BRAX, Brazilian labeled chest x-ray dataset
Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key element...
Saved in:
Published in: | Scientific data Vol. 9; no. 1; pp. 487 - 8 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
10-08-2022
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.
Measurement(s)
Chest Radiography
Technology Type(s)
natural language processing
Factor Type(s)
radiological findings/labels
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
chest organ
Sample Characteristic - Location
Brazil |
---|---|
AbstractList | Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing. Chest radiographs allow for the meticulous examination of a patient's chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.Chest radiographs allow for the meticulous examination of a patient's chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing. Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing. Measurement(s) Chest Radiography Technology Type(s) natural language processing Factor Type(s) radiological findings/labels Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment chest organ Sample Characteristic - Location Brazil Measurement(s) Chest Radiography Technology Type(s) natural language processing Factor Type(s) radiological findings/labels Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment chest organ Sample Characteristic - Location Brazil Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.Measurement(s)Chest RadiographyTechnology Type(s)natural language processingFactor Type(s)radiological findings/labelsSample Characteristic - OrganismHomo sapiensSample Characteristic - Environmentchest organSample Characteristic - LocationBrazil |
ArticleNumber | 487 |
Author | de Paiva, Joselisa P. Q. Szarf, Gilberto Ribeiro, Guilherme A. S. Haidar Filho, Jorge N. Pollard, Tom Paiva, Victor F. Santos, Paulo V. Beraldo, Gabriel L. Brito, Vanessa M. Bulgarelli, Lucas da Silva, Maria C. B. Amaral, Lucas T. W. Reis, Eduardo P. Lee, Henrique M. H. Celi, Leo A. Amaro, Edson Teles, Gustavo B. S. Johnson, Alistair E. W. |
Author_xml | – sequence: 1 givenname: Eduardo P. orcidid: 0000-0001-5110-457X surname: Reis fullname: Reis, Eduardo P. email: eduardo.reis@einstein.br organization: Hospital Israelita Albert Einstein – Big Data Analytics, Hospital Israelita Albert Einstein – Imaging Department – sequence: 2 givenname: Joselisa P. Q. orcidid: 0000-0001-7487-397X surname: de Paiva fullname: de Paiva, Joselisa P. Q. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 3 givenname: Maria C. B. surname: da Silva fullname: da Silva, Maria C. B. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 4 givenname: Guilherme A. S. orcidid: 0000-0002-2230-9573 surname: Ribeiro fullname: Ribeiro, Guilherme A. S. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 5 givenname: Victor F. surname: Paiva fullname: Paiva, Victor F. organization: Hospital Israelita Albert Einstein – Big Data Analytics – sequence: 6 givenname: Lucas orcidid: 0000-0001-5456-2170 surname: Bulgarelli fullname: Bulgarelli, Lucas organization: Massachusetts Institute of Technology – Laboratory for Computational Physiology – sequence: 7 givenname: Henrique M. H. orcidid: 0000-0002-1266-0095 surname: Lee fullname: Lee, Henrique M. H. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 8 givenname: Paulo V. orcidid: 0000-0002-8267-7562 surname: Santos fullname: Santos, Paulo V. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 9 givenname: Vanessa M. surname: Brito fullname: Brito, Vanessa M. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 10 givenname: Lucas T. W. surname: Amaral fullname: Amaral, Lucas T. W. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 11 givenname: Gabriel L. surname: Beraldo fullname: Beraldo, Gabriel L. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 12 givenname: Jorge N. surname: Haidar Filho fullname: Haidar Filho, Jorge N. organization: Hospital Israelita Albert Einstein – Big Data Analytics – sequence: 13 givenname: Gustavo B. S. surname: Teles fullname: Teles, Gustavo B. S. organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 14 givenname: Gilberto surname: Szarf fullname: Szarf, Gilberto organization: Hospital Israelita Albert Einstein – Imaging Department – sequence: 15 givenname: Tom orcidid: 0000-0002-5676-7898 surname: Pollard fullname: Pollard, Tom organization: Massachusetts Institute of Technology – Laboratory for Computational Physiology – sequence: 16 givenname: Alistair E. W. orcidid: 0000-0002-8735-3014 surname: Johnson fullname: Johnson, Alistair E. W. organization: The Hospital for Sick Children – Peter Gilgan Centre for Research and Learning – sequence: 17 givenname: Leo A. surname: Celi fullname: Celi, Leo A. organization: Massachusetts Institute of Technology – Laboratory for Computational Physiology, Beth Israel Deaconess Medical Center – Department of Medicine, Harvard T.H. Chan School of Public Health – Department of Biostatistics – sequence: 18 givenname: Edson orcidid: 0000-0002-5889-1382 surname: Amaro fullname: Amaro, Edson organization: Hospital Israelita Albert Einstein – Big Data Analytics, Hospital Israelita Albert Einstein – Imaging Department |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35948551$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1UREvpF-CAInFBgsA4Y8f2Bamt-FOpEhICiZs1cSbbrLJJsbOI8unxNqW0HDjZ8vzmjd-8x2JvnEYW4qmE1xLQvklKamdKqKoSZA22tA_EQQW6KpWqce_OfV8cpbQGAIkKtIFHYh-1U1ZreSBennw-_vaqOIn0qx96GouBGh64LcIFp7n4WUa6KlqaKfH8RDzsaEh8dHMeiq_v3305_Vief_pwdnp8XgatYC5NBzLPbklLlK41tXUVo60ADXdN0FJKtA2yrDtTuwBkCDoGRxXXaGXAQ3G26LYTrf1l7DcUr_xEvb9-mOLKU5z7MLAPytaSW0nKGLXbCxG2iNDY0CJDl7XeLlqX22bDbeBxjjTcE71fGfsLv5p-eIe1QnBZ4MWNQJy-b_NO_KZPgYeBRp62yVcmuzVonMzo83_Q9bSNY17VjgKlwZkdVS1UiFNKkbvbz0jwOwt-idbnaP11tN7mpmd3bdy2_AkyA7gAKZfGFce_s_8j-xuc5az0 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2023_104855 crossref_primary_10_1055_a_2234_8268 crossref_primary_10_1007_s11914_023_00845_z crossref_primary_10_3390_diagnostics13020216 crossref_primary_10_1007_s00330_024_10769_6 crossref_primary_10_1109_JBHI_2024_3372999 |
Cites_doi | 10.1006/jbin.2001.1029 10.3389/fninf.2013.00045 10.1148/radiol.2413051535 10.1038/s41746-020-00369-1 10.1016/j.artmed.2021.102075 10.1001/jama.2020.12067 10.1371/journal.pone.0204155 10.1016/j.media.2020.101797 10.1016/S2589-7500(19)30123-2 10.13026/grwk-yh18 10.1016/j.clinimag.2017.11.007 10.1016/j.nic.2020.08.008 10.1016/j.artmed.2020.101878 10.1038/s41597-019-0322-0 10.1609/aaai.v33i01.3301590 10.1161/01.CIR.101.23.e215 10.1109/CVPR.2017.369 10.36416/1806-3756/e20200595 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41597-022-01608-8 |
DatabaseName | Springer Nature OA Free Journals Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_c4861ed1a47741038aa3d330b8cd3e0f 10_1038_s41597_022_01608_8 35948551 |
Genre | Dataset Journal Article |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GrantInformation_xml | – fundername: The creation of the BRAX dataset was funded by the MIT-Brazil TVML Seed Fund award (project "Developing a Publicly Accessible Brazilian Dataset of Chest X-Rays”). – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: NIBIB R01 grant EB017205 funderid: https://doi.org/10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R56 EB017205 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: NIBIB R01 grant EB017205 – fundername: NIBIB NIH HHS grantid: R01 EB030362 – fundername: NIBIB NIH HHS grantid: R01 EB017205 – fundername: ; – fundername: ; grantid: NIBIB R01 grant EB017205 |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK AZQEC COVID DWQXO GNUQQ K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-7f01052da51319d76892e382037efbc511138b3e16f769c0a7a0fe09a2e6381c3 |
IEDL.DBID | RPM |
ISSN | 2052-4463 |
IngestDate | Tue Oct 22 15:11:25 EDT 2024 Tue Sep 17 21:07:48 EDT 2024 Sat Oct 26 04:05:19 EDT 2024 Fri Nov 08 20:51:04 EST 2024 Thu Nov 21 21:04:42 EST 2024 Sat Nov 02 12:03:09 EDT 2024 Fri Oct 11 20:50:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-7f01052da51319d76892e382037efbc511138b3e16f769c0a7a0fe09a2e6381c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0001-7487-397X 0000-0002-2230-9573 0000-0001-5110-457X 0000-0002-5889-1382 0000-0002-1266-0095 0000-0002-8267-7562 0000-0001-5456-2170 0000-0002-5676-7898 0000-0002-8735-3014 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364309/ |
PMID | 35948551 |
PQID | 2700450971 |
PQPubID | 2041912 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c4861ed1a47741038aa3d330b8cd3e0f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364309 proquest_miscellaneous_2701073791 proquest_journals_2700450971 crossref_primary_10_1038_s41597_022_01608_8 pubmed_primary_35948551 springer_journals_10_1038_s41597_022_01608_8 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-10 |
PublicationDateYYYYMMDD | 2022-08-10 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Monshi, Poon, Chung (CR9) 2020; 106 McAdams, Samei, Dobbins, Tourassi, Ravin (CR1) 2006; 241 Jaeger (CR18) 2014; 4 Mayo, Leung (CR23) 2018; 49 Reis (CR21) 2022 CR17 Lee (CR5) 2021; 4 CR12 CR30 Singh (CR2) 2018; 13 Chapman, Bridewell, Hanbury, Cooper, Buchanan (CR28) 2001; 34 Endo, Krishnan, Krishna, Ng, Rajpurkar (CR11) 2021; 158 CR4 CR3 CR6 Bustos, Pertusa, Salinas, de la Iglesia-Vayá (CR16) 2020; 66 CR29 Kaushal, Altman, Langlotz (CR15) 2020; 324 CR27 CR25 CR24 CR22 Letourneau-Guillon, Camirand, Guilbert, Forghani (CR7) 2020; 30 Shih (CR14) 2019; 1 Liu (CR8) 2019; 1 Babar, van Laarhoven, Zanzotto, Marchiori (CR10) 2021; 116 Johnson (CR19) 2019; 6 CR20 Lowekamp, Chen, Ibáñez, Blezek (CR26) 2013; 7 Tsai (CR13) 2021; 299 1608_CR6 G Shih (1608_CR14) 2019; 1 S Jaeger (1608_CR18) 2014; 4 1608_CR3 1608_CR4 1608_CR17 L Letourneau-Guillon (1608_CR7) 2020; 30 1608_CR12 1608_CR20 R Singh (1608_CR2) 2018; 13 HP McAdams (1608_CR1) 2006; 241 M Endo (1608_CR11) 2021; 158 RC Mayo (1608_CR23) 2018; 49 X Liu (1608_CR8) 2019; 1 Z Babar (1608_CR10) 2021; 116 1608_CR29 WW Chapman (1608_CR28) 2001; 34 1608_CR25 1608_CR27 EH Lee (1608_CR5) 2021; 4 EB Tsai (1608_CR13) 2021; 299 1608_CR22 1608_CR24 BC Lowekamp (1608_CR26) 2013; 7 A Kaushal (1608_CR15) 2020; 324 1608_CR30 MMA Monshi (1608_CR9) 2020; 106 AEW Johnson (1608_CR19) 2019; 6 EP Reis (1608_CR21) 2022 A Bustos (1608_CR16) 2020; 66 |
References_xml | – volume: 34 start-page: 301 year: 2001 end-page: 310 ident: CR28 article-title: A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries publication-title: Journal of Biomedical Informatics doi: 10.1006/jbin.2001.1029 contributor: fullname: Buchanan – ident: CR22 – volume: 7 start-page: 45 year: 2013 ident: CR26 article-title: The Design of SimpleITK publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2013.00045 contributor: fullname: Blezek – ident: CR4 – volume: 241 start-page: 663 year: 2006 end-page: 683 ident: CR1 article-title: Recent Advances in Chest Radiography publication-title: Radiology doi: 10.1148/radiol.2413051535 contributor: fullname: Ravin – volume: 4 year: 2021 ident: CR5 article-title: Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT publication-title: npj Digital Medicine doi: 10.1038/s41746-020-00369-1 contributor: fullname: Lee – volume: 116 start-page: 102075 year: 2021 ident: CR10 article-title: Evaluating diagnostic content of AI-generated radiology reports of chest X-rays publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102075 contributor: fullname: Marchiori – volume: 324 start-page: 1212 year: 2020 ident: CR15 article-title: Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms publication-title: JAMA doi: 10.1001/jama.2020.12067 contributor: fullname: Langlotz – volume: 4 start-page: 475 year: 2014 end-page: 7 ident: CR18 article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quant Imaging Med Surg contributor: fullname: Jaeger – ident: CR12 – ident: CR30 – volume: 13 start-page: e0204155 year: 2018 ident: CR2 article-title: Deep learning in chest radiography: Detection of findings and presence of change publication-title: PLoS One doi: 10.1371/journal.pone.0204155 contributor: fullname: Singh – ident: CR6 – ident: CR29 – ident: CR25 – volume: 66 start-page: 101797 year: 2020 ident: CR16 article-title: PadChest: A large chest x-ray image dataset with multi-label annotated reports publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101797 contributor: fullname: de la Iglesia-Vayá – ident: CR27 – volume: 1 start-page: e271 year: 2019 end-page: e297 ident: CR8 article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30123-2 contributor: fullname: Liu – volume: 158 start-page: 209 year: 2021 end-page: 219 ident: CR11 article-title: Retrieval-Based Chest X-Ray Report Generation Using a Pre-trained Contrastive Language-Image Model publication-title: Proceedings of Machine Learning Research contributor: fullname: Rajpurkar – year: 2022 ident: CR21 publication-title: PhysioNet doi: 10.13026/grwk-yh18 contributor: fullname: Reis – volume: 299 start-page: E204 year: 2021 end-page: E213 ident: CR13 article-title: The RSNA International COVID-19 Open publication-title: Radiology Database (RICORD). Radiology contributor: fullname: Tsai – volume: 49 start-page: 87 year: 2018 end-page: 88 ident: CR23 article-title: Artificial intelligence and deep learning – Radiology’s next frontier? publication-title: Clinical Imaging doi: 10.1016/j.clinimag.2017.11.007 contributor: fullname: Leung – ident: CR3 – volume: 30 start-page: e1 year: 2020 end-page: e15 ident: CR7 article-title: Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics publication-title: Neuroimaging Clin N Am doi: 10.1016/j.nic.2020.08.008 contributor: fullname: Forghani – ident: CR17 – volume: 106 start-page: 101878 year: 2020 ident: CR9 article-title: Deep learning in generating radiology reports: A survey publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101878 contributor: fullname: Chung – volume: 1 start-page: e180041 year: 2019 ident: CR14 article-title: Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia publication-title: Radiology: Artificial Intelligence contributor: fullname: Shih – ident: CR24 – volume: 6 year: 2019 ident: CR19 article-title: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports publication-title: Scientific Data doi: 10.1038/s41597-019-0322-0 contributor: fullname: Johnson – ident: CR20 – ident: 1608_CR20 – ident: 1608_CR12 doi: 10.1609/aaai.v33i01.3301590 – volume: 241 start-page: 663 year: 2006 ident: 1608_CR1 publication-title: Radiology doi: 10.1148/radiol.2413051535 contributor: fullname: HP McAdams – year: 2022 ident: 1608_CR21 doi: 10.13026/grwk-yh18 contributor: fullname: EP Reis – volume: 1 start-page: e180041 year: 2019 ident: 1608_CR14 publication-title: Radiology: Artificial Intelligence contributor: fullname: G Shih – ident: 1608_CR24 – volume: 4 start-page: 475 year: 2014 ident: 1608_CR18 publication-title: Quant Imaging Med Surg contributor: fullname: S Jaeger – ident: 1608_CR22 doi: 10.1161/01.CIR.101.23.e215 – volume: 49 start-page: 87 year: 2018 ident: 1608_CR23 publication-title: Clinical Imaging doi: 10.1016/j.clinimag.2017.11.007 contributor: fullname: RC Mayo – volume: 30 start-page: e1 year: 2020 ident: 1608_CR7 publication-title: Neuroimaging Clin N Am doi: 10.1016/j.nic.2020.08.008 contributor: fullname: L Letourneau-Guillon – volume: 299 start-page: E204 year: 2021 ident: 1608_CR13 publication-title: Radiology Database (RICORD). Radiology contributor: fullname: EB Tsai – volume: 324 start-page: 1212 year: 2020 ident: 1608_CR15 publication-title: JAMA doi: 10.1001/jama.2020.12067 contributor: fullname: A Kaushal – ident: 1608_CR3 – ident: 1608_CR17 doi: 10.1109/CVPR.2017.369 – ident: 1608_CR25 – volume: 13 start-page: e0204155 year: 2018 ident: 1608_CR2 publication-title: PLoS One doi: 10.1371/journal.pone.0204155 contributor: fullname: R Singh – volume: 4 year: 2021 ident: 1608_CR5 publication-title: npj Digital Medicine doi: 10.1038/s41746-020-00369-1 contributor: fullname: EH Lee – volume: 7 start-page: 45 year: 2013 ident: 1608_CR26 publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2013.00045 contributor: fullname: BC Lowekamp – volume: 6 year: 2019 ident: 1608_CR19 publication-title: Scientific Data doi: 10.1038/s41597-019-0322-0 contributor: fullname: AEW Johnson – volume: 66 start-page: 101797 year: 2020 ident: 1608_CR16 publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101797 contributor: fullname: A Bustos – volume: 106 start-page: 101878 year: 2020 ident: 1608_CR9 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101878 contributor: fullname: MMA Monshi – volume: 116 start-page: 102075 year: 2021 ident: 1608_CR10 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102075 contributor: fullname: Z Babar – volume: 158 start-page: 209 year: 2021 ident: 1608_CR11 publication-title: Proceedings of Machine Learning Research contributor: fullname: M Endo – ident: 1608_CR30 doi: 10.36416/1806-3756/e20200595 – ident: 1608_CR27 – volume: 1 start-page: e271 year: 2019 ident: 1608_CR8 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30123-2 contributor: fullname: X Liu – ident: 1608_CR29 – volume: 34 start-page: 301 year: 2001 ident: 1608_CR28 publication-title: Journal of Biomedical Informatics doi: 10.1006/jbin.2001.1029 contributor: fullname: WW Chapman – ident: 1608_CR6 – ident: 1608_CR4 |
SSID | ssj0001340570 |
Score | 2.3520648 |
Snippet | Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of... Chest radiographs allow for the meticulous examination of a patient's chest but demands specialized training for proper interpretation. Automated analysis of... Measurement(s) Chest Radiography Technology Type(s) natural language processing Factor Type(s) radiological findings/labels Sample Characteristic - Organism... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 487 |
SubjectTerms | 692/53/2421 692/699/1785 692/700/1421/1770 Algorithms Brazil Chest Data Descriptor Datasets Humanities and Social Sciences Humans Language multidisciplinary Natural Language Processing Patients Radiography Radiography, Thoracic Radiology Science Science (multidisciplinary) X-Rays |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3RPXGpSkvbwBYFiUOrXQsnThznyAIrThyglfZmObajcglosyvR_npmnGzo9kNceo0dafTGk5nxTN4AnMjKZ05JySouMkbsL6yyjjPDlSltLi13YXTCbXG9UBeXRJMzjPqinrCOHrgD7tRmSibeJSbDQIXYvI0RDpPwSlknPK_D15fLX5KpcLsiKBDh_V8y-NZpi56KiEdT6kSQXDG15YkCYf_fosw_myV_q5gGRzR_A6_7CDI-6yTfgx3fvIW93kbb-HNPJP3lHUxmN2eLaTxbmp93dJsRo8bRy7g4DMmKH9nS_IipRbT1q334Nr_8en7F-uEIzGKQtWJFTbMtU2fyBK3IYdZQpl6gPxeFryub0wh5VQmfyLqQpeWmMLz2vDSpR5NLrHgPo-a-8R8hxpDEpy7nzhY5olxW6NR8qnitlMTwxEYw2QClHzoODB1q10LpDlaNsOoAq1YRzAjLYSfxV4cHqFXda1W_pNUIxhtN6N6oWk018iwn0qsIjodlNAeqcZjG36_DHkxoRVHing-d4gZJRB6ocHCl2FLplqjbK83d90C5XQqM3HgZwXSj_Gex_g3Fwf-A4hB203BqiYZ3DKPVcu0_wavWrY_CmX8Cn7f_LA priority: 102 providerName: Directory of Open Access Journals |
Title | BRAX, Brazilian labeled chest x-ray dataset |
URI | https://link.springer.com/article/10.1038/s41597-022-01608-8 https://www.ncbi.nlm.nih.gov/pubmed/35948551 https://www.proquest.com/docview/2700450971 https://www.proquest.com/docview/2701073791 https://pubmed.ncbi.nlm.nih.gov/PMC9364309 https://doaj.org/article/c4861ed1a47741038aa3d330b8cd3e0f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaannoZ1u7lvuABO2xo1ciWLcnHpmuxS4thD6A3QZbkLcDqFHECbPv1IxU7W_a47GoJFsEHSIrUR4AXsg6F11KymouCEfoLq53nzHJtK1dKx30cnfBe3dzq15cEk1MOb2Fi076rp2ftl7uzdvo59lbe37nx0Cc2fnt9UQn0o7waj2CEseEvKXq8WBEUg_D-gQwXetyhkyLM0ZyaECTXjIb0iTLiomQb_ijC9v8t1vyzZfK3uml0R1cP4UEfR6bnK3p3YSu0e7DbW2qXvuzhpF89gpPJu_Pb03Qyt9-ndKeRotzR1_g0jspKv7K5_ZZSo2gXFo_h49Xlh4s3rB-RwByGWgumGppwmXtbZmhLHnOHKg8CvbpQoaldSYPkdS1CJhslK8etsrwJvLJ5QMPLnHgC2-2sDc8gxcAk5L7k3qmyUKqq0bWFXPNGa4lBikvgZGCUuV8hYZhYwRbarDhskMMmctjoBCbEy_VOQrGOH2bzT6aXpXGFllnwmcXzCvqRtcILwWvtvAi8SeBwkITpTaszVCkvSoK-SuD5ehmNgiodtg2zZdyDaa1QFe55uhLcmpJB8AmoDZFukLq5gnoYgbd7vUvgdBD-T7L-zYr9_z7oAHbyqLWEwHsI24v5MhzBqPPL43h3cBw1_wdOsADC |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VemgvUOiDUCip1AMVmHXixHaOLAVRFRBqqcTNcmynrARZtNmVoL--Y2-ydPu4cI0t2_E3oxl7xt8AfOCly6zknJSUZcSzv5DSWEo0lbowOTfUhtIJ38TZpfx06Gly8u4tTEjaN-Vgr76-2asHVyG38vbG9Lo8sd756UHB0I7SorcAT1FfKf3tkB6uVpj3Qmj7RIYy2WvQTHnW0dSnIXAqiS_Tx_LAjJLMWaRA3P8vb_PvpMk_IqfBIB0tP_JXXsBS64HG-9PmFXji6lVYaXW8ibdbIuqPL2Gn_3X_cjfuj_TPgb8NiVFi0ErZOBTZiu_ISN_HPsW0ceNX8P3o8OLgmLTFFYhBJ21MROVrY6ZW5wlqocVTR5E6hv4AE64qTe5L0MuSuYRXgheGaqFp5WihU4cqmxj2GhbrYe3WIEaXxqU2p9aIPBOiKNEoulTSSkqO7o2JYKfbYHU75dBQIfbNpJoioxAZFZBRMoK-x2DW0_Nfhw_D0Q_Vbp0ymeSJs4nG-TI_kNbMMkZLaSxztIpgo0NQtUrZKB9jz3JPmhXB-1kzqpOPkejaDSehDx6ImSiwz5sp4LOVdAITgZgThbmlzrcg7IGyu4U5gt1OaB6W9f-tWH_0RFvw7Pji9ESdfD778haep0HyPY_vBiyORxO3CQuNnbwLevMLNFEVVw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xISFegPExwgYEiQfQ5saJE9t5XLdVIGCa-JD2Zjm2MyqxtGpaCfbXc3aTQhl7gdf4FDv-3enOvsvvAF7yyuVWck4qynLi2V9IZSwlmkpdmoIbakPrhE_i5EweHXuanFWrr1C0b6rxoPl2MWjGX0Nt5fTCJH2dWHL64bBk6EdpmUxtnWzATbRZmv12UA_XK8xHIrT7TYYymbToqjzzaOZLETiVxLfqY0VgR0nXvFIg7_9bxHm1cPKP7GlwSqO7__E59-BOF4nGB0uRLbjhmvuw1dl6G7_qCKlfP4C94ceDs_14ONOXY38rEqPmoLeycWi2FX8nM_0j9qWmrZs_hC-j48-Hb0jXZIEYDNbmRNS-R2ZmdZGiNVo8fZSZYxgXMOHqyhS-Fb2smEt5LXhpqBaa1o6WOnNouqlhj2CzmTTuMcQY2rjMFtQaUeRClBU6R5dJWkvJMcwxEez1m6ymSy4NFXLgTKolOgrRUQEdJSMYehxWkp4HOzyYzM5Vt33K5JKnzqYa58v9i7RmljFaSWOZo3UEuz2KqjPOVvlce1548qwIXqyG0ax8rkQ3brIIMngwZqJEme0l6KuV9EoTgVhTh7Wlro8g9IG6u4M6gv1ecX4t6_qtePLPEz2HW6dHI_X-7cm7HbidBeX3dL67sDmfLdxT2Gjt4lkwnZ8lERfX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BRAX%2C+Brazilian+labeled+chest+x-ray+dataset&rft.jtitle=Scientific+data&rft.au=Reis%2C+Eduardo+P.&rft.au=de+Paiva%2C+Joselisa+P.+Q.&rft.au=da+Silva%2C+Maria+C.+B.&rft.au=Ribeiro%2C+Guilherme+A.+S.&rft.date=2022-08-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-022-01608-8&rft.externalDocID=10_1038_s41597_022_01608_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |