A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects
Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping b...
Saved in:
Published in: | Scientific reports Vol. 11; no. 1; pp. 34 - 12 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
08-01-2021
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD. |
---|---|
AbstractList | Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD. Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD. Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD. |
ArticleNumber | 34 |
Author | Park, Eun-Kee Kwon, Sung Ok Bak, So Hyeon Chae, Kum Ju Choi, Sanghun Lee, Chang Hyun Ho, Thao Thi Kim, Taewoo Kim, Woo Jin Jin, Gong Yong |
Author_xml | – sequence: 1 givenname: Thao Thi surname: Ho fullname: Ho, Thao Thi organization: School of Mechanical Engineering, Kyungpook National University – sequence: 2 givenname: Taewoo surname: Kim fullname: Kim, Taewoo organization: School of Mechanical Engineering, Kyungpook National University – sequence: 3 givenname: Woo Jin surname: Kim fullname: Kim, Woo Jin organization: Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University – sequence: 4 givenname: Chang Hyun surname: Lee fullname: Lee, Chang Hyun organization: Department of Radiology, College of Medicine, Seoul National University, Seoul National University Hospital, Department of Radiology, College of Medicine, The University of Iowa – sequence: 5 givenname: Kum Ju surname: Chae fullname: Chae, Kum Ju organization: Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University–Biomedical Research Institute of Jeonbuk National University Hospital – sequence: 6 givenname: So Hyeon surname: Bak fullname: Bak, So Hyeon organization: Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine – sequence: 7 givenname: Sung Ok surname: Kwon fullname: Kwon, Sung Ok organization: Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University – sequence: 8 givenname: Gong Yong surname: Jin fullname: Jin, Gong Yong organization: Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University–Biomedical Research Institute of Jeonbuk National University Hospital – sequence: 9 givenname: Eun-Kee surname: Park fullname: Park, Eun-Kee organization: Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University – sequence: 10 givenname: Sanghun surname: Choi fullname: Choi, Sanghun email: s-choi@knu.ac.kr organization: School of Mechanical Engineering, Kyungpook National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33420092$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctO3TAQhq0KVCjlBbqoLHVt8D3xphIKLUVC0AXt1vJxxoccJXFq51Dx9jWE66bejO3555sZ_R_QzhhHQOgTo0eMivo4S6ZMTSinpDJCaKLeoX1OpSJccL7z6r6HDnPe0HIUN5KZ92hPCMkpNXwf_T7B4pQ0l5d4iC30-G833-DmmqxchhZPLrkB5tR5nCBPccyABzdN3bjGISbse5dzF-7u383Vz1Oct6sN-Dl_RLvB9RkOH-MB-vX923Xzg1xcnZ03JxfEK0lnojmANN4HL4FKUSkBNejAvNHMMEVD4N5LBcZr42vDtJHStVxoB54WoThA5wu3jW5jp9QNLt3Z6Dr78BHT2ro0d74Hq7n0q9ZJx5iX2rma1wXHaCVlYNLowvq6sKbtaoDWwzgn17-Bvs2M3Y1dx1tbVWUsTgvgyyMgxT9byLPdxG0ay_6Wy0pzxYuoqPii8inmnCA8d2DU3ltrF2ttsdY-WGtVKfr8erbnkicji0AsglxS4xrSS-__YP8BImWvRA |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_155812 crossref_primary_10_1016_j_imed_2021_06_004 crossref_primary_10_1097_MCP_0000000000001046 crossref_primary_10_1016_j_compbiomed_2024_108464 crossref_primary_10_2196_30066 crossref_primary_10_1007_s11709_024_1040_z crossref_primary_10_1109_LSENS_2023_3326118 crossref_primary_10_1016_j_cmpb_2024_108061 crossref_primary_10_1007_s11517_024_03119_7 crossref_primary_10_1097_RTI_0000000000000683 crossref_primary_10_1007_s11517_022_02589_x crossref_primary_10_1109_JBHI_2023_3328343 crossref_primary_10_1016_j_compbiomed_2023_106612 crossref_primary_10_1109_ACCESS_2022_3179577 crossref_primary_10_1148_radiol_222998 crossref_primary_10_1016_j_rmr_2023_12_001 crossref_primary_10_1016_j_compbiomed_2021_105162 crossref_primary_10_1002_acm2_14171 crossref_primary_10_1016_j_bbe_2023_06_004 crossref_primary_10_1186_s12931_023_02611_2 crossref_primary_10_1038_s41598_021_93980_5 crossref_primary_10_1109_TASLP_2024_3393743 crossref_primary_10_3390_diagnostics12123034 crossref_primary_10_1007_s11042_023_16066_6 crossref_primary_10_1016_j_measen_2024_101234 crossref_primary_10_3390_app112311229 crossref_primary_10_1016_j_cmpb_2023_107356 crossref_primary_10_2174_1574893618666230206121127 crossref_primary_10_4018_IJITSA_324760 crossref_primary_10_1038_s41598_023_28082_5 crossref_primary_10_1007_s11517_024_03016_z crossref_primary_10_1016_j_bspc_2023_104916 crossref_primary_10_1016_j_acra_2021_09_007 crossref_primary_10_1111_1440_1681_13822 crossref_primary_10_1016_j_jii_2022_100386 crossref_primary_10_2478_pneum_2024_0003 crossref_primary_10_1109_TIM_2023_3256468 |
Cites_doi | 10.1164/rccm.201705-0860OC 10.3348/kjr.2017.18.4.739 10.1117/1.JMI.5.2.024003 10.1016/j.media.2017.07.005 10.1118/1.3193526 10.1109/ACCESS.2019.2920980 10.1148/radiol.12111270 10.1148/radiol.2018180547 10.1146/annurev-bioeng-071516-044442 10.1038/s41568-018-0016-5 10.1073/pnas.1715564115 10.1152/japplphysiol.00372.2012 10.1164/rccm.201709-1879ED 10.1164/rccm.201402-0256PP 10.1109/ACCESS.2020.2974617 10.7189/jogh.05.020415 10.1145/3065386 10.1038/nature14539 10.1016/j.acra.2013.01.019 10.1136/bmjresp-2017-000252 10.1378/chest.08-1750 10.1016/j.jaci.2016.11.053 10.1164/rccm.201103-0405PP 10.1088/1361-6560/ab857d 10.1111/resp.12611 10.1038/nm.2971 10.1152/japplphysiol.00113.2013 10.1183/13993003.00041-2016 10.1183/09031936.98.12051020 10.1109/CVPR.2017.243 10.1109/CVPR.2016.90 10.1109/CVPR.2016.319 10.1038/s41598-016-0028-x 10.1109/CVPR.2016.308 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 5PM DOA |
DOI | 10.1038/s41598-020-79336-5 |
DatabaseName | Springer_OA刊 PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Journals (ProQuest Database) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_624cbda4a11c46aa82869410744f1496 10_1038_s41598_020_79336_5 33420092 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) grantid: NRF-2020R1F1A1069853 – fundername: the Korea Ministry of Environment (MOE) as “The Environmental Health Action Program” grantid: 2018001360004; 2018001360001 – fundername: ; grantid: NRF-2020R1F1A1069853 – fundername: ; grantid: 2018001360004; 2018001360001 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI Q9U 5PM |
ID | FETCH-LOGICAL-c540t-62ee49ccfc4e043753e8e6f1c9619150ff2cc45e9c69c8916944ad236aec0e6f3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:14:30 EDT 2024 Tue Sep 17 21:12:49 EDT 2024 Sat Nov 09 07:06:06 EST 2024 Fri Aug 23 01:03:16 EDT 2024 Wed Oct 16 00:42:29 EDT 2024 Fri Oct 11 20:52:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-62ee49ccfc4e043753e8e6f1c9619150ff2cc45e9c69c8916944ad236aec0e6f3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794420/ |
PMID | 33420092 |
PQID | 2476252203 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_624cbda4a11c46aa82869410744f1496 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7794420 proquest_journals_2476252203 crossref_primary_10_1038_s41598_020_79336_5 pubmed_primary_33420092 springer_journals_10_1038_s41598_020_79336_5 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-08 |
PublicationDateYYYYMMDD | 2021-01-08 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Karayama (CR35) 2017; 7 Du (CR18) 2020; 8 Krizhevsky, Sutskever, Hinton (CR42) 2017; 60 Agusti, Vestbo (CR3) 2011; 184 CR16 CR15 Kohansal, Soriano, Agusti (CR7) 2009; 135 Monkam (CR34) 2019; 7 Sheikh, Coxson, Parraga (CR29) 2016; 21 Ian Goodfellow (CR41) 2016 Feragen (CR19) 2013; 23 Choi (CR22) 2013; 115 Shen, Wu, Suk (CR10) 2017; 19 Bodduluri, Newell, Hoffman, Reinhardt (CR20) 2013; 20 Coxson, Leipsic, Parraga, Sin (CR6) 2014; 190 Gorbunova (CR9) 2008; 11 Gonzalez (CR17) 2018; 197 Hackx, Bankier, Gevenois (CR28) 2012; 265 Choi (CR40) 2017; 140 Xu (CR27) 2020; 65 Gorbunova (CR8) 2010; 13 Choi (CR21) 2017; 4 CR2 Kim, Jin, Li, Lee, Shin (CR37) 2017; 18 Yann LeCun (CR14) 2015; 521 Soffer (CR13) 2019; 290 Cao, Ding, Christense, Reinhardt (CR33) 2010; 7623 Ostridge, Wilkinson (CR30) 2016; 48 CR26 Pare, Nagano, Coxson (CR31) 2012; 113 Adeloye (CR1) 2015; 5 Litjens (CR11) 2017; 42 CR25 Smith (CR36) 2018; 115 CR24 Galban (CR4) 2012; 18 Labaki, M.K.H. (CR5) 2018; 197 CR23 Eppenhof, Pluim (CR32) 2018; 5 Yin, Hoffman, Lin (CR38) 2009; 36 Hosny, Parmar, Quackenbush, Schwartz, Aerts (CR12) 2018; 18 Gevenois (CR39) 1998; 12 YB Ian Goodfellow (79336_CR41) 2016 79336_CR16 A Feragen (79336_CR19) 2013; 23 79336_CR15 S Soffer (79336_CR13) 2019; 290 K Sheikh (79336_CR29) 2016; 21 A Krizhevsky (79336_CR42) 2017; 60 S Choi (79336_CR22) 2013; 115 Y Yin (79336_CR38) 2009; 36 SS Kim (79336_CR37) 2017; 18 D Shen (79336_CR10) 2017; 19 PA Gevenois (79336_CR39) 1998; 12 R Du (79336_CR18) 2020; 8 S Choi (79336_CR40) 2017; 140 A Agusti (79336_CR3) 2011; 184 KAJ Eppenhof (79336_CR32) 2018; 5 D Adeloye (79336_CR1) 2015; 5 G Litjens (79336_CR11) 2017; 42 79336_CR25 79336_CR24 A Hosny (79336_CR12) 2018; 18 79336_CR26 S Bodduluri (79336_CR20) 2013; 20 S Choi (79336_CR21) 2017; 4 HO Coxson (79336_CR6) 2014; 190 79336_CR23 R Kohansal (79336_CR7) 2009; 135 M Karayama (79336_CR35) 2017; 7 M Hackx (79336_CR28) 2012; 265 C Xu (79336_CR27) 2020; 65 PD Pare (79336_CR31) 2012; 113 BM Smith (79336_CR36) 2018; 115 YBGH Yann LeCun (79336_CR14) 2015; 521 G Gonzalez (79336_CR17) 2018; 197 CJ Galban (79336_CR4) 2012; 18 V Gorbunova (79336_CR8) 2010; 13 79336_CR2 WW Labaki (79336_CR5) 2018; 197 K Ostridge (79336_CR30) 2016; 48 P Monkam (79336_CR34) 2019; 7 V Gorbunova (79336_CR9) 2008; 11 K Cao (79336_CR33) 2010; 7623 |
References_xml | – volume: 197 start-page: 193 year: 2018 end-page: 203 ident: CR17 article-title: Disease staging and prognosis in smokers using deep learning in chest computed tomography publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201705-0860OC contributor: fullname: Gonzalez – volume: 18 start-page: 739 year: 2017 end-page: 748 ident: CR37 article-title: CT quantification of lungs and airways in normal Korean subjects publication-title: Korean J. Radiol. doi: 10.3348/kjr.2017.18.4.739 contributor: fullname: Shin – volume: 11 start-page: 863 year: 2008 end-page: 870 ident: CR9 article-title: Weight preserving image registration for monitoring disease progression in lung CT publication-title: Med. Image Comput. Comput. Assist. Interv. contributor: fullname: Gorbunova – volume: 5 start-page: 3 year: 2018 ident: CR32 article-title: Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks publication-title: J. Med. Imaging doi: 10.1117/1.JMI.5.2.024003 contributor: fullname: Pluim – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR11 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 contributor: fullname: Litjens – volume: 36 start-page: 4213 year: 2009 end-page: 4222 ident: CR38 article-title: Mass preserving nonrigid registration of CT lung images using cubic B-spline publication-title: Med. Phys. doi: 10.1118/1.3193526 contributor: fullname: Lin – ident: CR2 – ident: CR16 – volume: 7 start-page: 78075 year: 2019 end-page: 78091 ident: CR34 article-title: Detection and classification of pulmonary nodules using convolutional neural networks: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920980 contributor: fullname: Monkam – volume: 265 start-page: 34 year: 2012 end-page: 48 ident: CR28 article-title: Chronic obstructive pulmonary disease: CT quantification of airways disease publication-title: Radiology doi: 10.1148/radiol.12111270 contributor: fullname: Gevenois – volume: 290 start-page: 590 year: 2019 end-page: 606 ident: CR13 article-title: Convolutional neural networks for radiologic images: a radiologist's guide publication-title: Radiology doi: 10.1148/radiol.2018180547 contributor: fullname: Soffer – volume: 7 start-page: 1 year: 2017 end-page: 8 ident: CR35 article-title: Respiratory impedance is correlated with morphological changes in the lungs on three-dimensional CT in patients with COPD publication-title: Sci. Rep. UK contributor: fullname: Karayama – volume: 7623 start-page: 762309 year: 2010 ident: CR33 article-title: Tissue volume and vesselness measure preserving nonrigid registration of lung CT images publication-title: SPIE Med. Imaging contributor: fullname: Reinhardt – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: CR10 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 contributor: fullname: Suk – volume: 18 start-page: 500 year: 2018 end-page: 510 ident: CR12 article-title: Artificial intelligence in radiology publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0016-5 contributor: fullname: Aerts – volume: 13 start-page: 193 year: 2010 end-page: 200 ident: CR8 article-title: Early detection of emphysema progression publication-title: Med. Image Comput. Comput. Assist. Interv. contributor: fullname: Gorbunova – volume: 115 start-page: E974 year: 2018 end-page: E981 ident: CR36 article-title: Human airway branch variation and chronic obstructive pulmonary disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1715564115 contributor: fullname: Smith – volume: 113 start-page: 636 year: 2012 end-page: 646 ident: CR31 article-title: Airway imaging in disease: Gimmick or useful tool? publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00372.2012 contributor: fullname: Coxson – volume: 197 start-page: 193 year: 2018 end-page: 203 ident: CR5 article-title: Artificial Intelligence and chest imaging: Will deep learning make us smarter? publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201709-1879ED contributor: fullname: M.K.H. – volume: 190 start-page: 135 year: 2014 end-page: 144 ident: CR6 article-title: Using pulmonary imaging to move chronic obstructive pulmonary disease beyond FEV1 publication-title: Am. J. Resp. Crit. Care doi: 10.1164/rccm.201402-0256PP contributor: fullname: Sin – volume: 23 start-page: 171 year: 2013 end-page: 183 ident: CR19 article-title: Geometric tree kernels: classification of COPD from airway tree geometry publication-title: Inf. Process. Med. Imaging contributor: fullname: Feragen – ident: CR25 – ident: CR23 – volume: 8 start-page: 38907 year: 2020 end-page: 38919 ident: CR18 article-title: Identification of COPD from multi-view snapshots of 3D lung airway tree via deep CNN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974617 contributor: fullname: Du – volume: 5 start-page: 186 year: 2015 end-page: 202 ident: CR1 article-title: Global and regional estimates of COPD prevalence: systematic review and meta-analysis publication-title: J. Glob. Health doi: 10.7189/jogh.05.020415 contributor: fullname: Adeloye – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 contributor: fullname: Hinton – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR14 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: Yann LeCun – volume: 20 start-page: 527 year: 2013 end-page: 536 ident: CR20 article-title: Registration-based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework publication-title: Acad. Radiol. doi: 10.1016/j.acra.2013.01.019 contributor: fullname: Reinhardt – volume: 4 start-page: e000252 year: 2017 ident: CR21 article-title: Differentiation of quantitative CT imaging phenotypes in asthma versus COPD publication-title: BMJ Open Respir. Res. doi: 10.1136/bmjresp-2017-000252 contributor: fullname: Choi – ident: CR15 – volume: 135 start-page: 1330 year: 2009 end-page: 1341 ident: CR7 article-title: Investigating the natural history of lung function: facts, pitfalls, and opportunities publication-title: Chest doi: 10.1378/chest.08-1750 contributor: fullname: Agusti – volume: 140 start-page: 690 year: 2017 end-page: 700 ident: CR40 article-title: Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.11.053 contributor: fullname: Choi – volume: 184 start-page: 507 year: 2011 end-page: 513 ident: CR3 article-title: Current controversies and future perspectives in chronic obstructive pulmonary disease publication-title: Am. J. Resp. Crit. Care doi: 10.1164/rccm.201103-0405PP contributor: fullname: Vestbo – volume: 65 start-page: 145011 year: 2020 ident: CR27 article-title: DCT-MIL: deep CNN transferred multiple instance learning for COPD identification using CT images publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab857d contributor: fullname: Xu – volume: 21 start-page: 224 year: 2016 end-page: 236 ident: CR29 article-title: This is what COPD looks like publication-title: Respirology doi: 10.1111/resp.12611 contributor: fullname: Parraga – volume: 18 start-page: 1711 year: 2012 end-page: 1715 ident: CR4 article-title: Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression publication-title: Nat. Med. doi: 10.1038/nm.2971 contributor: fullname: Galban – ident: CR26 – year: 2016 ident: CR41 publication-title: Aaron Courville. Deep learning contributor: fullname: Ian Goodfellow – ident: CR24 – volume: 115 start-page: 730 year: 2013 end-page: 742 ident: CR22 article-title: Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00113.2013 contributor: fullname: Choi – volume: 48 start-page: 216 year: 2016 end-page: 228 ident: CR30 article-title: Present and future utility of computed tomography scanning in the assessment and management of COPD publication-title: Eur. Respir. J. doi: 10.1183/13993003.00041-2016 contributor: fullname: Wilkinson – volume: 12 start-page: 1020 year: 1998 end-page: 1024 ident: CR39 article-title: Micronodules and emphysema in coal mine dust or silica exposure: relation with lung function publication-title: Eur. Respir. J. doi: 10.1183/09031936.98.12051020 contributor: fullname: Gevenois – ident: 79336_CR23 doi: 10.1109/CVPR.2017.243 – volume: 184 start-page: 507 year: 2011 ident: 79336_CR3 publication-title: Am. J. Resp. Crit. Care doi: 10.1164/rccm.201103-0405PP contributor: fullname: A Agusti – volume: 20 start-page: 527 year: 2013 ident: 79336_CR20 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2013.01.019 contributor: fullname: S Bodduluri – volume: 7623 start-page: 762309 year: 2010 ident: 79336_CR33 publication-title: SPIE Med. Imaging contributor: fullname: K Cao – volume: 18 start-page: 500 year: 2018 ident: 79336_CR12 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0016-5 contributor: fullname: A Hosny – volume: 21 start-page: 224 year: 2016 ident: 79336_CR29 publication-title: Respirology doi: 10.1111/resp.12611 contributor: fullname: K Sheikh – volume: 19 start-page: 221 year: 2017 ident: 79336_CR10 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 contributor: fullname: D Shen – volume: 18 start-page: 739 year: 2017 ident: 79336_CR37 publication-title: Korean J. Radiol. doi: 10.3348/kjr.2017.18.4.739 contributor: fullname: SS Kim – volume: 11 start-page: 863 year: 2008 ident: 79336_CR9 publication-title: Med. Image Comput. Comput. Assist. Interv. contributor: fullname: V Gorbunova – volume: 521 start-page: 436 year: 2015 ident: 79336_CR14 publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: YBGH Yann LeCun – ident: 79336_CR25 doi: 10.1109/CVPR.2016.90 – ident: 79336_CR15 – volume: 8 start-page: 38907 year: 2020 ident: 79336_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974617 contributor: fullname: R Du – volume: 5 start-page: 3 year: 2018 ident: 79336_CR32 publication-title: J. Med. Imaging doi: 10.1117/1.JMI.5.2.024003 contributor: fullname: KAJ Eppenhof – volume: 12 start-page: 1020 year: 1998 ident: 79336_CR39 publication-title: Eur. Respir. J. doi: 10.1183/09031936.98.12051020 contributor: fullname: PA Gevenois – ident: 79336_CR16 doi: 10.1109/CVPR.2016.319 – ident: 79336_CR24 – volume: 140 start-page: 690 year: 2017 ident: 79336_CR40 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.11.053 contributor: fullname: S Choi – volume: 42 start-page: 60 year: 2017 ident: 79336_CR11 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 contributor: fullname: G Litjens – ident: 79336_CR2 – volume: 7 start-page: 1 year: 2017 ident: 79336_CR35 publication-title: Sci. Rep. UK doi: 10.1038/s41598-016-0028-x contributor: fullname: M Karayama – volume: 65 start-page: 145011 year: 2020 ident: 79336_CR27 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab857d contributor: fullname: C Xu – volume: 4 start-page: e000252 year: 2017 ident: 79336_CR21 publication-title: BMJ Open Respir. Res. doi: 10.1136/bmjresp-2017-000252 contributor: fullname: S Choi – volume: 197 start-page: 193 year: 2018 ident: 79336_CR17 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201705-0860OC contributor: fullname: G Gonzalez – volume-title: Aaron Courville. Deep learning year: 2016 ident: 79336_CR41 contributor: fullname: YB Ian Goodfellow – volume: 115 start-page: 730 year: 2013 ident: 79336_CR22 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00113.2013 contributor: fullname: S Choi – volume: 7 start-page: 78075 year: 2019 ident: 79336_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920980 contributor: fullname: P Monkam – volume: 190 start-page: 135 year: 2014 ident: 79336_CR6 publication-title: Am. J. Resp. Crit. Care doi: 10.1164/rccm.201402-0256PP contributor: fullname: HO Coxson – volume: 135 start-page: 1330 year: 2009 ident: 79336_CR7 publication-title: Chest doi: 10.1378/chest.08-1750 contributor: fullname: R Kohansal – volume: 290 start-page: 590 year: 2019 ident: 79336_CR13 publication-title: Radiology doi: 10.1148/radiol.2018180547 contributor: fullname: S Soffer – volume: 113 start-page: 636 year: 2012 ident: 79336_CR31 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00372.2012 contributor: fullname: PD Pare – volume: 36 start-page: 4213 year: 2009 ident: 79336_CR38 publication-title: Med. Phys. doi: 10.1118/1.3193526 contributor: fullname: Y Yin – volume: 60 start-page: 84 year: 2017 ident: 79336_CR42 publication-title: Commun. ACM doi: 10.1145/3065386 contributor: fullname: A Krizhevsky – volume: 197 start-page: 193 year: 2018 ident: 79336_CR5 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201709-1879ED contributor: fullname: WW Labaki – volume: 13 start-page: 193 year: 2010 ident: 79336_CR8 publication-title: Med. Image Comput. Comput. Assist. Interv. contributor: fullname: V Gorbunova – volume: 5 start-page: 186 year: 2015 ident: 79336_CR1 publication-title: J. Glob. Health doi: 10.7189/jogh.05.020415 contributor: fullname: D Adeloye – volume: 48 start-page: 216 year: 2016 ident: 79336_CR30 publication-title: Eur. Respir. J. doi: 10.1183/13993003.00041-2016 contributor: fullname: K Ostridge – volume: 115 start-page: E974 year: 2018 ident: 79336_CR36 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1715564115 contributor: fullname: BM Smith – volume: 265 start-page: 34 year: 2012 ident: 79336_CR28 publication-title: Radiology doi: 10.1148/radiol.12111270 contributor: fullname: M Hackx – volume: 18 start-page: 1711 year: 2012 ident: 79336_CR4 publication-title: Nat. Med. doi: 10.1038/nm.2971 contributor: fullname: CJ Galban – volume: 23 start-page: 171 year: 2013 ident: 79336_CR19 publication-title: Inf. Process. Med. Imaging contributor: fullname: A Feragen – ident: 79336_CR26 doi: 10.1109/CVPR.2016.308 |
SSID | ssj0000529419 |
Score | 2.5700424 |
Snippet | Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD... Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different... Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 34 |
SubjectTerms | 631/114/1564 631/114/2397 631/1647/245 639/166/985 Allergic diseases Chronic obstructive pulmonary disease Classification Computed tomography Deep learning Emphysema Humanities and Social Sciences Lung diseases Mapping multidisciplinary Neural networks Obstructive lung disease Respiratory tract diseases Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTx0hEJ5YE5Nemlb7Y6s2HLy1xF1gd-Fo39N4em2ibXojLAutB5-N6zv0v3cG9j191qYXrwsEmGGZD5j5BuCArJaJruZ9K3uuTFVzU3eCK1wfvatE13uKHT49a2c_9PSYaHJWqb7IJyzTA2fBHTZC-a53ylWVV41zFPZsFLkRqojoPpNtl_reYSqzegusZMYomVLqwwEtFUWT4WkJl6RseL1miRJh_2Mo829nyQcvpskQnbyEFyOCZEd55K9gI8y3YSvnlPyzA9-PmJzyyWzGUpIbRhetbHLOyVz1jJi-LymJlmfX2Ts2sEtHHA0_GcJX5glMX6TYJzb58nXKhkVHNzXDa_h2cnw-OeVj8gTuEYTd8EaEoIz30atA_EW1DDo0sfIGj0yIAmMU3qs6GN8YrxEkGqVcL2Tjgi-xonwDm_OreXgHTHVStrqMtUb8EnFb8spXOsRShcZhSQEfl4K0vzNHhk1v21LbLHaLYrdJ7LYu4DPJelWT-K3TB9S6HbVu_6f1AvaWmrLjTzdYoXBnRzxZygLeZqWtepFSJX6pAto1da4NY71kfvEr0W23uGVh4wI-LRV_1-W_p_n-Kaa5C88F-dDQlY_eg82b60XYh2dDv_iQ1vstLq3-pQ priority: 102 providerName: Directory of Open Access Journals |
Title | A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects |
URI | https://link.springer.com/article/10.1038/s41598-020-79336-5 https://www.ncbi.nlm.nih.gov/pubmed/33420092 https://www.proquest.com/docview/2476252203 https://pubmed.ncbi.nlm.nih.gov/PMC7794420 https://doaj.org/article/624cbda4a11c46aa82869410744f1496 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xlZC4IL4JLZUP3MDdxHac5FiyrXphqURB3CxnYpeV2LTadA_8-46dpLB8XLjGkez4TTzP9swbgDfBa1Xe5rwtZMtVleW8yhvBFdlHazPRtBhyh88-Fcuv5eIkyOTkUy5MDNrHZnXUfV8fdatvMbbyeo3zKU5sfv6hLsiIlEjnM5gRN_xliz4IeotKZdWYIJPKct6TkwqJZLRRImuUmodyNVKqKDi044-ibP_fuOafIZO_3ZtGd3T6CB6OPJIdD-N9DPdc9wTuD5UlfzyFL8dMLni9XLJY6oaF41ZWX_DgtFoW9L7XoZQWss0QI-vY2galhktGJJZhoNSrmAHF6o_nC9Zvm3Be0z-Dz6cnF_UZH0socCQqdsO1cE5ViB6VCypGuXSl0z7DijZOxAW9F4gqdxXqCkuiijSxthVSW4cpvSifw1531bmXwFQjZVGmPi-JxXhanFBhVjqfKqcttSTwdppIcz0oZZh4wy1LMyBgCAETETB5Au_DXN-9GVSu44OrzaUZsTZaKGxaq2yWodLWhpR3wpZYj_K0s9MJHExImfHX641QtL4Tq0xlAi8G0O56mUBPoNiBc2cYuy1kg1F0e7S5BN5NwP_s8t-f-eq_O9qHByKEz4TTnvIA9m42W_caZn27PYznBofR6m8BNXEBMg |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgSXlldpoIAP3MDdxHZexzbbahHtUokFcbOciVNWYtNq0z3w7xk7Sdvlcek1tuQ43zjz2Z75BuCd81p5bWJepbLiKo9insel4IrsozKRKCt0ucOTL-n0ezY-cjI58ZAL44P2sZzvNz8X-838h4-tvFzgaIgTG52dFikZkRLhaAPu03oN5a1NeifpLXIV5X2KTCizUUtuyqWS0VaJ7FEm3BWskVJ5yaE1j-SF-__FNv8Omvzj5tQ7pOPtO07lMWz1DJQddM1P4J5tnsKDriblr2fw7YDJMS-mU-aL5DB3UMuKGXfurmJOKXzhinAhW3bRtZYtjNN4OGdEfxk6Mj73uVOs-Hw2Zu2qdCc97XP4enw0Kya8L77AkUjcFU-EtSpHrFFZp38US5vZpI4wpy0Xsci6FogqtjkmOWZEMmkephIyMRZD6ih3YLO5aOwuMFVKmWZhHWfEf2r6raHCKLN1qGxiqCWA9wMA-rLT2ND-blxmukNOE3LaI6fjAA4dRtc9nT62f3CxPNf9p9WJUFhWRpkoQpUY45LlySaIL6ma9oRJAHsDwrpftK0WijwD8dFQBvCiA_t6lMFYAkjXzGDtNdZbCHIv191DHMCHwWBuhvz_NF_eeaC38HAyOz3RJx-nn17BI-GCcNyZUbYHm1fLlX0NG221euPXzG_NkRXJ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIhAXvguBAj5wAzeJ7TjJsWS7KgKWlSiIm-U4dlmJTVeb7oF_z9hJFpaPC1xjS47zxplne-YNwHPvtUqnM9rkvKGiTDNaZjWjAu2j0SmrG-Nzh08_5LPPxeTEy-RsS32FoH1TL47ar8ujdvElxFauliYe48Ti-bsqRyMSLIlXjYv34Cqu2ST7aaPey3qzUqTlkCaT8CLu0FX5dDLcLqFNckl90RrORZAd2vFKQbz_T4zz98DJX25Pg1Oa3vqP6dyGmwMTJcd9lztwxbZ34Vpfm_LbPfh0TPiEVrMZCcVyiD-wJdUZ9W6vIV4xfOmLcRmy7qNsLVlqr_VwTpAGE-NJ-SLkUJHq_XxCuk3tT3y6-_BxenJWndKhCAM1SOYuqWTWitIYZ4T1OkgZt4WVLjUlbr2QTTrHjBGZLY0sTYFkE-eiG8altibBjvwA9tuL1j4EImrO8yJxWYE8yOHvzQiTFtYlwkqNLRG8GEFQq15rQ4U7cl6oHj2F6KmAnsoieOVx2vb0OtnhwcX6XA2fV0kmTN1oodPUCKm1T5pHu0DeJBzuDWUEhyPKali8nWICPQTy0oRH8KAHfDvKaDAR5DumsPMauy0Ie5DtHmCO4OVoND-G_Ps0H_3zQM_g-nwyVW9fz948hhvMx-L4o6PiEPYv1xv7BPa6ZvM0LJvvsKYYSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D-CNN+model+with+CT-based+parametric+response+mapping+for+classifying+COPD+subjects&rft.jtitle=Scientific+reports&rft.au=Ho%2C+Thao+Thi&rft.au=Kim%2C+Taewoo&rft.au=Kim%2C+Woo+Jin&rft.au=Lee%2C+Chang+Hyun&rft.date=2021-01-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-79336-5&rft.externalDocID=10_1038_s41598_020_79336_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |