Tilting and rotational motions of silver halide crystal with diffracted X-ray blinking

The dynamic properties of crystalline materials are important for understanding their local environment or individual single-grain motions. A new time-resolved observation method is required for use in many fields of investigation. Here, we developed in situ diffracted X-ray blinking to monitor high...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 11; no. 1; p. 4097
Main Authors: Kuramochi, Masahiro, Omata, Hiroki, Ishihara, Masaki, Hanslin, Sander Ø., Mizumaki, Masaichiro, Kawamura, Naomi, Osawa, Hitoshi, Suzuki, Motohiro, Mio, Kazuhiro, Sekiguchi, Hiroshi, Sasaki, Yuji C.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 05-03-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dynamic properties of crystalline materials are important for understanding their local environment or individual single-grain motions. A new time-resolved observation method is required for use in many fields of investigation. Here, we developed in situ diffracted X-ray blinking to monitor high-resolution diffraction patterns from single-crystal grains with a 50 ms time resolution. The diffraction spots of single grains of silver halides and silver moved in the θ and χ directions during the photolysis chemical reaction. The movements of the spots represent tilting and rotational motions. The time trajectory of the diffraction intensity reflecting those motions was analysed by using single-pixel autocorrelation function (sp-ACF). Single-pixel ACF analysis revealed significant differences in the distributions of the ACF decay constants between silver halides, suggesting that the motions of single grains are different between them. The rotational diffusion coefficients for silver halides were estimated to be accurate at the level of approximately 0.1 to 0.3 pm 2 /s. Furthermore, newly formed silver grains on silver halides correlated with their ACF decay constants. Our high-resolution atomic scale measurement—sp-ACF analysis of diffraction patterns of individual grains—is useful for evaluating physical properties that are broadly applicable in physics, chemistry, and materials science.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-83320-y