Experimental validation of state equations and dynamic route maps for phase change memristive devices
Phase Change Memory (PCM) is an emerging technology exploiting the rapid and reversible phase transition of certain chalcogenides to realize nanoscale memory elements. PCM devices are being explored as non-volatile storage-class memory and as computing elements for in-memory and neuromorphic computi...
Saved in:
Published in: | Scientific reports Vol. 12; no. 1; p. 6488 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
20-04-2022
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phase Change Memory (PCM) is an emerging technology exploiting the rapid and reversible phase transition of certain chalcogenides to realize nanoscale memory elements. PCM devices are being explored as non-volatile storage-class memory and as computing elements for in-memory and neuromorphic computing. It is well-known that PCM exhibits several characteristics of a memristive device. In this work, based on the essential physical attributes of PCM devices, we exploit the concept of
Dynamic Route Map
(DRM) to capture the complex physics underlying these devices to describe them as memristive devices defined by a state—dependent Ohm’s law. The efficacy of the DRM has been proven by comparing numerical results with experimental data obtained on PCM devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-09948-6 |