Adaptation decorrelates shape representations

Perception and neural responses are modulated by sensory history. Visual adaptation, an example of such an effect, has been hypothesized to improve stimulus discrimination by decorrelating responses across a set of neural units. While a central theoretical model, behavioral and neural evidence for t...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 9; no. 1; pp. 3812 - 9
Main Authors: Mattar, Marcelo G., Olkkonen, Maria, Epstein, Russell A., Aguirre, Geoffrey K.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19-09-2018
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perception and neural responses are modulated by sensory history. Visual adaptation, an example of such an effect, has been hypothesized to improve stimulus discrimination by decorrelating responses across a set of neural units. While a central theoretical model, behavioral and neural evidence for this theory is limited and inconclusive. Here, we use a parametric 3D shape-space to test whether adaptation decorrelates shape representations in humans. In a behavioral experiment with 20 subjects, we find that adaptation to a shape class improves discrimination of subsequently presented stimuli with similar features. In a BOLD fMRI experiment with 10 subjects, we observe that adaptation to a shape class decorrelates the multivariate representations of subsequently presented stimuli with similar features in object-selective cortex. These results support the long-standing proposal that adaptation improves perceptual discrimination and decorrelates neural representations, offering insights into potential underlying mechanisms. Adaptation is thought to improve discrimination by pulling neural representations of similar stimuli farther apart. Here, the authors separately show that adaptation to a 3D shape class leads to better discrimination performance on similar shapes, and activity patterns diverge in object selective cortical areas.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-06278-y