BRAX, Brazilian labeled chest x-ray dataset

Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key element...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data Vol. 9; no. 1; pp. 487 - 8
Main Authors: Reis, Eduardo P., de Paiva, Joselisa P. Q., da Silva, Maria C. B., Ribeiro, Guilherme A. S., Paiva, Victor F., Bulgarelli, Lucas, Lee, Henrique M. H., Santos, Paulo V., Brito, Vanessa M., Amaral, Lucas T. W., Beraldo, Gabriel L., Haidar Filho, Jorge N., Teles, Gustavo B. S., Szarf, Gilberto, Pollard, Tom, Johnson, Alistair E. W., Celi, Leo A., Amaro, Edson
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 10-08-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing. Measurement(s) Chest Radiography Technology Type(s) natural language processing Factor Type(s) radiological findings/labels Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment chest organ Sample Characteristic - Location Brazil
AbstractList Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.
Chest radiographs allow for the meticulous examination of a patient's chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.Chest radiographs allow for the meticulous examination of a patient's chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.
Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing. Measurement(s) Chest Radiography Technology Type(s) natural language processing Factor Type(s) radiological findings/labels Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment chest organ Sample Characteristic - Location Brazil
Measurement(s) Chest Radiography Technology Type(s) natural language processing Factor Type(s) radiological findings/labels Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment chest organ Sample Characteristic - Location Brazil
Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.Measurement(s)Chest RadiographyTechnology Type(s)natural language processingFactor Type(s)radiological findings/labelsSample Characteristic - OrganismHomo sapiensSample Characteristic - Environmentchest organSample Characteristic - LocationBrazil
ArticleNumber 487
Author de Paiva, Joselisa P. Q.
Szarf, Gilberto
Ribeiro, Guilherme A. S.
Haidar Filho, Jorge N.
Pollard, Tom
Paiva, Victor F.
Santos, Paulo V.
Beraldo, Gabriel L.
Brito, Vanessa M.
Bulgarelli, Lucas
da Silva, Maria C. B.
Amaral, Lucas T. W.
Reis, Eduardo P.
Lee, Henrique M. H.
Celi, Leo A.
Amaro, Edson
Teles, Gustavo B. S.
Johnson, Alistair E. W.
Author_xml – sequence: 1
  givenname: Eduardo P.
  orcidid: 0000-0001-5110-457X
  surname: Reis
  fullname: Reis, Eduardo P.
  email: eduardo.reis@einstein.br
  organization: Hospital Israelita Albert Einstein – Big Data Analytics, Hospital Israelita Albert Einstein – Imaging Department
– sequence: 2
  givenname: Joselisa P. Q.
  orcidid: 0000-0001-7487-397X
  surname: de Paiva
  fullname: de Paiva, Joselisa P. Q.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 3
  givenname: Maria C. B.
  surname: da Silva
  fullname: da Silva, Maria C. B.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 4
  givenname: Guilherme A. S.
  orcidid: 0000-0002-2230-9573
  surname: Ribeiro
  fullname: Ribeiro, Guilherme A. S.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 5
  givenname: Victor F.
  surname: Paiva
  fullname: Paiva, Victor F.
  organization: Hospital Israelita Albert Einstein – Big Data Analytics
– sequence: 6
  givenname: Lucas
  orcidid: 0000-0001-5456-2170
  surname: Bulgarelli
  fullname: Bulgarelli, Lucas
  organization: Massachusetts Institute of Technology – Laboratory for Computational Physiology
– sequence: 7
  givenname: Henrique M. H.
  orcidid: 0000-0002-1266-0095
  surname: Lee
  fullname: Lee, Henrique M. H.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 8
  givenname: Paulo V.
  orcidid: 0000-0002-8267-7562
  surname: Santos
  fullname: Santos, Paulo V.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 9
  givenname: Vanessa M.
  surname: Brito
  fullname: Brito, Vanessa M.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 10
  givenname: Lucas T. W.
  surname: Amaral
  fullname: Amaral, Lucas T. W.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 11
  givenname: Gabriel L.
  surname: Beraldo
  fullname: Beraldo, Gabriel L.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 12
  givenname: Jorge N.
  surname: Haidar Filho
  fullname: Haidar Filho, Jorge N.
  organization: Hospital Israelita Albert Einstein – Big Data Analytics
– sequence: 13
  givenname: Gustavo B. S.
  surname: Teles
  fullname: Teles, Gustavo B. S.
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 14
  givenname: Gilberto
  surname: Szarf
  fullname: Szarf, Gilberto
  organization: Hospital Israelita Albert Einstein – Imaging Department
– sequence: 15
  givenname: Tom
  orcidid: 0000-0002-5676-7898
  surname: Pollard
  fullname: Pollard, Tom
  organization: Massachusetts Institute of Technology – Laboratory for Computational Physiology
– sequence: 16
  givenname: Alistair E. W.
  orcidid: 0000-0002-8735-3014
  surname: Johnson
  fullname: Johnson, Alistair E. W.
  organization: The Hospital for Sick Children – Peter Gilgan Centre for Research and Learning
– sequence: 17
  givenname: Leo A.
  surname: Celi
  fullname: Celi, Leo A.
  organization: Massachusetts Institute of Technology – Laboratory for Computational Physiology, Beth Israel Deaconess Medical Center – Department of Medicine, Harvard T.H. Chan School of Public Health – Department of Biostatistics
– sequence: 18
  givenname: Edson
  orcidid: 0000-0002-5889-1382
  surname: Amaro
  fullname: Amaro, Edson
  organization: Hospital Israelita Albert Einstein – Big Data Analytics, Hospital Israelita Albert Einstein – Imaging Department
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35948551$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1UREvpF-CAInFBgsA4Y8f2Bamt-FOpEhICiZs1cSbbrLJJsbOI8unxNqW0HDjZ8vzmjd-8x2JvnEYW4qmE1xLQvklKamdKqKoSZA22tA_EQQW6KpWqce_OfV8cpbQGAIkKtIFHYh-1U1ZreSBennw-_vaqOIn0qx96GouBGh64LcIFp7n4WUa6KlqaKfH8RDzsaEh8dHMeiq_v3305_Vief_pwdnp8XgatYC5NBzLPbklLlK41tXUVo60ADXdN0FJKtA2yrDtTuwBkCDoGRxXXaGXAQ3G26LYTrf1l7DcUr_xEvb9-mOLKU5z7MLAPytaSW0nKGLXbCxG2iNDY0CJDl7XeLlqX22bDbeBxjjTcE71fGfsLv5p-eIe1QnBZ4MWNQJy-b_NO_KZPgYeBRp62yVcmuzVonMzo83_Q9bSNY17VjgKlwZkdVS1UiFNKkbvbz0jwOwt-idbnaP11tN7mpmd3bdy2_AkyA7gAKZfGFce_s_8j-xuc5az0
CitedBy_id crossref_primary_10_1016_j_bspc_2023_104855
crossref_primary_10_1055_a_2234_8268
crossref_primary_10_1007_s11914_023_00845_z
crossref_primary_10_3390_diagnostics13020216
crossref_primary_10_1007_s00330_024_10769_6
crossref_primary_10_1109_JBHI_2024_3372999
Cites_doi 10.1006/jbin.2001.1029
10.3389/fninf.2013.00045
10.1148/radiol.2413051535
10.1038/s41746-020-00369-1
10.1016/j.artmed.2021.102075
10.1001/jama.2020.12067
10.1371/journal.pone.0204155
10.1016/j.media.2020.101797
10.1016/S2589-7500(19)30123-2
10.13026/grwk-yh18
10.1016/j.clinimag.2017.11.007
10.1016/j.nic.2020.08.008
10.1016/j.artmed.2020.101878
10.1038/s41597-019-0322-0
10.1609/aaai.v33i01.3301590
10.1161/01.CIR.101.23.e215
10.1109/CVPR.2017.369
10.36416/1806-3756/e20200595
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41597-022-01608-8
DatabaseName Springer Nature OA Free Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 8
ExternalDocumentID oai_doaj_org_article_c4861ed1a47741038aa3d330b8cd3e0f
10_1038_s41597_022_01608_8
35948551
Genre Dataset
Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GrantInformation_xml – fundername: The creation of the BRAX dataset was funded by the MIT-Brazil TVML Seed Fund award (project "Developing a Publicly Accessible Brazilian Dataset of Chest X-Rays”).
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: NIBIB R01 grant EB017205
  funderid: https://doi.org/10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R56 EB017205
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: NIBIB R01 grant EB017205
– fundername: NIBIB NIH HHS
  grantid: R01 EB030362
– fundername: NIBIB NIH HHS
  grantid: R01 EB017205
– fundername: ;
– fundername: ;
  grantid: NIBIB R01 grant EB017205
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-7f01052da51319d76892e382037efbc511138b3e16f769c0a7a0fe09a2e6381c3
IEDL.DBID RPM
ISSN 2052-4463
IngestDate Tue Oct 22 15:11:25 EDT 2024
Tue Sep 17 21:07:48 EDT 2024
Sat Oct 26 04:05:19 EDT 2024
Fri Nov 08 20:51:04 EST 2024
Thu Nov 21 21:04:42 EST 2024
Sat Nov 02 12:03:09 EDT 2024
Fri Oct 11 20:50:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-7f01052da51319d76892e382037efbc511138b3e16f769c0a7a0fe09a2e6381c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0001-7487-397X
0000-0002-2230-9573
0000-0001-5110-457X
0000-0002-5889-1382
0000-0002-1266-0095
0000-0002-8267-7562
0000-0001-5456-2170
0000-0002-5676-7898
0000-0002-8735-3014
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364309/
PMID 35948551
PQID 2700450971
PQPubID 2041912
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_c4861ed1a47741038aa3d330b8cd3e0f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364309
proquest_miscellaneous_2701073791
proquest_journals_2700450971
crossref_primary_10_1038_s41597_022_01608_8
pubmed_primary_35948551
springer_journals_10_1038_s41597_022_01608_8
PublicationCentury 2000
PublicationDate 2022-08-10
PublicationDateYYYYMMDD 2022-08-10
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Monshi, Poon, Chung (CR9) 2020; 106
McAdams, Samei, Dobbins, Tourassi, Ravin (CR1) 2006; 241
Jaeger (CR18) 2014; 4
Mayo, Leung (CR23) 2018; 49
Reis (CR21) 2022
CR17
Lee (CR5) 2021; 4
CR12
CR30
Singh (CR2) 2018; 13
Chapman, Bridewell, Hanbury, Cooper, Buchanan (CR28) 2001; 34
Endo, Krishnan, Krishna, Ng, Rajpurkar (CR11) 2021; 158
CR4
CR3
CR6
Bustos, Pertusa, Salinas, de la Iglesia-Vayá (CR16) 2020; 66
CR29
Kaushal, Altman, Langlotz (CR15) 2020; 324
CR27
CR25
CR24
CR22
Letourneau-Guillon, Camirand, Guilbert, Forghani (CR7) 2020; 30
Shih (CR14) 2019; 1
Liu (CR8) 2019; 1
Babar, van Laarhoven, Zanzotto, Marchiori (CR10) 2021; 116
Johnson (CR19) 2019; 6
CR20
Lowekamp, Chen, Ibáñez, Blezek (CR26) 2013; 7
Tsai (CR13) 2021; 299
1608_CR6
G Shih (1608_CR14) 2019; 1
S Jaeger (1608_CR18) 2014; 4
1608_CR3
1608_CR4
1608_CR17
L Letourneau-Guillon (1608_CR7) 2020; 30
1608_CR12
1608_CR20
R Singh (1608_CR2) 2018; 13
HP McAdams (1608_CR1) 2006; 241
M Endo (1608_CR11) 2021; 158
RC Mayo (1608_CR23) 2018; 49
X Liu (1608_CR8) 2019; 1
Z Babar (1608_CR10) 2021; 116
1608_CR29
WW Chapman (1608_CR28) 2001; 34
1608_CR25
1608_CR27
EH Lee (1608_CR5) 2021; 4
EB Tsai (1608_CR13) 2021; 299
1608_CR22
1608_CR24
BC Lowekamp (1608_CR26) 2013; 7
A Kaushal (1608_CR15) 2020; 324
1608_CR30
MMA Monshi (1608_CR9) 2020; 106
AEW Johnson (1608_CR19) 2019; 6
EP Reis (1608_CR21) 2022
A Bustos (1608_CR16) 2020; 66
References_xml – volume: 34
  start-page: 301
  year: 2001
  end-page: 310
  ident: CR28
  article-title: A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries
  publication-title: Journal of Biomedical Informatics
  doi: 10.1006/jbin.2001.1029
  contributor:
    fullname: Buchanan
– ident: CR22
– volume: 7
  start-page: 45
  year: 2013
  ident: CR26
  article-title: The Design of SimpleITK
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2013.00045
  contributor:
    fullname: Blezek
– ident: CR4
– volume: 241
  start-page: 663
  year: 2006
  end-page: 683
  ident: CR1
  article-title: Recent Advances in Chest Radiography
  publication-title: Radiology
  doi: 10.1148/radiol.2413051535
  contributor:
    fullname: Ravin
– volume: 4
  year: 2021
  ident: CR5
  article-title: Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
  publication-title: npj Digital Medicine
  doi: 10.1038/s41746-020-00369-1
  contributor:
    fullname: Lee
– volume: 116
  start-page: 102075
  year: 2021
  ident: CR10
  article-title: Evaluating diagnostic content of AI-generated radiology reports of chest X-rays
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102075
  contributor:
    fullname: Marchiori
– volume: 324
  start-page: 1212
  year: 2020
  ident: CR15
  article-title: Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms
  publication-title: JAMA
  doi: 10.1001/jama.2020.12067
  contributor:
    fullname: Langlotz
– volume: 4
  start-page: 475
  year: 2014
  end-page: 7
  ident: CR18
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant Imaging Med Surg
  contributor:
    fullname: Jaeger
– ident: CR12
– ident: CR30
– volume: 13
  start-page: e0204155
  year: 2018
  ident: CR2
  article-title: Deep learning in chest radiography: Detection of findings and presence of change
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204155
  contributor:
    fullname: Singh
– ident: CR6
– ident: CR29
– ident: CR25
– volume: 66
  start-page: 101797
  year: 2020
  ident: CR16
  article-title: PadChest: A large chest x-ray image dataset with multi-label annotated reports
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101797
  contributor:
    fullname: de la Iglesia-Vayá
– ident: CR27
– volume: 1
  start-page: e271
  year: 2019
  end-page: e297
  ident: CR8
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30123-2
  contributor:
    fullname: Liu
– volume: 158
  start-page: 209
  year: 2021
  end-page: 219
  ident: CR11
  article-title: Retrieval-Based Chest X-Ray Report Generation Using a Pre-trained Contrastive Language-Image Model
  publication-title: Proceedings of Machine Learning Research
  contributor:
    fullname: Rajpurkar
– year: 2022
  ident: CR21
  publication-title: PhysioNet
  doi: 10.13026/grwk-yh18
  contributor:
    fullname: Reis
– volume: 299
  start-page: E204
  year: 2021
  end-page: E213
  ident: CR13
  article-title: The RSNA International COVID-19 Open
  publication-title: Radiology Database (RICORD). Radiology
  contributor:
    fullname: Tsai
– volume: 49
  start-page: 87
  year: 2018
  end-page: 88
  ident: CR23
  article-title: Artificial intelligence and deep learning – Radiology’s next frontier?
  publication-title: Clinical Imaging
  doi: 10.1016/j.clinimag.2017.11.007
  contributor:
    fullname: Leung
– ident: CR3
– volume: 30
  start-page: e1
  year: 2020
  end-page: e15
  ident: CR7
  article-title: Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2020.08.008
  contributor:
    fullname: Forghani
– ident: CR17
– volume: 106
  start-page: 101878
  year: 2020
  ident: CR9
  article-title: Deep learning in generating radiology reports: A survey
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101878
  contributor:
    fullname: Chung
– volume: 1
  start-page: e180041
  year: 2019
  ident: CR14
  article-title: Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia
  publication-title: Radiology: Artificial Intelligence
  contributor:
    fullname: Shih
– ident: CR24
– volume: 6
  year: 2019
  ident: CR19
  article-title: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0322-0
  contributor:
    fullname: Johnson
– ident: CR20
– ident: 1608_CR20
– ident: 1608_CR12
  doi: 10.1609/aaai.v33i01.3301590
– volume: 241
  start-page: 663
  year: 2006
  ident: 1608_CR1
  publication-title: Radiology
  doi: 10.1148/radiol.2413051535
  contributor:
    fullname: HP McAdams
– year: 2022
  ident: 1608_CR21
  doi: 10.13026/grwk-yh18
  contributor:
    fullname: EP Reis
– volume: 1
  start-page: e180041
  year: 2019
  ident: 1608_CR14
  publication-title: Radiology: Artificial Intelligence
  contributor:
    fullname: G Shih
– ident: 1608_CR24
– volume: 4
  start-page: 475
  year: 2014
  ident: 1608_CR18
  publication-title: Quant Imaging Med Surg
  contributor:
    fullname: S Jaeger
– ident: 1608_CR22
  doi: 10.1161/01.CIR.101.23.e215
– volume: 49
  start-page: 87
  year: 2018
  ident: 1608_CR23
  publication-title: Clinical Imaging
  doi: 10.1016/j.clinimag.2017.11.007
  contributor:
    fullname: RC Mayo
– volume: 30
  start-page: e1
  year: 2020
  ident: 1608_CR7
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2020.08.008
  contributor:
    fullname: L Letourneau-Guillon
– volume: 299
  start-page: E204
  year: 2021
  ident: 1608_CR13
  publication-title: Radiology Database (RICORD). Radiology
  contributor:
    fullname: EB Tsai
– volume: 324
  start-page: 1212
  year: 2020
  ident: 1608_CR15
  publication-title: JAMA
  doi: 10.1001/jama.2020.12067
  contributor:
    fullname: A Kaushal
– ident: 1608_CR3
– ident: 1608_CR17
  doi: 10.1109/CVPR.2017.369
– ident: 1608_CR25
– volume: 13
  start-page: e0204155
  year: 2018
  ident: 1608_CR2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204155
  contributor:
    fullname: R Singh
– volume: 4
  year: 2021
  ident: 1608_CR5
  publication-title: npj Digital Medicine
  doi: 10.1038/s41746-020-00369-1
  contributor:
    fullname: EH Lee
– volume: 7
  start-page: 45
  year: 2013
  ident: 1608_CR26
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2013.00045
  contributor:
    fullname: BC Lowekamp
– volume: 6
  year: 2019
  ident: 1608_CR19
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0322-0
  contributor:
    fullname: AEW Johnson
– volume: 66
  start-page: 101797
  year: 2020
  ident: 1608_CR16
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101797
  contributor:
    fullname: A Bustos
– volume: 106
  start-page: 101878
  year: 2020
  ident: 1608_CR9
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101878
  contributor:
    fullname: MMA Monshi
– volume: 116
  start-page: 102075
  year: 2021
  ident: 1608_CR10
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102075
  contributor:
    fullname: Z Babar
– volume: 158
  start-page: 209
  year: 2021
  ident: 1608_CR11
  publication-title: Proceedings of Machine Learning Research
  contributor:
    fullname: M Endo
– ident: 1608_CR30
  doi: 10.36416/1806-3756/e20200595
– ident: 1608_CR27
– volume: 1
  start-page: e271
  year: 2019
  ident: 1608_CR8
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30123-2
  contributor:
    fullname: X Liu
– ident: 1608_CR29
– volume: 34
  start-page: 301
  year: 2001
  ident: 1608_CR28
  publication-title: Journal of Biomedical Informatics
  doi: 10.1006/jbin.2001.1029
  contributor:
    fullname: WW Chapman
– ident: 1608_CR6
– ident: 1608_CR4
SSID ssj0001340570
Score 2.3520648
Snippet Chest radiographs allow for the meticulous examination of a patient’s chest but demands specialized training for proper interpretation. Automated analysis of...
Chest radiographs allow for the meticulous examination of a patient's chest but demands specialized training for proper interpretation. Automated analysis of...
Measurement(s) Chest Radiography Technology Type(s) natural language processing Factor Type(s) radiological findings/labels Sample Characteristic - Organism...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 487
SubjectTerms 692/53/2421
692/699/1785
692/700/1421/1770
Algorithms
Brazil
Chest
Data Descriptor
Datasets
Humanities and Social Sciences
Humans
Language
multidisciplinary
Natural Language Processing
Patients
Radiography
Radiography, Thoracic
Radiology
Science
Science (multidisciplinary)
X-Rays
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB3RPXGpSkvbwBYFiUOrXQsnThznyAIrThyglfZmObajcglosyvR_npmnGzo9kNceo0dafTGk5nxTN4AnMjKZ05JySouMkbsL6yyjjPDlSltLi13YXTCbXG9UBeXRJMzjPqinrCOHrgD7tRmSibeJSbDQIXYvI0RDpPwSlknPK_D15fLX5KpcLsiKBDh_V8y-NZpi56KiEdT6kSQXDG15YkCYf_fosw_myV_q5gGRzR_A6_7CDI-6yTfgx3fvIW93kbb-HNPJP3lHUxmN2eLaTxbmp93dJsRo8bRy7g4DMmKH9nS_IipRbT1q334Nr_8en7F-uEIzGKQtWJFTbMtU2fyBK3IYdZQpl6gPxeFryub0wh5VQmfyLqQpeWmMLz2vDSpR5NLrHgPo-a-8R8hxpDEpy7nzhY5olxW6NR8qnitlMTwxEYw2QClHzoODB1q10LpDlaNsOoAq1YRzAjLYSfxV4cHqFXda1W_pNUIxhtN6N6oWk018iwn0qsIjodlNAeqcZjG36_DHkxoRVHing-d4gZJRB6ocHCl2FLplqjbK83d90C5XQqM3HgZwXSj_Gex_g3Fwf-A4hB203BqiYZ3DKPVcu0_wavWrY_CmX8Cn7f_LA
  priority: 102
  providerName: Directory of Open Access Journals
Title BRAX, Brazilian labeled chest x-ray dataset
URI https://link.springer.com/article/10.1038/s41597-022-01608-8
https://www.ncbi.nlm.nih.gov/pubmed/35948551
https://www.proquest.com/docview/2700450971
https://www.proquest.com/docview/2701073791
https://pubmed.ncbi.nlm.nih.gov/PMC9364309
https://doaj.org/article/c4861ed1a47741038aa3d330b8cd3e0f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaannoZ1u7lvuABO2xo1ciWLcnHpmuxS4thD6A3QZbkLcDqFHECbPv1IxU7W_a47GoJFsEHSIrUR4AXsg6F11KymouCEfoLq53nzHJtK1dKx30cnfBe3dzq15cEk1MOb2Fi076rp2ftl7uzdvo59lbe37nx0Cc2fnt9UQn0o7waj2CEseEvKXq8WBEUg_D-gQwXetyhkyLM0ZyaECTXjIb0iTLiomQb_ijC9v8t1vyzZfK3uml0R1cP4UEfR6bnK3p3YSu0e7DbW2qXvuzhpF89gpPJu_Pb03Qyt9-ndKeRotzR1_g0jspKv7K5_ZZSo2gXFo_h49Xlh4s3rB-RwByGWgumGppwmXtbZmhLHnOHKg8CvbpQoaldSYPkdS1CJhslK8etsrwJvLJ5QMPLnHgC2-2sDc8gxcAk5L7k3qmyUKqq0bWFXPNGa4lBikvgZGCUuV8hYZhYwRbarDhskMMmctjoBCbEy_VOQrGOH2bzT6aXpXGFllnwmcXzCvqRtcILwWvtvAi8SeBwkITpTaszVCkvSoK-SuD5ehmNgiodtg2zZdyDaa1QFe55uhLcmpJB8AmoDZFukLq5gnoYgbd7vUvgdBD-T7L-zYr9_z7oAHbyqLWEwHsI24v5MhzBqPPL43h3cBw1_wdOsADC
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VemgvUOiDUCip1AMVmHXixHaOLAVRFRBqqcTNcmynrARZtNmVoL--Y2-ydPu4cI0t2_E3oxl7xt8AfOCly6zknJSUZcSzv5DSWEo0lbowOTfUhtIJ38TZpfx06Gly8u4tTEjaN-Vgr76-2asHVyG38vbG9Lo8sd756UHB0I7SorcAT1FfKf3tkB6uVpj3Qmj7RIYy2WvQTHnW0dSnIXAqiS_Tx_LAjJLMWaRA3P8vb_PvpMk_IqfBIB0tP_JXXsBS64HG-9PmFXji6lVYaXW8ibdbIuqPL2Gn_3X_cjfuj_TPgb8NiVFi0ErZOBTZiu_ISN_HPsW0ceNX8P3o8OLgmLTFFYhBJ21MROVrY6ZW5wlqocVTR5E6hv4AE64qTe5L0MuSuYRXgheGaqFp5WihU4cqmxj2GhbrYe3WIEaXxqU2p9aIPBOiKNEoulTSSkqO7o2JYKfbYHU75dBQIfbNpJoioxAZFZBRMoK-x2DW0_Nfhw_D0Q_Vbp0ymeSJs4nG-TI_kNbMMkZLaSxztIpgo0NQtUrZKB9jz3JPmhXB-1kzqpOPkejaDSehDx6ImSiwz5sp4LOVdAITgZgThbmlzrcg7IGyu4U5gt1OaB6W9f-tWH_0RFvw7Pji9ESdfD778haep0HyPY_vBiyORxO3CQuNnbwLevMLNFEVVw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xISFegPExwgYEiQfQ5saJE9t5XLdVIGCa-JD2Zjm2MyqxtGpaCfbXc3aTQhl7gdf4FDv-3enOvsvvAF7yyuVWck4qynLi2V9IZSwlmkpdmoIbakPrhE_i5EweHXuanFWrr1C0b6rxoPl2MWjGX0Nt5fTCJH2dWHL64bBk6EdpmUxtnWzATbRZmv12UA_XK8xHIrT7TYYymbToqjzzaOZLETiVxLfqY0VgR0nXvFIg7_9bxHm1cPKP7GlwSqO7__E59-BOF4nGB0uRLbjhmvuw1dl6G7_qCKlfP4C94ceDs_14ONOXY38rEqPmoLeycWi2FX8nM_0j9qWmrZs_hC-j48-Hb0jXZIEYDNbmRNS-R2ZmdZGiNVo8fZSZYxgXMOHqyhS-Fb2smEt5LXhpqBaa1o6WOnNouqlhj2CzmTTuMcQY2rjMFtQaUeRClBU6R5dJWkvJMcwxEez1m6ymSy4NFXLgTKolOgrRUQEdJSMYehxWkp4HOzyYzM5Vt33K5JKnzqYa58v9i7RmljFaSWOZo3UEuz2KqjPOVvlce1548qwIXqyG0ax8rkQ3brIIMngwZqJEme0l6KuV9EoTgVhTh7Wlro8g9IG6u4M6gv1ecX4t6_qtePLPEz2HW6dHI_X-7cm7HbidBeX3dL67sDmfLdxT2Gjt4lkwnZ8lERfX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BRAX%2C+Brazilian+labeled+chest+x-ray+dataset&rft.jtitle=Scientific+data&rft.au=Reis%2C+Eduardo+P.&rft.au=de+Paiva%2C+Joselisa+P.+Q.&rft.au=da+Silva%2C+Maria+C.+B.&rft.au=Ribeiro%2C+Guilherme+A.+S.&rft.date=2022-08-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-022-01608-8&rft.externalDocID=10_1038_s41597_022_01608_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon