Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women

Purpose Increased gut permeability causes the trespass of antigens into the blood stream which leads to inflammation. Gut permeability reflected by serum zonulin and diversity of the gut microbiome were investigated in this cross-sectional study involving female study participants with different act...

Full description

Saved in:
Bibliographic Details
Published in:European journal of nutrition Vol. 57; no. 8; pp. 2985 - 2997
Main Authors: Mörkl, S., Lackner, S., Meinitzer, A., Mangge, H., Lehofer, M., Halwachs, B., Gorkiewicz, G., Kashofer, K., Painold, A., Holl, A. K., Bengesser, S. A., Müller, W., Holzer, P., Holasek, S. J.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-12-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Increased gut permeability causes the trespass of antigens into the blood stream which leads to inflammation. Gut permeability reflected by serum zonulin and diversity of the gut microbiome were investigated in this cross-sectional study involving female study participants with different activity and BMI levels. Methods 102 women were included (BMI range 13.24–46.89 kg m −2 ): Anorexia nervosa patients ( n  = 17), athletes ( n  = 20), normal weight ( n  = 25), overweight ( n  = 21) and obese women ( n  = 19). DNA was extracted from stool samples and subjected to 16S rRNA gene analysis (V1–V2). Quantitative Insights Into Microbial Ecology (QIIME) was used to analyze data. Zonulin was measured with ELISA. Nutrient intake was assessed by repeated 24-h dietary recalls. We used the median of serum zonulin concentration to divide our participants into a “high-zonulin” (> 53.64 ng/ml) and “low-zonulin” (< 53.64 ng/ml) group. Results The alpha-diversity (Shannon Index, Simpson Index, equitability) and beta-diversity (unweighted and weighted UniFrac distances) of the gut microbiome were not significantly different between the groups. Zonulin concentrations correlated significantly with total calorie-, protein-, carbohydrate-, sodium- and vitamin B12 intake. Linear discriminant analysis effect size (LEfSe) identified Ruminococcaceae (LDA = 4.163, p  = 0.003) and Faecalibacterium (LDA = 4.151, p  = 0.0002) as significantly more abundant in the low zonulin group. Conclusion Butyrate-producing gut bacteria such as Faecalibacteria could decrease gut permeability and lower inflammation. The diversity of the gut microbiota in women does not seem to be correlated with the serum zonulin concentration. Further interventional studies are needed to investigate gut mucosal permeability and the gut microbiome in the context of dietary factors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1436-6207
1436-6215
DOI:10.1007/s00394-018-1784-0