Hypercapnia impairs lung neutrophil function and increases mortality in murine pseudomonas pneumonia

Hypercapnia, an elevation of the level of carbon dioxide (CO2) in blood and tissues, is a marker of poor prognosis in chronic obstructive pulmonary disease and other pulmonary disorders. We previously reported that hypercapnia inhibits the expression of TNF and IL-6 and phagocytosis in macrophages i...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory cell and molecular biology Vol. 49; no. 5; pp. 821 - 828
Main Authors: Gates, Khalilah L, Howell, Heather A, Nair, Aisha, Vohwinkel, Christine U, Welch, Lynn C, Beitel, Greg J, Hauser, Alan R, Sznajder, Jacob I, Sporn, Peter H S
Format: Journal Article
Language:English
Published: United States American Thoracic Society 01-11-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypercapnia, an elevation of the level of carbon dioxide (CO2) in blood and tissues, is a marker of poor prognosis in chronic obstructive pulmonary disease and other pulmonary disorders. We previously reported that hypercapnia inhibits the expression of TNF and IL-6 and phagocytosis in macrophages in vitro. In the present study, we determined the effects of normoxic hypercapnia (10% CO2, 21% O2, and 69% N2) on outcomes of Pseudomonas aeruginosa pneumonia in BALB/c mice and on pulmonary neutrophil function. We found that the mortality of P. aeruginosa pneumonia was increased in 10% CO2-exposed compared with air-exposed mice. Hypercapnia increased pneumonia mortality similarly in mice with acute and chronic respiratory acidosis, indicating an effect unrelated to the degree of acidosis. Exposure to 10% CO2 increased the burden of P. aeruginosa in the lungs, spleen, and liver, but did not alter lung injury attributable to pneumonia. Hypercapnia did not reduce pulmonary neutrophil recruitment during infection, but alveolar neutrophils from 10% CO2-exposed mice phagocytosed fewer bacteria and produced less H2O2 than neutrophils from air-exposed mice. Secretion of IL-6 and TNF in the lungs of 10% CO2-exposed mice was decreased 7 hours, but not 15 hours, after the onset of pneumonia, indicating that hypercapnia inhibited the early cytokine response to infection. The increase in pneumonia mortality caused by elevated CO2 was reversible when hypercapnic mice were returned to breathing air before or immediately after infection. These results suggest that hypercapnia may increase the susceptibility to and/or worsen the outcome of lung infections in patients with severe lung disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1044-1549
1535-4989
DOI:10.1165/rcmb.2012-0487oc