assessment publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2013.5799 contributor: fullname: Hageman – year: 2020 ident: CR39 article-title: Role of retinal pigment epithelium in age-related macular disease: A systematic review publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2020-317447 contributor: fullname: Bird – volume: 9 start-page: 2159 year: 2015 end-page: 2174 ident: CR6 article-title: Geographic atrophy in patients with advanced dry age-related macular degeneration: Current challenges and future prospects publication-title: Clin. Ophthalmol. doi: 10.2147/OPTH.S92359 contributor: fullname: Domalpally – volume: 2 start-page: 24 year: 2018 end-page: 30 ident: CR24 article-title: Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration publication-title: Ophthalmol. Retina. doi: 10.1016/j.oret.2017.03.015 contributor: fullname: Gerendas – volume: 58 start-page: 3456 year: 2017 end-page: 3463 ident: CR42 article-title: Report from the NEI/FDA endpoints workshop on age-related macular degeneration and inherited retinal diseases publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.17-22339 contributor: fullname: Duncan – volume: 226 start-page: 182 year: 2011 end-page: 190 ident: CR22 article-title: Imaging geographic atrophy in age-related macular degeneration publication-title: Ophthalmologica doi: 10.1159/000330420 contributor: fullname: Holz – year: 2000 ident: CR35 article-title: Repeatability and intercorrelations of standard vision tests as a function of age publication-title: Optom. Vis. Sci. doi: 10.1097/00006324-200008000-00008 contributor: fullname: Brown – volume: 102 start-page: 679 year: 2008 end-page: 689 ident: CR8 article-title: Face fields and microperimetry for estimating the location of fixation in eyes with macular disease publication-title: J. Vis. Impair. Blind. doi: 10.1177/0145482X0810201103 contributor: fullname: Sunness – volume: 168 start-page: 1 year: 2016 end-page: 12 ident: CR3 article-title: Defining a minimum set of standardized patient-centered outcome measures for macular degeneration publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2016.04.012 contributor: fullname: Haller – volume: 124 start-page: 464 year: 2017 ident: 19413_CR14 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.12.002 contributor: fullname: FG Holz – ident: 19413_CR29 doi: 10.21203/rs.3.rs-68760/v1 – volume: 100 start-page: 395 year: 2016 ident: 19413_CR38 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2015-306621 contributor: fullname: Z Wu – volume: 41 start-page: 213 year: 2021 ident: 19413_CR5 publication-title: Ophthalmic Physiol. Opt. doi: 10.1111/opo.12775 contributor: fullname: LJ Wood – volume: 60 start-page: 973 year: 2019 ident: 19413_CR21 publication-title: Investig. Ophthalmol. Vis. Sci. contributor: fullname: N Steinle – volume: 58 start-page: 3456 year: 2017 ident: 19413_CR42 publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.17-22339 contributor: fullname: K Csaky – volume: 256 start-page: 1739 year: 2018 ident: 19413_CR36 publication-title: Graefes Arch. Clin. Exp. Ophthalmol. doi: 10.1007/s00417-018-4017-6 contributor: fullname: F Pluháček – volume: 27 start-page: 17 year: 2011 ident: 19413_CR20 publication-title: Mutagenesis doi: 10.1093/mutage/ger039 contributor: fullname: V Gallo – year: 2020 ident: 19413_CR39 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2020-317447 contributor: fullname: A Bird – volume: 168 start-page: 1 year: 2016 ident: 19413_CR3 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2016.04.012 contributor: fullname: IA Rodrigues – volume: 127 start-page: 394 year: 2020 ident: 19413_CR16 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2019.09.035 contributor: fullname: RH Guymer – volume: 26 start-page: 225 year: 2006 ident: 19413_CR9 publication-title: Ophthalmic Physiol. Opt. doi: 10.1111/j.1475-1313.2006.00325.x contributor: fullname: A Stockman – volume: 3 start-page: e665 year: 2021 ident: 19413_CR17 publication-title: Lancet Digit. Health. doi: 10.1016/S2589-7500(21)00134-5 contributor: fullname: G Zhang – volume: 9 start-page: 2159 year: 2015 ident: 19413_CR6 publication-title: Clin. Ophthalmol. doi: 10.2147/OPTH.S92359 contributor: fullname: RP Danis – volume: 5 start-page: 102 issue: 2 year: 2002 ident: 19413_CR34 publication-title: Pattern Anal. Appl. doi: 10.1007/s100440200009 contributor: fullname: TK Ho – volume: 41 start-page: 144 year: 2021 ident: 19413_CR12 publication-title: Retina doi: 10.1097/IAE.0000000000002789 contributor: fullname: BD Kuppermann – year: 2016 ident: 19413_CR41 publication-title: Investig. Opthalmol. Vis. Sci. doi: 10.1167/iovs.15-18962 contributor: fullname: C Owsley – volume: 24 start-page: 60 year: 2019 ident: 19413_CR13 publication-title: Ethnicity. contributor: fullname: MJ Allingham – volume: 14 start-page: 1533 year: 2020 ident: 19413_CR43 publication-title: Clin. Ophthalmol. doi: 10.2147/OPTH.S246245 contributor: fullname: N Burguera-Giménez – volume: 36 start-page: 2250 year: 2016 ident: 19413_CR1 publication-title: Retina doi: 10.1097/IAE.0000000000001258 contributor: fullname: S Schmitz-Valckenberg – volume: 2 start-page: 24 year: 2018 ident: 19413_CR24 publication-title: Ophthalmol. Retina. doi: 10.1016/j.oret.2017.03.015 contributor: fullname: U Schmidt-Erfurth – ident: 19413_CR33 – year: 2000 ident: 19413_CR35 publication-title: Optom. Vis. Sci. doi: 10.1097/00006324-200008000-00008 contributor: fullname: JE Lovie-Kitchin – volume: 49 start-page: 4347 year: 2008 ident: 19413_CR26 publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.08-1935 contributor: fullname: PJ Patel – volume: 125 start-page: 537 year: 2018 ident: 19413_CR15 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.09.028 contributor: fullname: SR Sadda – volume: 179 start-page: 118 year: 2017 ident: 19413_CR19 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2017.03.031 contributor: fullname: RG Sayegh – volume: 4 start-page: 673 year: 2020 ident: 19413_CR30 publication-title: Ophthalmol. Retina. doi: 10.1016/j.oret.2020.01.019 contributor: fullname: JS Heier – volume: 125 start-page: 1913 year: 2018 ident: 19413_CR7 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.05.028 contributor: fullname: TD Keenan – volume: 132 start-page: 338 year: 2014 ident: 19413_CR40 publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2013.5799 contributor: fullname: AC Bird – year: 2021 ident: 19413_CR23 publication-title: Ophthalmol. Retina. doi: 10.1016/j.oret.2021.01.009 contributor: fullname: DJ Fu – volume: 58 start-page: 61 year: 2017 ident: 19413_CR28 publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-21210 contributor: fullname: M Lindner – volume: 226 start-page: 182 year: 2011 ident: 19413_CR22 publication-title: Ophthalmologica doi: 10.1159/000330420 contributor: fullname: AP Göbel – volume: 133 start-page: 442 year: 2015 ident: 19413_CR37 publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2014.5963 contributor: fullname: Z Wu – volume: 77 start-page: 673 year: 1999 ident: 19413_CR25 publication-title: Acta Ophthalmol. Scand. doi: 10.1034/j.1600-0420.1999.770613.x contributor: fullname: J Siderov – volume: 115 start-page: 1488.e1 issue: 1480–8 year: 2008 ident: 19413_CR4 publication-title: Ophthalmology contributor: fullname: JS Sunness – volume: 5 start-page: 1594 year: 2014 ident: 19413_CR10 publication-title: Front. Psychol. contributor: fullname: AJ Zele – volume: 127 start-page: 186 year: 2020 ident: 19413_CR11 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2019.07.011 contributor: fullname: DS Liao – volume: 3 start-page: 278 year: 2019 ident: 19413_CR27 publication-title: J. Vitreoretin. Dis. doi: 10.1177/2474126419859454 contributor: fullname: S Bagheri – year: 1973 ident: 19413_CR2 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.1973.01000050208006 contributor: fullname: JDM Gass – volume: 102 start-page: 679 year: 2008 ident: 19413_CR8 publication-title: J. Vis. Impair. Blind. doi: 10.1177/0145482X0810201103 contributor: fullname: JS Sunness – volume: 127 start-page: 1086 year: 2020 ident: 19413_CR31 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2020.02.009 contributor: fullname: B Liefers – volume: 226 start-page: 1 year: 2021 ident: 19413_CR32 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.12.034 contributor: fullname: B Liefers – volume: 217 start-page: 162 year: 2020 ident: 19413_CR18 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.04.003 contributor: fullname: M Pfau |
SSID | ssj0000529419 |
Score | 2.4754243 |
Snippet | Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally.... Abstract Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 15565 |
SubjectTerms | 639/705/117 639/705/794 692/53/2423 692/700/1421 Acuity Age Atrophy Automation Biomarkers Cross-Sectional Studies Diabetes mellitus Diabetic retinopathy Epithelium Geographic Atrophy - diagnostic imaging Humanities and Social Sciences Humans Learning algorithms Machine Learning Macular degeneration multidisciplinary Patients Prediction models Retina Retinal degeneration Retinal pigment epithelium Retinopathy Science Science (multidisciplinary) Segmentation Structure-function relationships Tomography Tomography, Optical Coherence - methods Visual discrimination learning Visual perception |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDLZgJSQuiDeFBQWJG1SbNk3aHHnsak8ICZC4RUmbzIy0tMt0irT7Y_it2ElnYHiIC9fEUqPYlj839meAZ5q30tadyF0QVV7JmudO85BLb1XbVY3knJqTT9_Xbz81b46JJmc36otqwhI9cLq4I974xrpCuMB95XXhXE3tn0UnhMPcJmXrXP2UTCVW71JXhZ67ZLhojkaMVNRNhrkX5u2FyC_3IlEk7P8Tyvy9WPKXF9MYiE5uwo0ZQbKX6eS34Irvb8O1NFPy4g58e7emtxe6bzYE9nU1TihN4SsuUTsJs9NmiFSt9uzsgn2ZbKwY8h0bzuMia4dlagNkKDiTWjPq1KdinvXIVj2bCVlHRn9y2SLNUl-uWkY_10mcKuoX7HMs1vRsnk6xuAsfT44_vD7N5yEMeYtgbpM7hzFMBmldJVqBiMBZURLjjHWKuNWCKoL0skKUbrlwmKh7FTBLEW1pG6mDuAcH_dD7B8C0poJVhEzWt8TLZnVQwXrlCXdabTN4vlWIOU9cGya-kYvGJPUZVJ-J6jOXGbwine0kiSc7LqD1mNl6zL-sJ4PDrcbN7LyjKWtEyYhj6yqDp7ttdDt6S7G9H6Ykg5l0XZYZ3E8GsjuJUPEbTQb1nunsHXV_p18tI7U3cecoUWTwYmtkP47196t4-D-u4hFcL8k7aDyGOoSDzXryj-Hq2E1Pom99B1bVKrQ priority: 102 providerName: Directory of Open Access Journals |
Title | Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning |
URI | https://link.springer.com/article/10.1038/s41598-022-19413-z https://www.ncbi.nlm.nih.gov/pubmed/36114218 https://www.proquest.com/docview/2715005774 https://search.proquest.com/docview/2715446722 https://pubmed.ncbi.nlm.nih.gov/PMC9481631 https://doaj.org/article/08e8ab13bf0e4e91bb711421d33b5490 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlUC9IN4ESmUkbpCuE8dJfITSqhdQJUDiZtleezfSbrJsNkjtj-G34nGSpcvjwtUeKVZmRvONPfMNwCtBDVfFjMXasSzOeEFjLaiLuVW5mWUlpxSbky8-FR-_lu_PkCaHj70woWjf6OqkXq5O6moRaivXKzMd68Smlx9OkWEkZ8l0AhOPDW-k6D2hdyqyRAwNMpSV09YHKWwk82mXT9kTFl8fwh2WYxcpzvq4EY8Cbf_fsOafJZO_vZuGcHR-D-4OOJK87c97H27Z-gHc7idLXj2EH5cbfIHBv04aR75XbeelMYiFJWwqIarbNoGwVS2XV-Rbp0LdkJ2RZh0WiWkWfTMg8YIDtTXBfn0s6dm0pKrJQMvaErzPJfN-ovqiMgSv2FEc6-rnZBVKNi0ZZlTMH8GX87PPpxfxMIohNh7SbWOtfSTjjiudMcM8LtCKpcg7o3SODGsuTxy3PPNYXVGmfbpuc-dzFWZSVXLh2GM4qJvaPgUiBJateuCkrEF2NiVc7pTNLaJPJVQEr0eFyHXPuCHDSzkrZa9J6TUpgybldQTvUGc7SWTLDgvNZi4Hm5G0tKXSCdOO2syKROsiKH_GmPb5MY3gaNS4HFy4lWnhsbJHs0UWwcvdtnc-fFFRtW26Xsbn00WaRvCkN5DdSUYDi6DYM529o-7veHsPBN-DfUfwZjSyX8f696949t8feg6HKXoHTsbIj-Bgu-nsC5i0s-443FEcBw_7CVynLI8 |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIqAXngUCBYzEDdJ14jyPUFotoq0qUSRulu3Yu5F2k2WzQWp_DL8Vj5MsXR6XXu2R4mS-0czEM98AvMmpikVaMF8aFvlRnFJf5tT4sRaJKqIsphSbk8df0tNv2cdDpMmJh14YV7SvZLlfzeb7VTl1tZWLuRoNdWKjs5MDZBhJWDDagpvWXim9kqR3lN5hHgV53yJDWTZqrJvCVjKbeNmkPWD-5Q7cZgn2keK0jyseyRH3_yva_Lto8o-bU-eQju5d81Xuw90-AiXvu-0HcENXD-FWN5Py4hH8PFvi3Q3qi9SG_Cib1kqj-3NL2I5CRLuqHdWrmM0uyPdWuIojXZB64RaJqqddGyGxgj0pNsFOfywGWjakrEhP6NoQ_BNMJt0s9mmpCP6cR3GsyJ-QuSv21KSfbjHZha9Hh-cHY78f4uArGwyufCmtD4xNLGTEFLMRhRQsRMYaIRPkZjNJYGIdRzbKF5RJm-jrxNgsh6lQZHFu2GPYrupKPwWS51jwakMuoRXyuoncJEboRGPcKnLhwdtBkXzRcXVwd8fOMt4hgFsEcIcAfunBB9T1WhJ5tt1CvZzwXkWcZjoTMmDSUB3pPJAydaApGJM2s6Ye7A1I4b3xNzxMbZRt4-A08uD1etuaLd7FiErXbSdjM_E0DD140gFrfZIBmB6kG5DbOOrmjoWXowbv4eTBuwGcv4_1_0_x7NoPegV3xucnx_z40-nn57ATooXhfI1kD7ZXy1a_gK2maF86-_wF4ctBIg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqpeeBcCBYzEDdI4cZ5HaLsqAqqVAImbZTv27kq7ybLZILU_ht-Kx0mWLo8LXJ2R4sSfMzPxN98AvCioSkRWMl8aFvtxklFfFtT4iRapKuM8oRSLk88-Zudf8pNTlMnZtPpypH0lZ0fVfHFUzaaOW7lcqGDgiQXjD8eoMJKyMFiWJtiB63bP0uhKot7JekdFHBZ9mQxledBYV4XlZDb5sol7yPzLfdhjKdaSYsePK17Jiff_KeL8nTj5y-mpc0qjW__xOLfhZh-JktedyR24pqu7cKPrTXlxD76PV3iGg-tGakO-zZrWWqMbdENYlkJEu66d5KuYzy_I11Y45pEuSb10g0TV066ckFjDXhybYMU_koJWDZlVpBd2bQj-ESaTrif7dKYI_qRHc2TmT8jCkT416btcTO7D59Hpp-Mzv2_m4CsbFK59Ka0vTEwiZMwUs5GFFCxC5RohU9RoM2loEp3ENtoXlEmb8OvU2GyHqUjkSWHYAexWdaUfAikKJL7a0EtohfpuojCpETrVGL-KQnjwclhMvuw0O7g7a2c571DALQq4QwG_9OANrvfGEvW23UC9mvB-mTjNdS5kyKShOtZFKGXmgFMyJm2GTT04HNDC-49Aw6PMRts2Hs5iD55vLtvti2cyotJ129nYjDyLIg8edODazGQApwfZFuy2prp9xULMSYT3kPLg1QDQn9P6-6t49M83egZ745MRf__2_N1j2I9wk2GbjfQQdterVj-BnaZsn7ot-gPRDkOi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+visual+function+from+automatically+quantified+optical+coherence+tomography+biomarkers+in+patients+with+geographic+atrophy+using+machine+learning&rft.jtitle=Scientific+reports&rft.au=Balaskas%2C+Konstantinos&rft.au=Glinton%2C+S.&rft.au=Keenan%2C+T.+D.+L.&rft.au=Faes%2C+L.&rft.date=2022-09-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-19413-z&rft.externalDocID=10_1038_s41598_022_19413_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |