Synaptic inputs and timing underlying the velocity tuning of direction‐selective ganglion cells in rabbit retina

There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON–OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology Vol. 588; no. 17; pp. 3243 - 3253
Main Authors: Sivyer, Benjamin, Van Wyk, Michiel, Vaney, David I., Taylor, W. Rowland
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-09-2010
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON–OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive‐field properties were mapped by extracellular spike recordings and compared with the light‐evoked excitatory and inhibitory synaptic conductances that were measured under voltage‐clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred‐direction image motion elicits a greater excitatory input and null‐direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive‐field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON–OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast‐rising inhibition resulting in lower spike output. Retinal ganglion cells are the neurons that transmit visual information from the eye to the brain. Some of these retinal ganglion cells are direction‐selective ganglion cells (DSGCs), which respond best to images moving in a particular direction, called the preferred direction, and are silent for motion in the opposite direction. In the retina, two types of DSGCs that project to different brain nuclei are thought to serve different functions, and differ markedly in their preferences for the speed of image motion (speed tuning); the more common ON–OFF DSGCs respond well to a wide range of image speeds whereas the less common ON DSGCs respond well to relatively slow image speeds. We show that differences in the magnitude and timing of the synaptic input signals to these two types of DSGCs can account for their different preferences for the speed of image motion. Knowledge of how speed tuning is generated in DSGCs increases our understanding of how image motion is encoded and processed in the visual system.
AbstractList There are two types of direction-selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON-OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive-field properties were mapped by extracellular spike recordings and compared with the light-evoked excitatory and inhibitory synaptic conductances that were measured under voltage-clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred-direction image motion elicits a greater excitatory input and null-direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive-field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON-OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast-rising inhibition resulting in lower spike output. Retinal ganglion cells are the neurons that transmit visual information from the eye to the brain. Some of these retinal ganglion cells are direction-selective ganglion cells (DSGCs), which respond best to images moving in a particular direction, called the preferred direction, and are silent for motion in the opposite direction. In the retina, two types of DSGCs that project to different brain nuclei are thought to serve different functions, and differ markedly in their preferences for the speed of image motion (speed tuning); the more common ON-OFF DSGCs respond well to a wide range of image speeds whereas the less common ON DSGCs respond well to relatively slow image speeds. We show that differences in the magnitude and timing of the synaptic input signals to these two types of DSGCs can account for their different preferences for the speed of image motion. Knowledge of how speed tuning is generated in DSGCs increases our understanding of how image motion is encoded and processed in the visual system.
There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON–OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive‐field properties were mapped by extracellular spike recordings and compared with the light‐evoked excitatory and inhibitory synaptic conductances that were measured under voltage‐clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred‐direction image motion elicits a greater excitatory input and null‐direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive‐field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON–OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast‐rising inhibition resulting in lower spike output. Retinal ganglion cells are the neurons that transmit visual information from the eye to the brain. Some of these retinal ganglion cells are direction‐selective ganglion cells (DSGCs), which respond best to images moving in a particular direction, called the preferred direction, and are silent for motion in the opposite direction. In the retina, two types of DSGCs that project to different brain nuclei are thought to serve different functions, and differ markedly in their preferences for the speed of image motion (speed tuning); the more common ON–OFF DSGCs respond well to a wide range of image speeds whereas the less common ON DSGCs respond well to relatively slow image speeds. We show that differences in the magnitude and timing of the synaptic input signals to these two types of DSGCs can account for their different preferences for the speed of image motion. Knowledge of how speed tuning is generated in DSGCs increases our understanding of how image motion is encoded and processed in the visual system.
There are two types of direction-selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON-OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive-field properties were mapped by extracellular spike recordings and compared with the light-evoked excitatory and inhibitory synaptic conductances that were measured under voltage-clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred-direction image motion elicits a greater excitatory input and null-direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive-field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON-OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast-rising inhibition resulting in lower spike output.
Author Vaney, David I.
Sivyer, Benjamin
Van Wyk, Michiel
Taylor, W. Rowland
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Sivyer
  fullname: Sivyer, Benjamin
– sequence: 2
  givenname: Michiel
  surname: Van Wyk
  fullname: Van Wyk, Michiel
– sequence: 3
  givenname: David I.
  surname: Vaney
  fullname: Vaney, David I.
– sequence: 4
  givenname: W. Rowland
  surname: Taylor
  fullname: Taylor, W. Rowland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20624793$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFN0DIEgtWKf6LHW-QUMWvKoFEWVtOcjPjkccebGeq7HgEnpEnIWHaCtiw8tW5n4-ur88ZOgkxAEJPKbmglPKX2_1myi76C0YWSTNF5QO0okLqSinNT9CKEMYqrmp6is5y3hJCOdH6ETplRDIxMyuUvkzB7ovrsAv7sWRsQ4-L27mwxmPoIflpKcsG8AF87FyZcBnDosUB9y5BV1wMP7__yOCX-gB4bcPazyLuwPs8G-Nk29YVnKC4YB-jh4P1GZ7cnufo69s315fvq6tP7z5cvr6qupo3vGKCKa0lUCF6O5C-Y7RRupV2ULyTnFqlhQSrgNCGsZoPpKtBaVl3EnQ7NPwcvTr67sd2B30HoSTrzT65nU2TidaZvzvBbcw6HgzTShKqZ4MXtwYpfhshF7NzeXmTDRDHbBqlas25Iv8lVS3IvH2lZvL5P-Q2jinMezC0FjVnXPymnv05-v3Md_82A_oI3DgP032fErNkw9xlwyzZMMdsmOuPnwWZ7_4C0smzSg
CODEN JPHYA7
CitedBy_id crossref_primary_10_1016_j_cub_2019_08_048
crossref_primary_10_1109_TCDS_2019_2939024
crossref_primary_10_1523_JNEUROSCI_2778_13_2013
crossref_primary_10_1523_JNEUROSCI_3066_18_2019
crossref_primary_10_1146_annurev_vision_091517_034048
crossref_primary_10_1016_j_tins_2011_08_002
crossref_primary_10_1146_annurev_vision_082114_035502
crossref_primary_10_1371_journal_pbio_3000174
crossref_primary_10_1523_JNEUROSCI_5017_13_2014
crossref_primary_10_1038_nrn3165
crossref_primary_10_1242_jeb_222679
crossref_primary_10_1016_j_neuroscience_2015_12_016
crossref_primary_10_1017_S0952523814000364
crossref_primary_10_7554_eLife_42392
crossref_primary_10_1016_j_neuron_2013_08_005
crossref_primary_10_1016_j_cub_2016_03_073
crossref_primary_10_1016_j_neuron_2018_08_021
crossref_primary_10_7554_eLife_68181
crossref_primary_10_1016_j_brainres_2014_05_006
crossref_primary_10_1016_j_cub_2022_03_054
crossref_primary_10_3389_fnins_2015_00360
crossref_primary_10_1016_j_cub_2016_12_033
crossref_primary_10_1523_ENEURO_0183_22_2023
crossref_primary_10_1152_jn_00283_2014
crossref_primary_10_1016_j_celrep_2017_01_026
crossref_primary_10_1017_S0952523815000358
crossref_primary_10_1016_j_neuron_2011_08_031
crossref_primary_10_1016_j_celrep_2020_107844
crossref_primary_10_1038_s41467_022_32762_7
crossref_primary_10_1016_j_preteyeres_2018_06_003
crossref_primary_10_1523_JNEUROSCI_1971_16_2016
crossref_primary_10_1016_j_cub_2013_08_015
ContentType Journal Article
Copyright 2010 The Authors. Journal compilation © 2010 The Physiological Society
Journal compilation © 2010 The Physiological Society
Copyright_xml – notice: 2010 The Authors. Journal compilation © 2010 The Physiological Society
– notice: Journal compilation © 2010 The Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2010.192716
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 3253
ExternalDocumentID 3374227561
20624793
TJP4093
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY014888
– fundername: NEI NIH HHS
  grantid: EY014888
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
AAMNL
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5383-2427996e144daf0dc21879b6af73c631a7946ea7e0182253f0c5e7965c6e9bf83
IEDL.DBID RPM
ISSN 0022-3751
IngestDate Tue Sep 17 21:06:44 EDT 2024
Fri Oct 25 08:00:36 EDT 2024
Tue Aug 27 04:44:27 EDT 2024
Tue Nov 19 05:03:27 EST 2024
Sat Sep 28 07:51:18 EDT 2024
Sat Aug 24 00:56:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5383-2427996e144daf0dc21879b6af73c631a7946ea7e0182253f0c5e7965c6e9bf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://doi.org/10.1113/jphysiol.2010.192716
PMID 20624793
PQID 1545323477
PQPubID 1086388
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2976019
proquest_miscellaneous_877593370
proquest_miscellaneous_754000177
proquest_journals_1545323477
pubmed_primary_20624793
wiley_primary_10_1113_jphysiol_2010_192716_TJP4093
PublicationCentury 2000
PublicationDate September 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 1984; 220
2002; 19
2006; 51
1990; 302
2006; 95
1986; 253
2010; 107
1975; 38
1992; 324
1989; 280
1999; 286
1978; 276
1980; 190
2002; 418
1964; 173
1967; 155
2008; 586
2003; 456
1974; 240
2007; 55
1981; 21
1999; 408
2005; 46
2006; 576
2005; 47
1981; 44
1998; 15
1971; 30
2004; 472
2004; 556
1997; 77
1968; 199
2001
2000; 421
2005; 562
1965; 178
2001; 4
1984; 7
2006; 26
2002; 420
2002; 22
2003; 26
1994; 14
2008; 457
1988; 60
2009; 587
2001; 30
1989
12192402 - Nature. 2002 Aug 22;418(6900):845-52
16129402 - Neuron. 2005 Sep 1;47(5):739-50
12459782 - Nature. 2002 Nov 28;420(6914):411-4
16982423 - Neuron. 2006 Sep 21;51(6):787-99
2918098 - J Comp Neurol. 1989 Feb 1;280(1):97-121
12385627 - Vis Neurosci. 2002 Mar-Apr;19(2):145-62
7314476 - Vision Res. 1981;21(6):955-6
9605536 - Vis Neurosci. 1998 Mar-Apr;15(2):369-75
4944371 - Doc Ophthalmol. 1971 Sep 12;30:161-204
1702123 - J Comp Neurol. 1990 Dec 15;302(3):657-74
9065840 - J Neurophysiol. 1997 Feb;77(2):675-89
12196594 - J Neurosci. 2002 Sep 1;22(17):7712-20
12528191 - J Comp Neurol. 2003 Feb 10;456(3):267-78
5827909 - J Physiol. 1965 Jun;178(3):477-504
16624941 - J Neurosci. 2006 Apr 19;26(16):4206-15
6370078 - Annu Rev Neurosci. 1984;7:13-41
5710424 - J Physiol. 1968 Dec;199(3):613-35
11430810 - Neuron. 2001 Jun;30(3):771-80
12511082 - Vis Neurosci. 2002 Jul-Aug;19(4):495-509
1383291 - J Comp Neurol. 1992 Oct 15;324(3):322-35
7965037 - J Neurosci. 1994 Nov;14(11 Pt 1):6301-16
15564281 - J Physiol. 2005 Feb 1;562(Pt 3):915-23
6168481 - Exp Brain Res. 1981;44(1):27-33
17640521 - Neuron. 2007 Jul 19;55(2):179-86
6019094 - Science. 1967 Feb 17;155(3764):841-2
20212117 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5628-33
3236061 - J Neurophysiol. 1988 Dec;60(6):2055-72
12850434 - Trends Neurosci. 2003 Jul;26(7):379-85
10506556 - Science. 1999 Oct 1;286(5437):110-3
19218620 - J Physiol. 2009 Feb 15;587(Pt 4):713-9
14220259 - J Physiol. 1964 Oct;173:377-407
10331582 - J Comp Neurol. 1999 May 24;408(1):97-106
11175879 - Nat Neurosci. 2001 Feb;4(2):176-83
10813769 - J Comp Neurol. 2000 May 22;421(1):1-13
15820698 - Neuron. 2005 Apr 7;46(1):117-27
16901944 - J Physiol. 2006 Oct 1;576(Pt 1):197-202
14978206 - J Physiol. 2004 Apr 1;556(Pt 1):11-7
4421622 - J Physiol. 1974 Jul;240(2):421-56
18600343 - Pflugers Arch. 2008 Nov;457(2):561-8
7381054 - J Comp Neurol. 1980 Mar 1;190(1):49-61
6142459 - Proc R Soc Lond B Biol Sci. 1984 Feb 22;220(1221):501-8
18617561 - J Physiol. 2008 Sep 15;586(Pt 18):4371-6
3793989 - J Comp Neurol. 1986 Nov 8;253(2):163-74
650452 - J Physiol. 1978 Mar;276:299-310
7336584 - Vision Res. 1981;21(11):1559-63
16510780 - J Neurophysiol. 2006 Jun;95(6):3810-22
1127460 - J Neurophysiol. 1975 May;38(3):613-26
15024753 - J Comp Neurol. 2004 Apr 19;472(1):73-86
17182775 - J Neurosci. 2006 Dec 20;26(51):13250-63
References_xml – volume: 38
  start-page: 613
  year: 1975
  end-page: 626
  article-title: Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed
  publication-title: J Neurophysiol
– start-page: 157
  year: 1989
  end-page: 168
– volume: 21
  start-page: 1559
  year: 1981
  end-page: 1563
  article-title: Functional architecture of cone bipolar cells in mammalian retina
  publication-title: Vision Res
– volume: 30
  start-page: 161
  year: 1971
  end-page: 204
  article-title: Information processing in the rabbit visual system
  publication-title: Doc Ophthalmol
– volume: 280
  start-page: 97
  year: 1989
  end-page: 121
  article-title: Morphologies of rabbit retinal ganglion cells with complex receptive fields
  publication-title: J Comp Neurol
– volume: 253
  start-page: 163
  year: 1986
  end-page: 174
  article-title: Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system
  publication-title: J Comp Neurol
– volume: 324
  start-page: 322
  year: 1992
  end-page: 335
  article-title: Dendritic co‐stratification of ON and ON‐OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina
  publication-title: J Comp Neurol
– volume: 408
  start-page: 97
  year: 1999
  end-page: 106
  article-title: Costratification of a population of bipolar cells with the direction‐selective circuitry of the rabbit retina
  publication-title: J Comp Neurol
– volume: 26
  start-page: 4206
  year: 2006
  end-page: 4215
  article-title: Light‐induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina
  publication-title: J Neurosci
– volume: 19
  start-page: 145
  year: 2002
  end-page: 162
  article-title: A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells
  publication-title: Vis Neurosci
– volume: 77
  start-page: 675
  year: 1997
  end-page: 689
  article-title: Pharmacology of directionally selective ganglion cells in the rabbit retina
  publication-title: J Neurophysiol
– volume: 7
  start-page: 13
  year: 1984
  end-page: 41
  article-title: The accessory optic system
  publication-title: Annu Rev Neurosci
– volume: 14
  start-page: 6301
  year: 1994
  end-page: 6316
  article-title: Territorial organization of direction‐selective ganglion cells in rabbit retina
  publication-title: J Neurosci
– volume: 190
  start-page: 49
  year: 1980
  end-page: 61
  article-title: Retinal ganglion cells projecting to the rabbit accessory optic system
  publication-title: J Comp Neurol
– volume: 562
  start-page: 915
  year: 2005
  end-page: 923
  article-title: Identification of ON‐OFF direction‐selective ganglion cells in the mouse retina
  publication-title: J Physiol
– volume: 587
  start-page: 713
  year: 2009
  end-page: 719
  article-title: Reporting ethical matters in : standards and advice
  publication-title: J Physiol
– volume: 586
  start-page: 4371
  year: 2008
  end-page: 4376
  article-title: Synaptic physiology of direction selectivity in the retina
  publication-title: J Physiol
– volume: 472
  start-page: 73
  year: 2004
  end-page: 86
  article-title: The population of bipolar cells in the rabbit retina
  publication-title: J Comp Neurol
– volume: 22
  start-page: 7712
  year: 2002
  end-page: 7720
  article-title: Diverse synaptic mechanisms generate direction selectivity in the rabbit retina
  publication-title: J Neurosci
– volume: 107
  start-page: 5628
  year: 2010
  end-page: 5633
  article-title: Uniformity detector retinal ganglion cells fire complex spikes and receive only light‐evoked inhibition
  publication-title: Proc Natl Acad Sci U S A
– start-page: 13
  year: 2001
  end-page: 56
– volume: 47
  start-page: 739
  year: 2005
  end-page: 750
  article-title: Direction‐selective dendritic action potentials in rabbit retina
  publication-title: Neuron
– volume: 418
  start-page: 845
  year: 2002
  end-page: 852
  article-title: Directionally selective calcium signals in dendrites of starburst amacrine cells
  publication-title: Nature
– volume: 576
  start-page: 197
  year: 2006
  end-page: 202
  article-title: ON direction‐selective ganglion cells in the mouse retina
  publication-title: J Physiol
– volume: 51
  start-page: 787
  year: 2006
  end-page: 799
  article-title: The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells
  publication-title: Neuron
– volume: 457
  start-page: 561
  year: 2008
  end-page: 568
  article-title: Semi‐loose seal Neurobiotin electroporation for combined structural and functional analysis of neurons
  publication-title: Pflügers Arch
– volume: 4
  start-page: 176
  year: 2001
  end-page: 183
  article-title: The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell
  publication-title: Nat Neurosci
– volume: 55
  start-page: 179
  year: 2007
  end-page: 186
  article-title: Cellular mechanisms for direction selectivity in the retina
  publication-title: Neuron
– volume: 199
  start-page: 613
  year: 1968
  end-page: 635
  article-title: The analysis of image motion by the rabbit retina
  publication-title: J Physiol
– volume: 220
  start-page: 501
  year: 1984
  end-page: 508
  article-title: ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology
  publication-title: Proc R Soc Lond B Biol Sci
– volume: 155
  start-page: 841
  year: 1967
  end-page: 842
  article-title: Direction‐selective units in rabbit retina: distribution of preferred directions
  publication-title: Science
– volume: 421
  start-page: 1
  year: 2000
  end-page: 13
  article-title: The dendritic architecture of the cholinergic plexus in the rabbit retina: selective labeling by glycine accumulation in the presence of sarcosine
  publication-title: J Comp Neurol
– volume: 302
  start-page: 657
  year: 1990
  end-page: 674
  article-title: Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit
  publication-title: J Comp Neurol
– volume: 178
  start-page: 477
  year: 1965
  end-page: 504
  article-title: The mechanism of directionally selective units in rabbit's retina
  publication-title: J Physiol
– volume: 95
  start-page: 3810
  year: 2006
  end-page: 3822
  article-title: Parallel processing in retinal ganglion cells: how integration of space‐time patterns of excitation and inhibition form the spiking output
  publication-title: J Neurophysiol
– volume: 26
  start-page: 13250
  year: 2006
  end-page: 13263
  article-title: Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina
  publication-title: J Neurosci
– volume: 21
  start-page: 955
  year: 1981
  end-page: 956
  article-title: Contact lenses change the projection of visual field onto rabbit peripheral retina
  publication-title: Vision Res
– volume: 26
  start-page: 379
  year: 2003
  end-page: 385
  article-title: New directions in retinal research
  publication-title: Trends Neurosci
– volume: 286
  start-page: 110
  year: 1999
  end-page: 113
  article-title: Precisely localized LTD in the neocortex revealed by infrared‐guided laser stimulation
  publication-title: Science
– volume: 240
  start-page: 421
  year: 1974
  end-page: 456
  article-title: Brisk and sluggish concentrically organized ganglion cells in the cat's retina
  publication-title: J Physiol
– volume: 60
  start-page: 2055
  year: 1988
  end-page: 2072
  article-title: The accessory optic system of rabbit. II. Spatial organization of direction selectivity
  publication-title: J Neurophysiol
– volume: 46
  start-page: 117
  year: 2005
  end-page: 127
  article-title: Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina
  publication-title: Neuron
– volume: 456
  start-page: 267
  year: 2003
  end-page: 278
  article-title: Synaptic input to the on‐off directionally selective ganglion cell in the rabbit retina
  publication-title: J Comp Neurol
– volume: 19
  start-page: 495
  year: 2002
  end-page: 509
  article-title: Effects of the destruction of starburst‐cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity
  publication-title: Vis Neurosci
– volume: 30
  start-page: 771
  year: 2001
  end-page: 780
  article-title: A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement
  publication-title: Neuron
– volume: 173
  start-page: 377
  year: 1964
  end-page: 407
  article-title: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit
  publication-title: J Physiol
– volume: 420
  start-page: 411
  year: 2002
  end-page: 414
  article-title: Mechanisms and circuitry underlying directional selectivity in the retina
  publication-title: Nature
– volume: 44
  start-page: 27
  year: 1981
  end-page: 33
  article-title: Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties
  publication-title: Exp Brain Res
– volume: 276
  start-page: 299
  year: 1978
  end-page: 310
  article-title: Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: changes in centre surround receptive fields
  publication-title: J Physiol
– volume: 15
  start-page: 369
  year: 1998
  end-page: 375
  article-title: ON direction‐selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation
  publication-title: Vis Neurosci
– volume: 556
  start-page: 11
  year: 2004
  end-page: 17
  article-title: Dendritic relationship between starburst amacrine cells and direction‐selective ganglion cells in the rabbit retina
  publication-title: J Physiol
SSID ssj0013099
Score 2.209241
Snippet There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and...
There are two types of direction-selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and...
SourceID pubmedcentral
proquest
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3243
SubjectTerms Animals
Circadian rhythm
Female
Light effects
Male
Neuroscience
Photic Stimulation - methods
Rabbits
Retina
Retina - cytology
Retina - physiology
Retinal ganglion cells
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - physiology
Synapses - physiology
Synaptic Transmission - physiology
Time Factors
Velocity
SummonAdditionalLinks – databaseName: Wiley-Blackwell
  dbid: 33P
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgKza8yiNQ0F0gdhEZO4njZQUdIRZopBaJnWU7zjCoONUkWcyun9Bv7Jdwb5wJVFQsEGs_JMv3cY59H4y9qaSrua9UWntp0twJnir0ushapfFVVdIfIj1dnMrPX6sPJ1QmZ7nPhYn1IeYHN9KM0V6Tghs7dSFZULGB7yP1b89jeBYCFUT-aIqRMIyZHGL16zMhU2ouGi6LxZRBh9u8u22T27DmnyGTv0PZ0RctH_yvUzxk9yc0CsdRfB6xOz48ZofHAZn4jx28hVVc1q53h2x7ugsGDYyDTbgY-g5MqKGnpmBroEy07TllTAECSqA4JIfwHvqBnl2gbSC6ThSC68urbuy9g2YW1oayiNsA9H_Q4cawNdZueqDcymCesC_Lk7P3H9OpY0Pq0HAK-l-WSKA8srTaNFntODUzt6VppHClWBgqZ--N9BnSGl6IJnOFl6osXOmVbSrxlB2ENvjnDJwVlV0oUyiEbNblKjPGFk2FTjfPhMkTdrS_JT2pXacJDwoucikTBvMwKgydwgTfDp2WiFHJN_9lSiVloYSQWcKexWvXF7H2h-ZZyekxMmHyhkDME6hc982RsPk2lu3miuKPVML4KBDzikjDhN6LgiZR0FEU9NmnFTJw8eJfFr1k92KsA0XEHbGDfjv4V-xuVw-vRwX5CWbHGRM
  priority: 102
  providerName: Wiley-Blackwell
Title Synaptic inputs and timing underlying the velocity tuning of direction‐selective ganglion cells in rabbit retina
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2010.192716
https://www.ncbi.nlm.nih.gov/pubmed/20624793
https://www.proquest.com/docview/1545323477
https://search.proquest.com/docview/754000177
https://search.proquest.com/docview/877593370
https://pubmed.ncbi.nlm.nih.gov/PMC2976019
Volume 588
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB51c-qlapM-aJPIh6o3soAB42OUh6pKrVZKKvVm2cZst9o1qwUO--87w2OVKFEPPfMwMIPn-8bfjAE-F8KWiStkWDqhw9TyJJQYdZG1Cu2KIqc1REpd3Ikfv4rrG2qTk021ML1o35rVhV9vLvzqd6-t3G7sfNKJzRffrxJJSg45n8EMseFE0aelg0jKQ4twkcVjvVwc8_mfPltQrwdFF2IbJAvUDTjKE0owPQcyn2olH2LYPgjdvoZXI3pkl8NTvoEXzh_DyaVH5rzZsy9sMYxcL_cnsL3be40TgmUrv-3ahmlfspY28VoyqhzbranCiSEAZKQbsgjHWdtRmoTVFRtCHRotbPqdcnBSZEtNNb-1Z5Ttb_C2bKeNWbWMKiG9fgs_b2_ur76G4_4KocVpjtNqsEC645BTlbqKSpvQ1uMm15XgNuexpubzTgsXIQlJMl5FNnNC5pnNnTRVwd_Bka-9-wDMGl6YWOpMIsAyNpWR1iarCgyRacR1GsDp9GnV-JM0itAbT3gqRADscBjdm95Ce1d3jRKIKCmS_uOUQohMci6iAN4PtlLboVOHmiwbgHhkxcMJ1Fz78RH0ub7J9uhjASS9vQ9XDKSJq8mXFPmSGnxJ3X9bIF_mH_97uE_wcpAnkIjtFI7aXefOYNaU3TnMOF-c977-F_C7A04
link.rule.ids 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RcoBLeRRooIAPiFtENk7i-FhBS4FSrdRF4mY5jrNd1DrVJjnsrT-hv7G_hJk4G6ioOCDOfkiW5_HNG-BNLkwZ21yGpRU6TAyPQ4laF61WoW2eZxRDJNfFiTj-nn_YpzY5H9e1ML4_xOhwI87o5TUxODmkBy6nbgM_etu_PvP5WYhUEPpvwN0kQ5qkWg4-_RVOiKQc24aLdDLU0OE972675Ta0-WfS5O9gttdGBw_-2zsewtYASNmep6BHcMe6x7C959AYP1-xt2zqj9Xz1TYsT1ZOo4wxbOEuurZh2pWspblgc0bFaMszKppiiCkZpSIZRPis7cjzwuqKee2JdHB9edX043dQ0rK5pkLi2jEKITR4MVvqoli0jMornX4C3w72Z-8Pw2FoQ2hQdnIKMQu0oSwaaqWuotLENM-8yHQluMn4RFNHe6uFjdCyiVNeRSa1Qmapyawsqpw_hU1XO7sDzBQ8LyZSpxJRW2ESGWldpFWOejeJuE4C2F1_kxo4r1EECXnMEyECYOMy8gy9Qjtbd40SCFNJPf9lSy5EKjkXUQDP_L-rC9_-Q8VRFpM_MgBxgyLGDdSx--aKW5z2nbtjSSlIMoC4p4jxhLfEuFqTgiJSUJ4U1OzzFI1w_vxfDr2Ge4ezr0fq6NPxlxdw36c-UILcLmy2y86-hI2m7F713PITBFUdOw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RIiEuvMojUMAHxC0iaydxfKxoV7xUrdQicbMcx1kWFWe1SQ574yfwG_klzMTZQEXFAXH2Q7I84_nGM_MNwItC2oq7QsWVkyZOreCxQquLXqs0rihyiiHS18WZPP1UHJ8QTc58VwsT-CGmDzfSjOG9JgVfV_Wo5EQ28GVw_ZuLkJ6FQAWR_x5cTxGRE4e-EItf0YREqYk1XGazsYQO93l11S5Xgc0_cyZ_x7KDMZrf_l_HuAO3RjjKjoL83IVrzt-DgyOPrvjXLXvJFmFZs9wewOZs6w2-MJat_LrvWmZ8xTrqCrZkVIq2uaCSKYaIklEikkV8z7qe_l1YU7NgO1EKfnz73g7Nd_CdZUtDZcSNZxRAaHFjtjFlueoYFVd6cx8-zk_OX7-Jx5YNscWXU1CAWaIH5dBNq0ydVJZTN_MyN7UUNhczQ3z2zkiXoF_DM1EnNnNS5ZnNnSrrQjyAfd949wiYLUVRzpTJFGK20qYqMabM6gKtbpoIk0ZwuLslPepdqwkQCi5SKSNg0zBqDJ3CeNf0rZYIUsk4_2VKIWWmhJBJBA_Dtet1IP_QPMk5_UZGIC8JxDSB-Lovj_jV54G3mytKQFIR8EEgphXBDxN6JwqaREEHUdDn7xbogovH_7LoOdxYHM_1h7en75_AzZD3QNlxh7DfbXr3FPbaqn826MpPg8Mb4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synaptic+inputs+and+timing+underlying+the+velocity+tuning+of+direction%E2%80%90selective+ganglion+cells+in+rabbit+retina&rft.jtitle=The+Journal+of+physiology&rft.au=Sivyer%2C+Benjamin&rft.au=Van+Wyk%2C+Michiel&rft.au=Vaney%2C+David+I.&rft.au=Taylor%2C+W.+Rowland&rft.date=2010-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=588&rft.issue=17&rft.spage=3243&rft.epage=3253&rft_id=info:doi/10.1113%2Fjphysiol.2010.192716&rft.externalDBID=10.1113%252Fjphysiol.2010.192716&rft.externalDocID=TJP4093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon