Synaptic inputs and timing underlying the velocity tuning of direction‐selective ganglion cells in rabbit retina
There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON–OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned...
Saved in:
Published in: | The Journal of physiology Vol. 588; no. 17; pp. 3243 - 3253 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-09-2010
Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON–OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive‐field properties were mapped by extracellular spike recordings and compared with the light‐evoked excitatory and inhibitory synaptic conductances that were measured under voltage‐clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred‐direction image motion elicits a greater excitatory input and null‐direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive‐field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON–OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast‐rising inhibition resulting in lower spike output.
Retinal ganglion cells are the neurons that transmit visual information from the eye to the brain. Some of these retinal ganglion cells are direction‐selective ganglion cells (DSGCs), which respond best to images moving in a particular direction, called the preferred direction, and are silent for motion in the opposite direction. In the retina, two types of DSGCs that project to different brain nuclei are thought to serve different functions, and differ markedly in their preferences for the speed of image motion (speed tuning); the more common ON–OFF DSGCs respond well to a wide range of image speeds whereas the less common ON DSGCs respond well to relatively slow image speeds. We show that differences in the magnitude and timing of the synaptic input signals to these two types of DSGCs can account for their different preferences for the speed of image motion. Knowledge of how speed tuning is generated in DSGCs increases our understanding of how image motion is encoded and processed in the visual system. |
---|---|
AbstractList | There are two types of direction-selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON-OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive-field properties were mapped by extracellular spike recordings and compared with the light-evoked excitatory and inhibitory synaptic conductances that were measured under voltage-clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred-direction image motion elicits a greater excitatory input and null-direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive-field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON-OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast-rising inhibition resulting in lower spike output. Retinal ganglion cells are the neurons that transmit visual information from the eye to the brain. Some of these retinal ganglion cells are direction-selective ganglion cells (DSGCs), which respond best to images moving in a particular direction, called the preferred direction, and are silent for motion in the opposite direction. In the retina, two types of DSGCs that project to different brain nuclei are thought to serve different functions, and differ markedly in their preferences for the speed of image motion (speed tuning); the more common ON-OFF DSGCs respond well to a wide range of image speeds whereas the less common ON DSGCs respond well to relatively slow image speeds. We show that differences in the magnitude and timing of the synaptic input signals to these two types of DSGCs can account for their different preferences for the speed of image motion. Knowledge of how speed tuning is generated in DSGCs increases our understanding of how image motion is encoded and processed in the visual system. There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON–OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive‐field properties were mapped by extracellular spike recordings and compared with the light‐evoked excitatory and inhibitory synaptic conductances that were measured under voltage‐clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred‐direction image motion elicits a greater excitatory input and null‐direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive‐field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON–OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast‐rising inhibition resulting in lower spike output. Retinal ganglion cells are the neurons that transmit visual information from the eye to the brain. Some of these retinal ganglion cells are direction‐selective ganglion cells (DSGCs), which respond best to images moving in a particular direction, called the preferred direction, and are silent for motion in the opposite direction. In the retina, two types of DSGCs that project to different brain nuclei are thought to serve different functions, and differ markedly in their preferences for the speed of image motion (speed tuning); the more common ON–OFF DSGCs respond well to a wide range of image speeds whereas the less common ON DSGCs respond well to relatively slow image speeds. We show that differences in the magnitude and timing of the synaptic input signals to these two types of DSGCs can account for their different preferences for the speed of image motion. Knowledge of how speed tuning is generated in DSGCs increases our understanding of how image motion is encoded and processed in the visual system. There are two types of direction-selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and physiologically. The well characterized ON-OFF DSGCs respond to a broad range of image velocities whereas the less common ON DSGCs are tuned to slower image velocities. This study examined how the synaptic inputs shape the velocity tuning of DSGCs in an isolated preparation of the rabbit retina. The receptive-field properties were mapped by extracellular spike recordings and compared with the light-evoked excitatory and inhibitory synaptic conductances that were measured under voltage-clamp. The synaptic mechanisms underlying the generation of direction selectivity appear to be similar in both cell types in that preferred-direction image motion elicits a greater excitatory input and null-direction image motion elicits a greater inhibitory input. To examine the temporal tuning of the DSGCs, the cells were stimulated with either a grating drifted over the receptive-field centre at a range of velocities or with a light spot flickered at different temporal frequencies. Whereas the excitatory and inhibitory inputs to the ON-OFF DSGCs are relatively constant over a wide range of temporal frequencies, the ON DSGCs receive less excitation and more inhibition at higher temporal frequencies. Moreover, transient inhibition precedes sustained excitation in the ON DSGCs, leading to slowly activating, sustained spike responses. Consequently, at higher temporal frequencies, weaker excitation combines with fast-rising inhibition resulting in lower spike output. |
Author | Vaney, David I. Sivyer, Benjamin Van Wyk, Michiel Taylor, W. Rowland |
Author_xml | – sequence: 1 givenname: Benjamin surname: Sivyer fullname: Sivyer, Benjamin – sequence: 2 givenname: Michiel surname: Van Wyk fullname: Van Wyk, Michiel – sequence: 3 givenname: David I. surname: Vaney fullname: Vaney, David I. – sequence: 4 givenname: W. Rowland surname: Taylor fullname: Taylor, W. Rowland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20624793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFN0DIEgtWKf6LHW-QUMWvKoFEWVtOcjPjkccebGeq7HgEnpEnIWHaCtiw8tW5n4-ur88ZOgkxAEJPKbmglPKX2_1myi76C0YWSTNF5QO0okLqSinNT9CKEMYqrmp6is5y3hJCOdH6ETplRDIxMyuUvkzB7ovrsAv7sWRsQ4-L27mwxmPoIflpKcsG8AF87FyZcBnDosUB9y5BV1wMP7__yOCX-gB4bcPazyLuwPs8G-Nk29YVnKC4YB-jh4P1GZ7cnufo69s315fvq6tP7z5cvr6qupo3vGKCKa0lUCF6O5C-Y7RRupV2ULyTnFqlhQSrgNCGsZoPpKtBaVl3EnQ7NPwcvTr67sd2B30HoSTrzT65nU2TidaZvzvBbcw6HgzTShKqZ4MXtwYpfhshF7NzeXmTDRDHbBqlas25Iv8lVS3IvH2lZvL5P-Q2jinMezC0FjVnXPymnv05-v3Md_82A_oI3DgP032fErNkw9xlwyzZMMdsmOuPnwWZ7_4C0smzSg |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1016_j_cub_2019_08_048 crossref_primary_10_1109_TCDS_2019_2939024 crossref_primary_10_1523_JNEUROSCI_2778_13_2013 crossref_primary_10_1523_JNEUROSCI_3066_18_2019 crossref_primary_10_1146_annurev_vision_091517_034048 crossref_primary_10_1016_j_tins_2011_08_002 crossref_primary_10_1146_annurev_vision_082114_035502 crossref_primary_10_1371_journal_pbio_3000174 crossref_primary_10_1523_JNEUROSCI_5017_13_2014 crossref_primary_10_1038_nrn3165 crossref_primary_10_1242_jeb_222679 crossref_primary_10_1016_j_neuroscience_2015_12_016 crossref_primary_10_1017_S0952523814000364 crossref_primary_10_7554_eLife_42392 crossref_primary_10_1016_j_neuron_2013_08_005 crossref_primary_10_1016_j_cub_2016_03_073 crossref_primary_10_1016_j_neuron_2018_08_021 crossref_primary_10_7554_eLife_68181 crossref_primary_10_1016_j_brainres_2014_05_006 crossref_primary_10_1016_j_cub_2022_03_054 crossref_primary_10_3389_fnins_2015_00360 crossref_primary_10_1016_j_cub_2016_12_033 crossref_primary_10_1523_ENEURO_0183_22_2023 crossref_primary_10_1152_jn_00283_2014 crossref_primary_10_1016_j_celrep_2017_01_026 crossref_primary_10_1017_S0952523815000358 crossref_primary_10_1016_j_neuron_2011_08_031 crossref_primary_10_1016_j_celrep_2020_107844 crossref_primary_10_1038_s41467_022_32762_7 crossref_primary_10_1016_j_preteyeres_2018_06_003 crossref_primary_10_1523_JNEUROSCI_1971_16_2016 crossref_primary_10_1016_j_cub_2013_08_015 |
ContentType | Journal Article |
Copyright | 2010 The Authors. Journal compilation © 2010 The Physiological Society Journal compilation © 2010 The Physiological Society |
Copyright_xml | – notice: 2010 The Authors. Journal compilation © 2010 The Physiological Society – notice: Journal compilation © 2010 The Physiological Society |
DBID | CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2010.192716 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 3253 |
ExternalDocumentID | 3374227561 20624793 TJP4093 |
Genre | article Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY014888 – fundername: NEI NIH HHS grantid: EY014888 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3EH 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AANLZ AAONW AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FA8 FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HGLYW HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SAMSI SUPJJ TEORI TLM TN5 TR2 UB1 UKR UPT V8K VH1 W8F W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YBU YHG YKV YQT YSK YXB YYP YZZ ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD AAMNL FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5383-2427996e144daf0dc21879b6af73c631a7946ea7e0182253f0c5e7965c6e9bf83 |
IEDL.DBID | RPM |
ISSN | 0022-3751 |
IngestDate | Tue Sep 17 21:06:44 EDT 2024 Fri Oct 25 08:00:36 EDT 2024 Tue Aug 27 04:44:27 EDT 2024 Tue Nov 19 05:03:27 EST 2024 Sat Sep 28 07:51:18 EDT 2024 Sat Aug 24 00:56:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5383-2427996e144daf0dc21879b6af73c631a7946ea7e0182253f0c5e7965c6e9bf83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doi.org/10.1113/jphysiol.2010.192716 |
PMID | 20624793 |
PQID | 1545323477 |
PQPubID | 1086388 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2976019 proquest_miscellaneous_877593370 proquest_miscellaneous_754000177 proquest_journals_1545323477 pubmed_primary_20624793 wiley_primary_10_1113_jphysiol_2010_192716_TJP4093 |
PublicationCentury | 2000 |
PublicationDate | September 2010 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 1984; 220 2002; 19 2006; 51 1990; 302 2006; 95 1986; 253 2010; 107 1975; 38 1992; 324 1989; 280 1999; 286 1978; 276 1980; 190 2002; 418 1964; 173 1967; 155 2008; 586 2003; 456 1974; 240 2007; 55 1981; 21 1999; 408 2005; 46 2006; 576 2005; 47 1981; 44 1998; 15 1971; 30 2004; 472 2004; 556 1997; 77 1968; 199 2001 2000; 421 2005; 562 1965; 178 2001; 4 1984; 7 2006; 26 2002; 420 2002; 22 2003; 26 1994; 14 2008; 457 1988; 60 2009; 587 2001; 30 1989 12192402 - Nature. 2002 Aug 22;418(6900):845-52 16129402 - Neuron. 2005 Sep 1;47(5):739-50 12459782 - Nature. 2002 Nov 28;420(6914):411-4 16982423 - Neuron. 2006 Sep 21;51(6):787-99 2918098 - J Comp Neurol. 1989 Feb 1;280(1):97-121 12385627 - Vis Neurosci. 2002 Mar-Apr;19(2):145-62 7314476 - Vision Res. 1981;21(6):955-6 9605536 - Vis Neurosci. 1998 Mar-Apr;15(2):369-75 4944371 - Doc Ophthalmol. 1971 Sep 12;30:161-204 1702123 - J Comp Neurol. 1990 Dec 15;302(3):657-74 9065840 - J Neurophysiol. 1997 Feb;77(2):675-89 12196594 - J Neurosci. 2002 Sep 1;22(17):7712-20 12528191 - J Comp Neurol. 2003 Feb 10;456(3):267-78 5827909 - J Physiol. 1965 Jun;178(3):477-504 16624941 - J Neurosci. 2006 Apr 19;26(16):4206-15 6370078 - Annu Rev Neurosci. 1984;7:13-41 5710424 - J Physiol. 1968 Dec;199(3):613-35 11430810 - Neuron. 2001 Jun;30(3):771-80 12511082 - Vis Neurosci. 2002 Jul-Aug;19(4):495-509 1383291 - J Comp Neurol. 1992 Oct 15;324(3):322-35 7965037 - J Neurosci. 1994 Nov;14(11 Pt 1):6301-16 15564281 - J Physiol. 2005 Feb 1;562(Pt 3):915-23 6168481 - Exp Brain Res. 1981;44(1):27-33 17640521 - Neuron. 2007 Jul 19;55(2):179-86 6019094 - Science. 1967 Feb 17;155(3764):841-2 20212117 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5628-33 3236061 - J Neurophysiol. 1988 Dec;60(6):2055-72 12850434 - Trends Neurosci. 2003 Jul;26(7):379-85 10506556 - Science. 1999 Oct 1;286(5437):110-3 19218620 - J Physiol. 2009 Feb 15;587(Pt 4):713-9 14220259 - J Physiol. 1964 Oct;173:377-407 10331582 - J Comp Neurol. 1999 May 24;408(1):97-106 11175879 - Nat Neurosci. 2001 Feb;4(2):176-83 10813769 - J Comp Neurol. 2000 May 22;421(1):1-13 15820698 - Neuron. 2005 Apr 7;46(1):117-27 16901944 - J Physiol. 2006 Oct 1;576(Pt 1):197-202 14978206 - J Physiol. 2004 Apr 1;556(Pt 1):11-7 4421622 - J Physiol. 1974 Jul;240(2):421-56 18600343 - Pflugers Arch. 2008 Nov;457(2):561-8 7381054 - J Comp Neurol. 1980 Mar 1;190(1):49-61 6142459 - Proc R Soc Lond B Biol Sci. 1984 Feb 22;220(1221):501-8 18617561 - J Physiol. 2008 Sep 15;586(Pt 18):4371-6 3793989 - J Comp Neurol. 1986 Nov 8;253(2):163-74 650452 - J Physiol. 1978 Mar;276:299-310 7336584 - Vision Res. 1981;21(11):1559-63 16510780 - J Neurophysiol. 2006 Jun;95(6):3810-22 1127460 - J Neurophysiol. 1975 May;38(3):613-26 15024753 - J Comp Neurol. 2004 Apr 19;472(1):73-86 17182775 - J Neurosci. 2006 Dec 20;26(51):13250-63 |
References_xml | – volume: 38 start-page: 613 year: 1975 end-page: 626 article-title: Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed publication-title: J Neurophysiol – start-page: 157 year: 1989 end-page: 168 – volume: 21 start-page: 1559 year: 1981 end-page: 1563 article-title: Functional architecture of cone bipolar cells in mammalian retina publication-title: Vision Res – volume: 30 start-page: 161 year: 1971 end-page: 204 article-title: Information processing in the rabbit visual system publication-title: Doc Ophthalmol – volume: 280 start-page: 97 year: 1989 end-page: 121 article-title: Morphologies of rabbit retinal ganglion cells with complex receptive fields publication-title: J Comp Neurol – volume: 253 start-page: 163 year: 1986 end-page: 174 article-title: Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system publication-title: J Comp Neurol – volume: 324 start-page: 322 year: 1992 end-page: 335 article-title: Dendritic co‐stratification of ON and ON‐OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina publication-title: J Comp Neurol – volume: 408 start-page: 97 year: 1999 end-page: 106 article-title: Costratification of a population of bipolar cells with the direction‐selective circuitry of the rabbit retina publication-title: J Comp Neurol – volume: 26 start-page: 4206 year: 2006 end-page: 4215 article-title: Light‐induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina publication-title: J Neurosci – volume: 19 start-page: 145 year: 2002 end-page: 162 article-title: A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells publication-title: Vis Neurosci – volume: 77 start-page: 675 year: 1997 end-page: 689 article-title: Pharmacology of directionally selective ganglion cells in the rabbit retina publication-title: J Neurophysiol – volume: 7 start-page: 13 year: 1984 end-page: 41 article-title: The accessory optic system publication-title: Annu Rev Neurosci – volume: 14 start-page: 6301 year: 1994 end-page: 6316 article-title: Territorial organization of direction‐selective ganglion cells in rabbit retina publication-title: J Neurosci – volume: 190 start-page: 49 year: 1980 end-page: 61 article-title: Retinal ganglion cells projecting to the rabbit accessory optic system publication-title: J Comp Neurol – volume: 562 start-page: 915 year: 2005 end-page: 923 article-title: Identification of ON‐OFF direction‐selective ganglion cells in the mouse retina publication-title: J Physiol – volume: 587 start-page: 713 year: 2009 end-page: 719 article-title: Reporting ethical matters in : standards and advice publication-title: J Physiol – volume: 586 start-page: 4371 year: 2008 end-page: 4376 article-title: Synaptic physiology of direction selectivity in the retina publication-title: J Physiol – volume: 472 start-page: 73 year: 2004 end-page: 86 article-title: The population of bipolar cells in the rabbit retina publication-title: J Comp Neurol – volume: 22 start-page: 7712 year: 2002 end-page: 7720 article-title: Diverse synaptic mechanisms generate direction selectivity in the rabbit retina publication-title: J Neurosci – volume: 107 start-page: 5628 year: 2010 end-page: 5633 article-title: Uniformity detector retinal ganglion cells fire complex spikes and receive only light‐evoked inhibition publication-title: Proc Natl Acad Sci U S A – start-page: 13 year: 2001 end-page: 56 – volume: 47 start-page: 739 year: 2005 end-page: 750 article-title: Direction‐selective dendritic action potentials in rabbit retina publication-title: Neuron – volume: 418 start-page: 845 year: 2002 end-page: 852 article-title: Directionally selective calcium signals in dendrites of starburst amacrine cells publication-title: Nature – volume: 576 start-page: 197 year: 2006 end-page: 202 article-title: ON direction‐selective ganglion cells in the mouse retina publication-title: J Physiol – volume: 51 start-page: 787 year: 2006 end-page: 799 article-title: The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells publication-title: Neuron – volume: 457 start-page: 561 year: 2008 end-page: 568 article-title: Semi‐loose seal Neurobiotin electroporation for combined structural and functional analysis of neurons publication-title: Pflügers Arch – volume: 4 start-page: 176 year: 2001 end-page: 183 article-title: The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell publication-title: Nat Neurosci – volume: 55 start-page: 179 year: 2007 end-page: 186 article-title: Cellular mechanisms for direction selectivity in the retina publication-title: Neuron – volume: 199 start-page: 613 year: 1968 end-page: 635 article-title: The analysis of image motion by the rabbit retina publication-title: J Physiol – volume: 220 start-page: 501 year: 1984 end-page: 508 article-title: ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology publication-title: Proc R Soc Lond B Biol Sci – volume: 155 start-page: 841 year: 1967 end-page: 842 article-title: Direction‐selective units in rabbit retina: distribution of preferred directions publication-title: Science – volume: 421 start-page: 1 year: 2000 end-page: 13 article-title: The dendritic architecture of the cholinergic plexus in the rabbit retina: selective labeling by glycine accumulation in the presence of sarcosine publication-title: J Comp Neurol – volume: 302 start-page: 657 year: 1990 end-page: 674 article-title: Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit publication-title: J Comp Neurol – volume: 178 start-page: 477 year: 1965 end-page: 504 article-title: The mechanism of directionally selective units in rabbit's retina publication-title: J Physiol – volume: 95 start-page: 3810 year: 2006 end-page: 3822 article-title: Parallel processing in retinal ganglion cells: how integration of space‐time patterns of excitation and inhibition form the spiking output publication-title: J Neurophysiol – volume: 26 start-page: 13250 year: 2006 end-page: 13263 article-title: Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina publication-title: J Neurosci – volume: 21 start-page: 955 year: 1981 end-page: 956 article-title: Contact lenses change the projection of visual field onto rabbit peripheral retina publication-title: Vision Res – volume: 26 start-page: 379 year: 2003 end-page: 385 article-title: New directions in retinal research publication-title: Trends Neurosci – volume: 286 start-page: 110 year: 1999 end-page: 113 article-title: Precisely localized LTD in the neocortex revealed by infrared‐guided laser stimulation publication-title: Science – volume: 240 start-page: 421 year: 1974 end-page: 456 article-title: Brisk and sluggish concentrically organized ganglion cells in the cat's retina publication-title: J Physiol – volume: 60 start-page: 2055 year: 1988 end-page: 2072 article-title: The accessory optic system of rabbit. II. Spatial organization of direction selectivity publication-title: J Neurophysiol – volume: 46 start-page: 117 year: 2005 end-page: 127 article-title: Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina publication-title: Neuron – volume: 456 start-page: 267 year: 2003 end-page: 278 article-title: Synaptic input to the on‐off directionally selective ganglion cell in the rabbit retina publication-title: J Comp Neurol – volume: 19 start-page: 495 year: 2002 end-page: 509 article-title: Effects of the destruction of starburst‐cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity publication-title: Vis Neurosci – volume: 30 start-page: 771 year: 2001 end-page: 780 article-title: A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement publication-title: Neuron – volume: 173 start-page: 377 year: 1964 end-page: 407 article-title: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit publication-title: J Physiol – volume: 420 start-page: 411 year: 2002 end-page: 414 article-title: Mechanisms and circuitry underlying directional selectivity in the retina publication-title: Nature – volume: 44 start-page: 27 year: 1981 end-page: 33 article-title: Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties publication-title: Exp Brain Res – volume: 276 start-page: 299 year: 1978 end-page: 310 article-title: Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: changes in centre surround receptive fields publication-title: J Physiol – volume: 15 start-page: 369 year: 1998 end-page: 375 article-title: ON direction‐selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation publication-title: Vis Neurosci – volume: 556 start-page: 11 year: 2004 end-page: 17 article-title: Dendritic relationship between starburst amacrine cells and direction‐selective ganglion cells in the rabbit retina publication-title: J Physiol |
SSID | ssj0013099 |
Score | 2.209241 |
Snippet | There are two types of direction‐selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and... There are two types of direction-selective ganglion cells (DSGCs) identified in the rabbit retina, which can be readily distinguished both morphologically and... |
SourceID | pubmedcentral proquest pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3243 |
SubjectTerms | Animals Circadian rhythm Female Light effects Male Neuroscience Photic Stimulation - methods Rabbits Retina Retina - cytology Retina - physiology Retinal ganglion cells Retinal Ganglion Cells - cytology Retinal Ganglion Cells - physiology Synapses - physiology Synaptic Transmission - physiology Time Factors Velocity |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell dbid: 33P link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgKza8yiNQ0F0gdhEZO4njZQUdIRZopBaJnWU7zjCoONUkWcyun9Bv7Jdwb5wJVFQsEGs_JMv3cY59H4y9qaSrua9UWntp0twJnir0ushapfFVVdIfIj1dnMrPX6sPJ1QmZ7nPhYn1IeYHN9KM0V6Tghs7dSFZULGB7yP1b89jeBYCFUT-aIqRMIyZHGL16zMhU2ouGi6LxZRBh9u8u22T27DmnyGTv0PZ0RctH_yvUzxk9yc0CsdRfB6xOz48ZofHAZn4jx28hVVc1q53h2x7ugsGDYyDTbgY-g5MqKGnpmBroEy07TllTAECSqA4JIfwHvqBnl2gbSC6ThSC68urbuy9g2YW1oayiNsA9H_Q4cawNdZueqDcymCesC_Lk7P3H9OpY0Pq0HAK-l-WSKA8srTaNFntODUzt6VppHClWBgqZ--N9BnSGl6IJnOFl6osXOmVbSrxlB2ENvjnDJwVlV0oUyiEbNblKjPGFk2FTjfPhMkTdrS_JT2pXacJDwoucikTBvMwKgydwgTfDp2WiFHJN_9lSiVloYSQWcKexWvXF7H2h-ZZyekxMmHyhkDME6hc982RsPk2lu3miuKPVML4KBDzikjDhN6LgiZR0FEU9NmnFTJw8eJfFr1k92KsA0XEHbGDfjv4V-xuVw-vRwX5CWbHGRM priority: 102 providerName: Wiley-Blackwell |
Title | Synaptic inputs and timing underlying the velocity tuning of direction‐selective ganglion cells in rabbit retina |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2010.192716 https://www.ncbi.nlm.nih.gov/pubmed/20624793 https://www.proquest.com/docview/1545323477 https://search.proquest.com/docview/754000177 https://search.proquest.com/docview/877593370 https://pubmed.ncbi.nlm.nih.gov/PMC2976019 |
Volume | 588 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB51c-qlapM-aJPIh6o3soAB42OUh6pKrVZKKvVm2cZst9o1qwUO--87w2OVKFEPPfMwMIPn-8bfjAE-F8KWiStkWDqhw9TyJJQYdZG1Cu2KIqc1REpd3Ikfv4rrG2qTk021ML1o35rVhV9vLvzqd6-t3G7sfNKJzRffrxJJSg45n8EMseFE0aelg0jKQ4twkcVjvVwc8_mfPltQrwdFF2IbJAvUDTjKE0owPQcyn2olH2LYPgjdvoZXI3pkl8NTvoEXzh_DyaVH5rzZsy9sMYxcL_cnsL3be40TgmUrv-3ahmlfspY28VoyqhzbranCiSEAZKQbsgjHWdtRmoTVFRtCHRotbPqdcnBSZEtNNb-1Z5Ttb_C2bKeNWbWMKiG9fgs_b2_ur76G4_4KocVpjtNqsEC645BTlbqKSpvQ1uMm15XgNuexpubzTgsXIQlJMl5FNnNC5pnNnTRVwd_Bka-9-wDMGl6YWOpMIsAyNpWR1iarCgyRacR1GsDp9GnV-JM0itAbT3gqRADscBjdm95Ce1d3jRKIKCmS_uOUQohMci6iAN4PtlLboVOHmiwbgHhkxcMJ1Fz78RH0ub7J9uhjASS9vQ9XDKSJq8mXFPmSGnxJ3X9bIF_mH_97uE_wcpAnkIjtFI7aXefOYNaU3TnMOF-c977-F_C7A04 |
link.rule.ids | 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RcoBLeRRooIAPiFtENk7i-FhBS4FSrdRF4mY5jrNd1DrVJjnsrT-hv7G_hJk4G6ioOCDOfkiW5_HNG-BNLkwZ21yGpRU6TAyPQ4laF61WoW2eZxRDJNfFiTj-nn_YpzY5H9e1ML4_xOhwI87o5TUxODmkBy6nbgM_etu_PvP5WYhUEPpvwN0kQ5qkWg4-_RVOiKQc24aLdDLU0OE972675Ta0-WfS5O9gttdGBw_-2zsewtYASNmep6BHcMe6x7C959AYP1-xt2zqj9Xz1TYsT1ZOo4wxbOEuurZh2pWspblgc0bFaMszKppiiCkZpSIZRPis7cjzwuqKee2JdHB9edX043dQ0rK5pkLi2jEKITR4MVvqoli0jMornX4C3w72Z-8Pw2FoQ2hQdnIKMQu0oSwaaqWuotLENM-8yHQluMn4RFNHe6uFjdCyiVNeRSa1Qmapyawsqpw_hU1XO7sDzBQ8LyZSpxJRW2ESGWldpFWOejeJuE4C2F1_kxo4r1EECXnMEyECYOMy8gy9Qjtbd40SCFNJPf9lSy5EKjkXUQDP_L-rC9_-Q8VRFpM_MgBxgyLGDdSx--aKW5z2nbtjSSlIMoC4p4jxhLfEuFqTgiJSUJ4U1OzzFI1w_vxfDr2Ge4ezr0fq6NPxlxdw36c-UILcLmy2y86-hI2m7F713PITBFUdOw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RIiEuvMojUMAHxC0iaydxfKxoV7xUrdQicbMcx1kWFWe1SQ574yfwG_klzMTZQEXFAXH2Q7I84_nGM_MNwItC2oq7QsWVkyZOreCxQquLXqs0rihyiiHS18WZPP1UHJ8QTc58VwsT-CGmDzfSjOG9JgVfV_Wo5EQ28GVw_ZuLkJ6FQAWR_x5cTxGRE4e-EItf0YREqYk1XGazsYQO93l11S5Xgc0_cyZ_x7KDMZrf_l_HuAO3RjjKjoL83IVrzt-DgyOPrvjXLXvJFmFZs9wewOZs6w2-MJat_LrvWmZ8xTrqCrZkVIq2uaCSKYaIklEikkV8z7qe_l1YU7NgO1EKfnz73g7Nd_CdZUtDZcSNZxRAaHFjtjFlueoYFVd6cx8-zk_OX7-Jx5YNscWXU1CAWaIH5dBNq0ydVJZTN_MyN7UUNhczQ3z2zkiXoF_DM1EnNnNS5ZnNnSrrQjyAfd949wiYLUVRzpTJFGK20qYqMabM6gKtbpoIk0ZwuLslPepdqwkQCi5SKSNg0zBqDJ3CeNf0rZYIUsk4_2VKIWWmhJBJBA_Dtet1IP_QPMk5_UZGIC8JxDSB-Lovj_jV54G3mytKQFIR8EEgphXBDxN6JwqaREEHUdDn7xbogovH_7LoOdxYHM_1h7en75_AzZD3QNlxh7DfbXr3FPbaqn826MpPg8Mb4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synaptic+inputs+and+timing+underlying+the+velocity+tuning+of+direction%E2%80%90selective+ganglion+cells+in+rabbit+retina&rft.jtitle=The+Journal+of+physiology&rft.au=Sivyer%2C+Benjamin&rft.au=Van+Wyk%2C+Michiel&rft.au=Vaney%2C+David+I.&rft.au=Taylor%2C+W.+Rowland&rft.date=2010-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=588&rft.issue=17&rft.spage=3243&rft.epage=3253&rft_id=info:doi/10.1113%2Fjphysiol.2010.192716&rft.externalDBID=10.1113%252Fjphysiol.2010.192716&rft.externalDocID=TJP4093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |