A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects

Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping b...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 11; no. 1; pp. 34 - 12
Main Authors: Ho, Thao Thi, Kim, Taewoo, Kim, Woo Jin, Lee, Chang Hyun, Chae, Kum Ju, Bak, So Hyeon, Kwon, Sung Ok, Jin, Gong Yong, Park, Eun-Kee, Choi, Sanghun
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 08-01-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD.
AbstractList Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD.
Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD.
Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD is assessed by pulmonary-function tests and computed tomography-based approaches. We introduce a new classification method for COPD grouping based on deep learning and a parametric-response mapping (PRM) method. We extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN). The integrated 3D-CNN and PRM (3D-cPRM) achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five-fold cross-validation. The prediction accuracy of the proposed 3D-cPRM exceeded those of the 2D model and traditional 3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. We then applied a gradient-weighted class activation mapping (Grad-CAM) that highlights the key features in the CNN learning process. Most of the class-discriminative regions appeared in the upper and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD subjects. The 3D-cPRM successfully represented the parenchymal abnormalities in COPD and matched the CT-based diagnosis of COPD.
ArticleNumber 34
Author Park, Eun-Kee
Kwon, Sung Ok
Bak, So Hyeon
Chae, Kum Ju
Choi, Sanghun
Lee, Chang Hyun
Ho, Thao Thi
Kim, Taewoo
Kim, Woo Jin
Jin, Gong Yong
Author_xml – sequence: 1
  givenname: Thao Thi
  surname: Ho
  fullname: Ho, Thao Thi
  organization: School of Mechanical Engineering, Kyungpook National University
– sequence: 2
  givenname: Taewoo
  surname: Kim
  fullname: Kim, Taewoo
  organization: School of Mechanical Engineering, Kyungpook National University
– sequence: 3
  givenname: Woo Jin
  surname: Kim
  fullname: Kim, Woo Jin
  organization: Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University
– sequence: 4
  givenname: Chang Hyun
  surname: Lee
  fullname: Lee, Chang Hyun
  organization: Department of Radiology, College of Medicine, Seoul National University, Seoul National University Hospital, Department of Radiology, College of Medicine, The University of Iowa
– sequence: 5
  givenname: Kum Ju
  surname: Chae
  fullname: Chae, Kum Ju
  organization: Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University–Biomedical Research Institute of Jeonbuk National University Hospital
– sequence: 6
  givenname: So Hyeon
  surname: Bak
  fullname: Bak, So Hyeon
  organization: Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine
– sequence: 7
  givenname: Sung Ok
  surname: Kwon
  fullname: Kwon, Sung Ok
  organization: Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University Hospital, Kangwon National University
– sequence: 8
  givenname: Gong Yong
  surname: Jin
  fullname: Jin, Gong Yong
  organization: Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University–Biomedical Research Institute of Jeonbuk National University Hospital
– sequence: 9
  givenname: Eun-Kee
  surname: Park
  fullname: Park, Eun-Kee
  organization: Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University
– sequence: 10
  givenname: Sanghun
  surname: Choi
  fullname: Choi, Sanghun
  email: s-choi@knu.ac.kr
  organization: School of Mechanical Engineering, Kyungpook National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33420092$$D View this record in MEDLINE/PubMed
BookMark eNp9kctO3TAQhq0KVCjlBbqoLHVt8D3xphIKLUVC0AXt1vJxxoccJXFq51Dx9jWE66bejO3555sZ_R_QzhhHQOgTo0eMivo4S6ZMTSinpDJCaKLeoX1OpSJccL7z6r6HDnPe0HIUN5KZ92hPCMkpNXwf_T7B4pQ0l5d4iC30-G833-DmmqxchhZPLrkB5tR5nCBPccyABzdN3bjGISbse5dzF-7u383Vz1Oct6sN-Dl_RLvB9RkOH-MB-vX923Xzg1xcnZ03JxfEK0lnojmANN4HL4FKUSkBNejAvNHMMEVD4N5LBcZr42vDtJHStVxoB54WoThA5wu3jW5jp9QNLt3Z6Dr78BHT2ro0d74Hq7n0q9ZJx5iX2rma1wXHaCVlYNLowvq6sKbtaoDWwzgn17-Bvs2M3Y1dx1tbVWUsTgvgyyMgxT9byLPdxG0ay_6Wy0pzxYuoqPii8inmnCA8d2DU3ltrF2ttsdY-WGtVKfr8erbnkicji0AsglxS4xrSS-__YP8BImWvRA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_155812
crossref_primary_10_1016_j_imed_2021_06_004
crossref_primary_10_1097_MCP_0000000000001046
crossref_primary_10_1016_j_compbiomed_2024_108464
crossref_primary_10_2196_30066
crossref_primary_10_1007_s11709_024_1040_z
crossref_primary_10_1109_LSENS_2023_3326118
crossref_primary_10_1016_j_cmpb_2024_108061
crossref_primary_10_1007_s11517_024_03119_7
crossref_primary_10_1097_RTI_0000000000000683
crossref_primary_10_1007_s11517_022_02589_x
crossref_primary_10_1109_JBHI_2023_3328343
crossref_primary_10_1016_j_compbiomed_2023_106612
crossref_primary_10_1109_ACCESS_2022_3179577
crossref_primary_10_1148_radiol_222998
crossref_primary_10_1016_j_rmr_2023_12_001
crossref_primary_10_1016_j_compbiomed_2021_105162
crossref_primary_10_1002_acm2_14171
crossref_primary_10_1016_j_bbe_2023_06_004
crossref_primary_10_1186_s12931_023_02611_2
crossref_primary_10_1038_s41598_021_93980_5
crossref_primary_10_1109_TASLP_2024_3393743
crossref_primary_10_3390_diagnostics12123034
crossref_primary_10_1007_s11042_023_16066_6
crossref_primary_10_1016_j_measen_2024_101234
crossref_primary_10_3390_app112311229
crossref_primary_10_1016_j_cmpb_2023_107356
crossref_primary_10_2174_1574893618666230206121127
crossref_primary_10_4018_IJITSA_324760
crossref_primary_10_1038_s41598_023_28082_5
crossref_primary_10_1007_s11517_024_03016_z
crossref_primary_10_1016_j_bspc_2023_104916
crossref_primary_10_1016_j_acra_2021_09_007
crossref_primary_10_1111_1440_1681_13822
crossref_primary_10_1016_j_jii_2022_100386
crossref_primary_10_2478_pneum_2024_0003
crossref_primary_10_1109_TIM_2023_3256468
Cites_doi 10.1164/rccm.201705-0860OC
10.3348/kjr.2017.18.4.739
10.1117/1.JMI.5.2.024003
10.1016/j.media.2017.07.005
10.1118/1.3193526
10.1109/ACCESS.2019.2920980
10.1148/radiol.12111270
10.1148/radiol.2018180547
10.1146/annurev-bioeng-071516-044442
10.1038/s41568-018-0016-5
10.1073/pnas.1715564115
10.1152/japplphysiol.00372.2012
10.1164/rccm.201709-1879ED
10.1164/rccm.201402-0256PP
10.1109/ACCESS.2020.2974617
10.7189/jogh.05.020415
10.1145/3065386
10.1038/nature14539
10.1016/j.acra.2013.01.019
10.1136/bmjresp-2017-000252
10.1378/chest.08-1750
10.1016/j.jaci.2016.11.053
10.1164/rccm.201103-0405PP
10.1088/1361-6560/ab857d
10.1111/resp.12611
10.1038/nm.2971
10.1152/japplphysiol.00113.2013
10.1183/13993003.00041-2016
10.1183/09031936.98.12051020
10.1109/CVPR.2017.243
10.1109/CVPR.2016.90
10.1109/CVPR.2016.319
10.1038/s41598-016-0028-x
10.1109/CVPR.2016.308
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
5PM
DOA
DOI 10.1038/s41598-020-79336-5
DatabaseName Springer_OA刊
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Journals (ProQuest Database)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

PubMed

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_624cbda4a11c46aa82869410744f1496
10_1038_s41598_020_79336_5
33420092
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
  grantid: NRF-2020R1F1A1069853
– fundername: the Korea Ministry of Environment (MOE) as “The Environmental Health Action Program”
  grantid: 2018001360004; 2018001360001
– fundername: ;
  grantid: NRF-2020R1F1A1069853
– fundername: ;
  grantid: 2018001360004; 2018001360001
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
5PM
ID FETCH-LOGICAL-c540t-62ee49ccfc4e043753e8e6f1c9619150ff2cc45e9c69c8916944ad236aec0e6f3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:14:30 EDT 2024
Tue Sep 17 21:12:49 EDT 2024
Sat Nov 09 07:06:06 EST 2024
Fri Aug 23 01:03:16 EDT 2024
Wed Oct 16 00:42:29 EDT 2024
Fri Oct 11 20:52:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-62ee49ccfc4e043753e8e6f1c9619150ff2cc45e9c69c8916944ad236aec0e6f3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794420/
PMID 33420092
PQID 2476252203
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_624cbda4a11c46aa82869410744f1496
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7794420
proquest_journals_2476252203
crossref_primary_10_1038_s41598_020_79336_5
pubmed_primary_33420092
springer_journals_10_1038_s41598_020_79336_5
PublicationCentury 2000
PublicationDate 2021-01-08
PublicationDateYYYYMMDD 2021-01-08
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Karayama (CR35) 2017; 7
Du (CR18) 2020; 8
Krizhevsky, Sutskever, Hinton (CR42) 2017; 60
Agusti, Vestbo (CR3) 2011; 184
CR16
CR15
Kohansal, Soriano, Agusti (CR7) 2009; 135
Monkam (CR34) 2019; 7
Sheikh, Coxson, Parraga (CR29) 2016; 21
Ian Goodfellow (CR41) 2016
Feragen (CR19) 2013; 23
Choi (CR22) 2013; 115
Shen, Wu, Suk (CR10) 2017; 19
Bodduluri, Newell, Hoffman, Reinhardt (CR20) 2013; 20
Coxson, Leipsic, Parraga, Sin (CR6) 2014; 190
Gorbunova (CR9) 2008; 11
Gonzalez (CR17) 2018; 197
Hackx, Bankier, Gevenois (CR28) 2012; 265
Choi (CR40) 2017; 140
Xu (CR27) 2020; 65
Gorbunova (CR8) 2010; 13
Choi (CR21) 2017; 4
CR2
Kim, Jin, Li, Lee, Shin (CR37) 2017; 18
Yann LeCun (CR14) 2015; 521
Soffer (CR13) 2019; 290
Cao, Ding, Christense, Reinhardt (CR33) 2010; 7623
Ostridge, Wilkinson (CR30) 2016; 48
CR26
Pare, Nagano, Coxson (CR31) 2012; 113
Adeloye (CR1) 2015; 5
Litjens (CR11) 2017; 42
CR25
Smith (CR36) 2018; 115
CR24
Galban (CR4) 2012; 18
Labaki, M.K.H. (CR5) 2018; 197
CR23
Eppenhof, Pluim (CR32) 2018; 5
Yin, Hoffman, Lin (CR38) 2009; 36
Hosny, Parmar, Quackenbush, Schwartz, Aerts (CR12) 2018; 18
Gevenois (CR39) 1998; 12
YB Ian Goodfellow (79336_CR41) 2016
79336_CR16
A Feragen (79336_CR19) 2013; 23
79336_CR15
S Soffer (79336_CR13) 2019; 290
K Sheikh (79336_CR29) 2016; 21
A Krizhevsky (79336_CR42) 2017; 60
S Choi (79336_CR22) 2013; 115
Y Yin (79336_CR38) 2009; 36
SS Kim (79336_CR37) 2017; 18
D Shen (79336_CR10) 2017; 19
PA Gevenois (79336_CR39) 1998; 12
R Du (79336_CR18) 2020; 8
S Choi (79336_CR40) 2017; 140
A Agusti (79336_CR3) 2011; 184
KAJ Eppenhof (79336_CR32) 2018; 5
D Adeloye (79336_CR1) 2015; 5
G Litjens (79336_CR11) 2017; 42
79336_CR25
79336_CR24
A Hosny (79336_CR12) 2018; 18
79336_CR26
S Bodduluri (79336_CR20) 2013; 20
S Choi (79336_CR21) 2017; 4
HO Coxson (79336_CR6) 2014; 190
79336_CR23
R Kohansal (79336_CR7) 2009; 135
M Karayama (79336_CR35) 2017; 7
M Hackx (79336_CR28) 2012; 265
C Xu (79336_CR27) 2020; 65
PD Pare (79336_CR31) 2012; 113
BM Smith (79336_CR36) 2018; 115
YBGH Yann LeCun (79336_CR14) 2015; 521
G Gonzalez (79336_CR17) 2018; 197
CJ Galban (79336_CR4) 2012; 18
V Gorbunova (79336_CR8) 2010; 13
79336_CR2
WW Labaki (79336_CR5) 2018; 197
K Ostridge (79336_CR30) 2016; 48
P Monkam (79336_CR34) 2019; 7
V Gorbunova (79336_CR9) 2008; 11
K Cao (79336_CR33) 2010; 7623
References_xml – volume: 197
  start-page: 193
  year: 2018
  end-page: 203
  ident: CR17
  article-title: Disease staging and prognosis in smokers using deep learning in chest computed tomography
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201705-0860OC
  contributor:
    fullname: Gonzalez
– volume: 18
  start-page: 739
  year: 2017
  end-page: 748
  ident: CR37
  article-title: CT quantification of lungs and airways in normal Korean subjects
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2017.18.4.739
  contributor:
    fullname: Shin
– volume: 11
  start-page: 863
  year: 2008
  end-page: 870
  ident: CR9
  article-title: Weight preserving image registration for monitoring disease progression in lung CT
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  contributor:
    fullname: Gorbunova
– volume: 5
  start-page: 3
  year: 2018
  ident: CR32
  article-title: Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.2.024003
  contributor:
    fullname: Pluim
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR11
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
  contributor:
    fullname: Litjens
– volume: 36
  start-page: 4213
  year: 2009
  end-page: 4222
  ident: CR38
  article-title: Mass preserving nonrigid registration of CT lung images using cubic B-spline
  publication-title: Med. Phys.
  doi: 10.1118/1.3193526
  contributor:
    fullname: Lin
– ident: CR2
– ident: CR16
– volume: 7
  start-page: 78075
  year: 2019
  end-page: 78091
  ident: CR34
  article-title: Detection and classification of pulmonary nodules using convolutional neural networks: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920980
  contributor:
    fullname: Monkam
– volume: 265
  start-page: 34
  year: 2012
  end-page: 48
  ident: CR28
  article-title: Chronic obstructive pulmonary disease: CT quantification of airways disease
  publication-title: Radiology
  doi: 10.1148/radiol.12111270
  contributor:
    fullname: Gevenois
– volume: 290
  start-page: 590
  year: 2019
  end-page: 606
  ident: CR13
  article-title: Convolutional neural networks for radiologic images: a radiologist's guide
  publication-title: Radiology
  doi: 10.1148/radiol.2018180547
  contributor:
    fullname: Soffer
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: CR35
  article-title: Respiratory impedance is correlated with morphological changes in the lungs on three-dimensional CT in patients with COPD
  publication-title: Sci. Rep. UK
  contributor:
    fullname: Karayama
– volume: 7623
  start-page: 762309
  year: 2010
  ident: CR33
  article-title: Tissue volume and vesselness measure preserving nonrigid registration of lung CT images
  publication-title: SPIE Med. Imaging
  contributor:
    fullname: Reinhardt
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: CR10
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
  contributor:
    fullname: Suk
– volume: 18
  start-page: 500
  year: 2018
  end-page: 510
  ident: CR12
  article-title: Artificial intelligence in radiology
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0016-5
  contributor:
    fullname: Aerts
– volume: 13
  start-page: 193
  year: 2010
  end-page: 200
  ident: CR8
  article-title: Early detection of emphysema progression
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  contributor:
    fullname: Gorbunova
– volume: 115
  start-page: E974
  year: 2018
  end-page: E981
  ident: CR36
  article-title: Human airway branch variation and chronic obstructive pulmonary disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1715564115
  contributor:
    fullname: Smith
– volume: 113
  start-page: 636
  year: 2012
  end-page: 646
  ident: CR31
  article-title: Airway imaging in disease: Gimmick or useful tool?
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00372.2012
  contributor:
    fullname: Coxson
– volume: 197
  start-page: 193
  year: 2018
  end-page: 203
  ident: CR5
  article-title: Artificial Intelligence and chest imaging: Will deep learning make us smarter?
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201709-1879ED
  contributor:
    fullname: M.K.H.
– volume: 190
  start-page: 135
  year: 2014
  end-page: 144
  ident: CR6
  article-title: Using pulmonary imaging to move chronic obstructive pulmonary disease beyond FEV1
  publication-title: Am. J. Resp. Crit. Care
  doi: 10.1164/rccm.201402-0256PP
  contributor:
    fullname: Sin
– volume: 23
  start-page: 171
  year: 2013
  end-page: 183
  ident: CR19
  article-title: Geometric tree kernels: classification of COPD from airway tree geometry
  publication-title: Inf. Process. Med. Imaging
  contributor:
    fullname: Feragen
– ident: CR25
– ident: CR23
– volume: 8
  start-page: 38907
  year: 2020
  end-page: 38919
  ident: CR18
  article-title: Identification of COPD from multi-view snapshots of 3D lung airway tree via deep CNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974617
  contributor:
    fullname: Du
– volume: 5
  start-page: 186
  year: 2015
  end-page: 202
  ident: CR1
  article-title: Global and regional estimates of COPD prevalence: systematic review and meta-analysis
  publication-title: J. Glob. Health
  doi: 10.7189/jogh.05.020415
  contributor:
    fullname: Adeloye
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR42
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: Hinton
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: Yann LeCun
– volume: 20
  start-page: 527
  year: 2013
  end-page: 536
  ident: CR20
  article-title: Registration-based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.01.019
  contributor:
    fullname: Reinhardt
– volume: 4
  start-page: e000252
  year: 2017
  ident: CR21
  article-title: Differentiation of quantitative CT imaging phenotypes in asthma versus COPD
  publication-title: BMJ Open Respir. Res.
  doi: 10.1136/bmjresp-2017-000252
  contributor:
    fullname: Choi
– ident: CR15
– volume: 135
  start-page: 1330
  year: 2009
  end-page: 1341
  ident: CR7
  article-title: Investigating the natural history of lung function: facts, pitfalls, and opportunities
  publication-title: Chest
  doi: 10.1378/chest.08-1750
  contributor:
    fullname: Agusti
– volume: 140
  start-page: 690
  year: 2017
  end-page: 700
  ident: CR40
  article-title: Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.11.053
  contributor:
    fullname: Choi
– volume: 184
  start-page: 507
  year: 2011
  end-page: 513
  ident: CR3
  article-title: Current controversies and future perspectives in chronic obstructive pulmonary disease
  publication-title: Am. J. Resp. Crit. Care
  doi: 10.1164/rccm.201103-0405PP
  contributor:
    fullname: Vestbo
– volume: 65
  start-page: 145011
  year: 2020
  ident: CR27
  article-title: DCT-MIL: deep CNN transferred multiple instance learning for COPD identification using CT images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab857d
  contributor:
    fullname: Xu
– volume: 21
  start-page: 224
  year: 2016
  end-page: 236
  ident: CR29
  article-title: This is what COPD looks like
  publication-title: Respirology
  doi: 10.1111/resp.12611
  contributor:
    fullname: Parraga
– volume: 18
  start-page: 1711
  year: 2012
  end-page: 1715
  ident: CR4
  article-title: Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression
  publication-title: Nat. Med.
  doi: 10.1038/nm.2971
  contributor:
    fullname: Galban
– ident: CR26
– year: 2016
  ident: CR41
  publication-title: Aaron Courville. Deep learning
  contributor:
    fullname: Ian Goodfellow
– ident: CR24
– volume: 115
  start-page: 730
  year: 2013
  end-page: 742
  ident: CR22
  article-title: Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00113.2013
  contributor:
    fullname: Choi
– volume: 48
  start-page: 216
  year: 2016
  end-page: 228
  ident: CR30
  article-title: Present and future utility of computed tomography scanning in the assessment and management of COPD
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00041-2016
  contributor:
    fullname: Wilkinson
– volume: 12
  start-page: 1020
  year: 1998
  end-page: 1024
  ident: CR39
  article-title: Micronodules and emphysema in coal mine dust or silica exposure: relation with lung function
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.98.12051020
  contributor:
    fullname: Gevenois
– ident: 79336_CR23
  doi: 10.1109/CVPR.2017.243
– volume: 184
  start-page: 507
  year: 2011
  ident: 79336_CR3
  publication-title: Am. J. Resp. Crit. Care
  doi: 10.1164/rccm.201103-0405PP
  contributor:
    fullname: A Agusti
– volume: 20
  start-page: 527
  year: 2013
  ident: 79336_CR20
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.01.019
  contributor:
    fullname: S Bodduluri
– volume: 7623
  start-page: 762309
  year: 2010
  ident: 79336_CR33
  publication-title: SPIE Med. Imaging
  contributor:
    fullname: K Cao
– volume: 18
  start-page: 500
  year: 2018
  ident: 79336_CR12
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0016-5
  contributor:
    fullname: A Hosny
– volume: 21
  start-page: 224
  year: 2016
  ident: 79336_CR29
  publication-title: Respirology
  doi: 10.1111/resp.12611
  contributor:
    fullname: K Sheikh
– volume: 19
  start-page: 221
  year: 2017
  ident: 79336_CR10
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
  contributor:
    fullname: D Shen
– volume: 18
  start-page: 739
  year: 2017
  ident: 79336_CR37
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2017.18.4.739
  contributor:
    fullname: SS Kim
– volume: 11
  start-page: 863
  year: 2008
  ident: 79336_CR9
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  contributor:
    fullname: V Gorbunova
– volume: 521
  start-page: 436
  year: 2015
  ident: 79336_CR14
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: YBGH Yann LeCun
– ident: 79336_CR25
  doi: 10.1109/CVPR.2016.90
– ident: 79336_CR15
– volume: 8
  start-page: 38907
  year: 2020
  ident: 79336_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974617
  contributor:
    fullname: R Du
– volume: 5
  start-page: 3
  year: 2018
  ident: 79336_CR32
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.2.024003
  contributor:
    fullname: KAJ Eppenhof
– volume: 12
  start-page: 1020
  year: 1998
  ident: 79336_CR39
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.98.12051020
  contributor:
    fullname: PA Gevenois
– ident: 79336_CR16
  doi: 10.1109/CVPR.2016.319
– ident: 79336_CR24
– volume: 140
  start-page: 690
  year: 2017
  ident: 79336_CR40
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.11.053
  contributor:
    fullname: S Choi
– volume: 42
  start-page: 60
  year: 2017
  ident: 79336_CR11
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
  contributor:
    fullname: G Litjens
– ident: 79336_CR2
– volume: 7
  start-page: 1
  year: 2017
  ident: 79336_CR35
  publication-title: Sci. Rep. UK
  doi: 10.1038/s41598-016-0028-x
  contributor:
    fullname: M Karayama
– volume: 65
  start-page: 145011
  year: 2020
  ident: 79336_CR27
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab857d
  contributor:
    fullname: C Xu
– volume: 4
  start-page: e000252
  year: 2017
  ident: 79336_CR21
  publication-title: BMJ Open Respir. Res.
  doi: 10.1136/bmjresp-2017-000252
  contributor:
    fullname: S Choi
– volume: 197
  start-page: 193
  year: 2018
  ident: 79336_CR17
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201705-0860OC
  contributor:
    fullname: G Gonzalez
– volume-title: Aaron Courville. Deep learning
  year: 2016
  ident: 79336_CR41
  contributor:
    fullname: YB Ian Goodfellow
– volume: 115
  start-page: 730
  year: 2013
  ident: 79336_CR22
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00113.2013
  contributor:
    fullname: S Choi
– volume: 7
  start-page: 78075
  year: 2019
  ident: 79336_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920980
  contributor:
    fullname: P Monkam
– volume: 190
  start-page: 135
  year: 2014
  ident: 79336_CR6
  publication-title: Am. J. Resp. Crit. Care
  doi: 10.1164/rccm.201402-0256PP
  contributor:
    fullname: HO Coxson
– volume: 135
  start-page: 1330
  year: 2009
  ident: 79336_CR7
  publication-title: Chest
  doi: 10.1378/chest.08-1750
  contributor:
    fullname: R Kohansal
– volume: 290
  start-page: 590
  year: 2019
  ident: 79336_CR13
  publication-title: Radiology
  doi: 10.1148/radiol.2018180547
  contributor:
    fullname: S Soffer
– volume: 113
  start-page: 636
  year: 2012
  ident: 79336_CR31
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00372.2012
  contributor:
    fullname: PD Pare
– volume: 36
  start-page: 4213
  year: 2009
  ident: 79336_CR38
  publication-title: Med. Phys.
  doi: 10.1118/1.3193526
  contributor:
    fullname: Y Yin
– volume: 60
  start-page: 84
  year: 2017
  ident: 79336_CR42
  publication-title: Commun. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: A Krizhevsky
– volume: 197
  start-page: 193
  year: 2018
  ident: 79336_CR5
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201709-1879ED
  contributor:
    fullname: WW Labaki
– volume: 13
  start-page: 193
  year: 2010
  ident: 79336_CR8
  publication-title: Med. Image Comput. Comput. Assist. Interv.
  contributor:
    fullname: V Gorbunova
– volume: 5
  start-page: 186
  year: 2015
  ident: 79336_CR1
  publication-title: J. Glob. Health
  doi: 10.7189/jogh.05.020415
  contributor:
    fullname: D Adeloye
– volume: 48
  start-page: 216
  year: 2016
  ident: 79336_CR30
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00041-2016
  contributor:
    fullname: K Ostridge
– volume: 115
  start-page: E974
  year: 2018
  ident: 79336_CR36
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1715564115
  contributor:
    fullname: BM Smith
– volume: 265
  start-page: 34
  year: 2012
  ident: 79336_CR28
  publication-title: Radiology
  doi: 10.1148/radiol.12111270
  contributor:
    fullname: M Hackx
– volume: 18
  start-page: 1711
  year: 2012
  ident: 79336_CR4
  publication-title: Nat. Med.
  doi: 10.1038/nm.2971
  contributor:
    fullname: CJ Galban
– volume: 23
  start-page: 171
  year: 2013
  ident: 79336_CR19
  publication-title: Inf. Process. Med. Imaging
  contributor:
    fullname: A Feragen
– ident: 79336_CR26
  doi: 10.1109/CVPR.2016.308
SSID ssj0000529419
Score 2.5700424
Snippet Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different severities. COPD...
Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different...
Abstract Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of lung parenchymal morphology with different...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 34
SubjectTerms 631/114/1564
631/114/2397
631/1647/245
639/166/985
Allergic diseases
Chronic obstructive pulmonary disease
Classification
Computed tomography
Deep learning
Emphysema
Humanities and Social Sciences
Lung diseases
Mapping
multidisciplinary
Neural networks
Obstructive lung disease
Respiratory tract diseases
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTx0hEJ5YE5Nemlb7Y6s2HLy1xF1gd-Fo39N4em2ibXojLAutB5-N6zv0v3cG9j191qYXrwsEmGGZD5j5BuCArJaJruZ9K3uuTFVzU3eCK1wfvatE13uKHT49a2c_9PSYaHJWqb7IJyzTA2fBHTZC-a53ylWVV41zFPZsFLkRqojoPpNtl_reYSqzegusZMYomVLqwwEtFUWT4WkJl6RseL1miRJh_2Mo829nyQcvpskQnbyEFyOCZEd55K9gI8y3YSvnlPyzA9-PmJzyyWzGUpIbRhetbHLOyVz1jJi-LymJlmfX2Ts2sEtHHA0_GcJX5glMX6TYJzb58nXKhkVHNzXDa_h2cnw-OeVj8gTuEYTd8EaEoIz30atA_EW1DDo0sfIGj0yIAmMU3qs6GN8YrxEkGqVcL2Tjgi-xonwDm_OreXgHTHVStrqMtUb8EnFb8spXOsRShcZhSQEfl4K0vzNHhk1v21LbLHaLYrdJ7LYu4DPJelWT-K3TB9S6HbVu_6f1AvaWmrLjTzdYoXBnRzxZygLeZqWtepFSJX6pAto1da4NY71kfvEr0W23uGVh4wI-LRV_1-W_p_n-Kaa5C88F-dDQlY_eg82b60XYh2dDv_iQ1vstLq3-pQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects
URI https://link.springer.com/article/10.1038/s41598-020-79336-5
https://www.ncbi.nlm.nih.gov/pubmed/33420092
https://www.proquest.com/docview/2476252203
https://pubmed.ncbi.nlm.nih.gov/PMC7794420
https://doaj.org/article/624cbda4a11c46aa82869410744f1496
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xlZC4IL4JLZUP3MDdxHac5FiyrXphqURB3CxnYpeV2LTadA_8-46dpLB8XLjGkez4TTzP9swbgDfBa1Xe5rwtZMtVleW8yhvBFdlHazPRtBhyh88-Fcuv5eIkyOTkUy5MDNrHZnXUfV8fdatvMbbyeo3zKU5sfv6hLsiIlEjnM5gRN_xliz4IeotKZdWYIJPKct6TkwqJZLRRImuUmodyNVKqKDi044-ibP_fuOafIZO_3ZtGd3T6CB6OPJIdD-N9DPdc9wTuD5UlfzyFL8dMLni9XLJY6oaF41ZWX_DgtFoW9L7XoZQWss0QI-vY2galhktGJJZhoNSrmAHF6o_nC9Zvm3Be0z-Dz6cnF_UZH0socCQqdsO1cE5ViB6VCypGuXSl0z7DijZOxAW9F4gqdxXqCkuiijSxthVSW4cpvSifw1531bmXwFQjZVGmPi-JxXhanFBhVjqfKqcttSTwdppIcz0oZZh4wy1LMyBgCAETETB5Au_DXN-9GVSu44OrzaUZsTZaKGxaq2yWodLWhpR3wpZYj_K0s9MJHExImfHX641QtL4Tq0xlAi8G0O56mUBPoNiBc2cYuy1kg1F0e7S5BN5NwP_s8t-f-eq_O9qHByKEz4TTnvIA9m42W_caZn27PYznBofR6m8BNXEBMg
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgSXlldpoIAP3MDdxHZexzbbahHtUokFcbOciVNWYtNq0z3w7xk7Sdvlcek1tuQ43zjz2Z75BuCd81p5bWJepbLiKo9insel4IrsozKRKCt0ucOTL-n0ezY-cjI58ZAL44P2sZzvNz8X-838h4-tvFzgaIgTG52dFikZkRLhaAPu03oN5a1NeifpLXIV5X2KTCizUUtuyqWS0VaJ7FEm3BWskVJ5yaE1j-SF-__FNv8Omvzj5tQ7pOPtO07lMWz1DJQddM1P4J5tnsKDriblr2fw7YDJMS-mU-aL5DB3UMuKGXfurmJOKXzhinAhW3bRtZYtjNN4OGdEfxk6Mj73uVOs-Hw2Zu2qdCc97XP4enw0Kya8L77AkUjcFU-EtSpHrFFZp38US5vZpI4wpy0Xsci6FogqtjkmOWZEMmkephIyMRZD6ih3YLO5aOwuMFVKmWZhHWfEf2r6raHCKLN1qGxiqCWA9wMA-rLT2ND-blxmukNOE3LaI6fjAA4dRtc9nT62f3CxPNf9p9WJUFhWRpkoQpUY45LlySaIL6ma9oRJAHsDwrpftK0WijwD8dFQBvCiA_t6lMFYAkjXzGDtNdZbCHIv191DHMCHwWBuhvz_NF_eeaC38HAyOz3RJx-nn17BI-GCcNyZUbYHm1fLlX0NG221euPXzG_NkRXJ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RIhAXvguBAj5wAzeJ7TjJsWS7KgKWlSiIm-U4dlmJTVeb7oF_z9hJFpaPC1xjS47zxplne-YNwHPvtUqnM9rkvKGiTDNaZjWjAu2j0SmrG-Nzh08_5LPPxeTEy-RsS32FoH1TL47ar8ujdvElxFauliYe48Ti-bsqRyMSLIlXjYv34Cqu2ST7aaPey3qzUqTlkCaT8CLu0FX5dDLcLqFNckl90RrORZAd2vFKQbz_T4zz98DJX25Pg1Oa3vqP6dyGmwMTJcd9lztwxbZ34Vpfm_LbPfh0TPiEVrMZCcVyiD-wJdUZ9W6vIV4xfOmLcRmy7qNsLVlqr_VwTpAGE-NJ-SLkUJHq_XxCuk3tT3y6-_BxenJWndKhCAM1SOYuqWTWitIYZ4T1OkgZt4WVLjUlbr2QTTrHjBGZLY0sTYFkE-eiG8altibBjvwA9tuL1j4EImrO8yJxWYE8yOHvzQiTFtYlwkqNLRG8GEFQq15rQ4U7cl6oHj2F6KmAnsoieOVx2vb0OtnhwcX6XA2fV0kmTN1oodPUCKm1T5pHu0DeJBzuDWUEhyPKali8nWICPQTy0oRH8KAHfDvKaDAR5DumsPMauy0Ie5DtHmCO4OVoND-G_Ps0H_3zQM_g-nwyVW9fz948hhvMx-L4o6PiEPYv1xv7BPa6ZvM0LJvvsKYYSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D-CNN+model+with+CT-based+parametric+response+mapping+for+classifying+COPD+subjects&rft.jtitle=Scientific+reports&rft.au=Ho%2C+Thao+Thi&rft.au=Kim%2C+Taewoo&rft.au=Kim%2C+Woo+Jin&rft.au=Lee%2C+Chang+Hyun&rft.date=2021-01-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-79336-5&rft.externalDocID=10_1038_s41598_020_79336_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon