Revisiting silk: a lens-free optical physical unclonable function

For modern security, devices, individuals, and communications require unprecedentedly unique identifiers and cryptographic keys. One emerging method for guaranteeing digital security is to take advantage of a physical unclonable function. Surprisingly, native silk, which has been commonly utilized i...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 13; no. 1; p. 247
Main Authors: Kim, Min Seok, Lee, Gil Ju, Leem, Jung Woo, Choi, Seungho, Kim, Young L., Song, Young Min
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 11-01-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For modern security, devices, individuals, and communications require unprecedentedly unique identifiers and cryptographic keys. One emerging method for guaranteeing digital security is to take advantage of a physical unclonable function. Surprisingly, native silk, which has been commonly utilized in everyday life as textiles, can be applied as a unique tag material, thereby removing the necessary apparatus for optical physical unclonable functions, such as an objective lens or a coherent light source. Randomly distributed fibers in silk generate spatially chaotic diffractions, forming self-focused spots on the millimeter scale. The silk-based physical unclonable function has a self-focusing, low-cost, and eco-friendly feature without relying on pre-/post-process for security tag creation. Using these properties, we implement a lens-free, optical, and portable physical unclonable function with silk identification cards and study its characteristics and reliability in a systemic manner. We further demonstrate the feasibility of the physical unclonable functions in two modes: authentication and data encryption. Although conventional optical physical unclonable functions (PUFs) are attractive for security applications, existing optical PUFs have inherent complexity. Here, the authors report a low-cost, lens-free and compact optical PUF that uses silk microfiber-based stochastic diffraction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27278-5