Localization-adjusted diagnostic performance and assistance effect of a computer-aided detection system for pneumothorax and consolidation

While many deep-learning-based computer-aided detection systems (CAD) have been developed and commercialized for abnormality detection in chest radiographs (CXR), their ability to localize a target abnormality is rarely reported. Localization accuracy is important in terms of model interpretability,...

Full description

Saved in:
Bibliographic Details
Published in:NPJ digital medicine Vol. 5; no. 1; pp. 107 - 11
Main Authors: Lee, Sun Yeop, Ha, Sangwoo, Jeon, Min Gyeong, Li, Hao, Choi, Hyunju, Kim, Hwa Pyung, Choi, Ye Ra, I, Hoseok, Jeong, Yeon Joo, Park, Yoon Ha, Ahn, Hyemin, Hong, Sang Hyup, Koo, Hyun Jung, Lee, Choong Wook, Kim, Min Jae, Kim, Yeon Joo, Kim, Kyung Won, Choi, Jong Mun
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30-07-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While many deep-learning-based computer-aided detection systems (CAD) have been developed and commercialized for abnormality detection in chest radiographs (CXR), their ability to localize a target abnormality is rarely reported. Localization accuracy is important in terms of model interpretability, which is crucial in clinical settings. Moreover, diagnostic performances are likely to vary depending on thresholds which define an accurate localization. In a multi-center, stand-alone clinical trial using temporal and external validation datasets of 1,050 CXRs, we evaluated localization accuracy, localization-adjusted discrimination, and calibration of a commercially available deep-learning-based CAD for detecting consolidation and pneumothorax. The CAD achieved image-level AUROC (95% CI) of 0.960 (0.945, 0.975), sensitivity of 0.933 (0.899, 0.959), specificity of 0.948 (0.930, 0.963), dice of 0.691 (0.664, 0.718), moderate calibration for consolidation, and image-level AUROC of 0.978 (0.965, 0.991), sensitivity of 0.956 (0.923, 0.978), specificity of 0.996 (0.989, 0.999), dice of 0.798 (0.770, 0.826), moderate calibration for pneumothorax. Diagnostic performances varied substantially when localization accuracy was accounted for but remained high at the minimum threshold of clinical relevance. In a separate trial for diagnostic impact using 461 CXRs, the causal effect of the CAD assistance on clinicians’ diagnostic performances was estimated. After adjusting for age, sex, dataset, and abnormality type, the CAD improved clinicians’ diagnostic performances on average (OR [95% CI] = 1.73 [1.30, 2.32]; p  < 0.001), although the effects varied substantially by clinical backgrounds. The CAD was found to have high stand-alone diagnostic performances and may beneficially impact clinicians’ diagnostic performances when used in clinical settings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2398-6352
2398-6352
DOI:10.1038/s41746-022-00658-x