Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells

Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signalin...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 50; pp. E3473 - E3482
Main Authors: Tsang, Chi Man, Yip, Yim Ling, Lo, Kwok Wai, Deng, Wen, To, Ka Fai, Hau, Pok Man, Lau, Victoria Ming Yi, Takada, Kenzo, Lui, Vivian Wai Yan, Lung, Maria Li, Chen, Honglin, Zeng, Musheng, Middeldorp, Jaap Michiel, Cheung, Annie Lai-Man, Tsao, Sai Wah
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 11-12-2012
National Acad Sciences
Series:PNAS Plus
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 ᴿ²⁴C) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV.
AbstractList Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4(R24C)) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV.
Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4^sup R24C^) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. [PUBLICATION ABSTRACT]
Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 R24C ) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. The establishment of persistent EBV infection in premalignant NPE cells harboring genetic alterations has long been postulated to be an early and important event in the pathogenesis of NPC. As illustrated in Fig. P1 , our results provide evidence that preexisting genetic alterations in premalignant NPE cells, notably the overexpression of cyclin D1 and related molecular events, support latent EBV infection and facilitate NPC development. By overexpressing cyclin D1 and CDK4 R24C or knocking down p16 in our telomerase-immortalized cell systems, we observed that the inhibitory effects of EBV infection on the growth of NPE cells could be suppressed, resulting in multiple colonies of EBV-infected NPE cells. This result indicates that genetic alterations that impair growth inhibition may be crucial for supporting EBV infection. We also examined the effect of cyclin D1 on the regulation of representative latent and lytic EBV genes. Up-regulation of EBV latent genes (including EBNA1 and EBER1/2 ) and down-regulation of lytic EBV genes (including BZLF1 , BRLF1 , BMRF1 , and BGLF4 ) were observed in NPE cells that overexpressed cyclin D1. BZLF1 -expressing cells were lost rapidly upon serial passages, indicating that cells undergoing lytic infection might not facilitate the long-term persistence of EBV. We then investigated the ability of EBV to infect and propagate in NP550hTert and NP361hTert cells. We observed that the immortalization of NPE cells, per se, is not sufficient to support stable EBV propagation. EBV infection readily induced the arrest of growth in these telomerase-immortalized cell lines. Examination of these EBV-infected immortalized cells revealed the expression of senescence-associated β-galactosidase (a cell senescence marker) and the up-regulated expression of p16 and p21 (which are proteins that arrest the cell cycle). Because EBV infection is highly associated with poorly or undifferentiated NPC, we investigated whether overexpression of cyclin D1 or the activation of the cyclin D1/CDK4 pathway might contribute to the undifferentiated property of dysplastic NPE cells by using telomerase-immortalized NPE cell lines derived from primary NPE tissues. Cyclin D1 or CDK4 R24C (a p16-insensitive mutant of CDK4) was overexpressed in the telomerase-immortalized cell lines (NP550hTert and NP361hTert) and was found to resist serum-induced differentiation. This observation may have implications for the close association of EBV infection with undifferentiated and poorly differentiated NPC but not with differentiated NPC. We previously reported that overexpression of cyclin D1 is closely associated with NPC ( 5 ). The relationship between cyclin D1 expression and EBV infection in dysplastic nasopharyngeal epithelium is unknown. It is difficult to find dysplastic NPE tissues, because most patients with NPC present clinically with late stages of the disease. However, for this study, we were able to retrieve six cases from our archival pathological specimens of dysplastic nasopharyngeal biopsies. The overexpression of cyclin D1 was observed in all six of these cases, as was the coexisting expression of EBV-encoded RNA (EBER), which is a reliable indicator of EBV infection. This finding indicates that cyclin D1 overexpression and EBV infection are closely correlated in the early stage of NPC development. The EBV genome has been detected in almost all, if not all, undifferentiated nasopharyngeal carcinoma (NPC) cells ( 1 ). EBV infection has been postulated to be an important etiological factor for NPC development ( 2 ). Clonal EBV genomes are present in early preinvasive dysplastic lesions and carcinomas in situ in nasopharyngeal epithelium, indicating that EBV infection is an early event in NPC development ( 3 ). The establishment of persistent EBV infection in premalignant nasopharyngeal epithelial (NPE) cells may represent a crucial step in the pathogenesis of NPC. Interestingly, EBV readily infects and propagates in B cells but not in NPE cells. Furthermore, EBV episomes in infected NPC are lost rapidly during long-term propagation in culture. At present, events regulating the infection and propagation of EBV in NPE cells are largely unknown. We previously reported the presence of genetic alterations, including the allelic deletion of chromosome 9p (which includes the p16 locus), in low-grade dysplastic lesions and histologically normal nasopharyngeal epithelium from human individuals at a high risk of developing NPC ( 4 ). Furthermore, the overexpression of cyclin D1, a protein involved in the regulation of cell-cycle progression, is common in primary NPC biopsies (detected in 35 of 38 cases) ( 5 ). The common deletion of p16, a key protein involved in inhibiting the activity of cyclin D1/CDK4 complex, in premalignant and cancerous nasopharyngeal epithelium and the frequent overexpression of cyclin D1 in NPC indicate that the dysregulation of the cyclin D1 pathway has a significant impact on the maintenance and propagation of EBV in premalignant NPE cells. It has been postulated that these genetic alterations in premalignant NPE cells provide a permissive cellular environment that supports the clonal expansion and propagation of EBV. In this study, we observed that EBV infection of telomerase-immortalized NPE cells induced cell-cycle arrest and senescence. Overexpression of cyclin D1 could suppress these growth-inhibitory effects associated with EBV infection and allow long-term propagation of EBV in infected NPE cells.
Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 R24C ) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV.
Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 ᴿ²⁴C) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV.
Author Deng, Wen
Zeng, Musheng
Lau, Victoria Ming Yi
Middeldorp, Jaap Michiel
Yip, Yim Ling
Lung, Maria Li
Tsao, Sai Wah
Lo, Kwok Wai
To, Ka Fai
Hau, Pok Man
Tsang, Chi Man
Lui, Vivian Wai Yan
Cheung, Annie Lai-Man
Takada, Kenzo
Chen, Honglin
Author_xml – sequence: 1
  fullname: Tsang, Chi Man
– sequence: 2
  fullname: Yip, Yim Ling
– sequence: 3
  fullname: Lo, Kwok Wai
– sequence: 4
  fullname: Deng, Wen
– sequence: 5
  fullname: To, Ka Fai
– sequence: 6
  fullname: Hau, Pok Man
– sequence: 7
  fullname: Lau, Victoria Ming Yi
– sequence: 8
  fullname: Takada, Kenzo
– sequence: 9
  fullname: Lui, Vivian Wai Yan
– sequence: 10
  fullname: Lung, Maria Li
– sequence: 11
  fullname: Chen, Honglin
– sequence: 12
  fullname: Zeng, Musheng
– sequence: 13
  fullname: Middeldorp, Jaap Michiel
– sequence: 14
  fullname: Cheung, Annie Lai-Man
– sequence: 15
  fullname: Tsao, Sai Wah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23161911$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1v1DAQxS1URLeFMzeIxDnt2LOO4wsSLMuHVIkDFImT5TiTXVepHexsRf97vNqlhYtteX7z5mneGTsJMRBjLzlccFB4OQWbL7gA0aDioJ-wRTl53Sw1nLAFgFB1uxTLU3aW8w0AaNnCM3YqkDdcc75gP1f3bvSh-sCreEeJfk-JcvYxVHk3TTHNucqz7Uaq1u9_VD4M5OZ9tbSU0XHa2nQfNmTHiiY_b2n05eloHPNz9nSwY6YXx_ucXX9cf199rq--fvqyendVO4nNXGuNvWhFQ21vxSDQESA2oBqlwJIDJ6RGzUlKaaUbeId9Vz76TjnQKC2es7cH3WnX3VLvKMzJjmZK_rZ4M9F6838l-K3ZxDuDUrQSVRF4cxRI8deO8mxu4i6F4tlwga2QHCUU6vJAuRRzTjQ8TOBg9lmYfRbmMYvS8epfYw_83-UXoDoC-85HOW0kmDUuFRbk9QEZbDR2k3w2198E8AaAI8iymj_NiZvq
CitedBy_id crossref_primary_10_1016_j_semcancer_2019_09_006
crossref_primary_10_1124_molpharm_121_000361
crossref_primary_10_3389_fimmu_2021_734293
crossref_primary_10_3390_medicina59010002
crossref_primary_10_3389_fonc_2023_1202117
crossref_primary_10_1099_jgv_0_000012
crossref_primary_10_3389_fviro_2021_753366
crossref_primary_10_1016_j_gene_2018_12_004
crossref_primary_10_3390_pathogens10081057
crossref_primary_10_1007_s12250_015_3592_5
crossref_primary_10_1098_rstb_2016_0270
crossref_primary_10_36233_0507_4088_181
crossref_primary_10_1007_s13277_013_0824_x
crossref_primary_10_1093_femsre_fuz023
crossref_primary_10_1146_annurev_pathmechdis_012418_013023
crossref_primary_10_3390_v14122700
crossref_primary_10_1007_s10014_013_0161_1
crossref_primary_10_1038_nrc_2016_92
crossref_primary_10_17116_otorino20208502167
crossref_primary_10_1371_journal_pone_0062284
crossref_primary_10_1002_jcp_26410
crossref_primary_10_1371_journal_pone_0078395
crossref_primary_10_1016_j_semcancer_2014_04_004
crossref_primary_10_1038_s41467_018_06889_5
crossref_primary_10_1158_2767_9764_CRC_23_0341
crossref_primary_10_1016_j_iccn_2017_08_006
crossref_primary_10_1038_s41698_022_00251_1
crossref_primary_10_1038_s41388_019_0749_y
crossref_primary_10_1016_j_tvr_2023_200272
crossref_primary_10_3390_microorganisms10050888
crossref_primary_10_2217_fvl_2018_0071
crossref_primary_10_1186_s13027_021_00391_2
crossref_primary_10_1038_s41698_017_0018_x
crossref_primary_10_3389_fonc_2018_00257
crossref_primary_10_1016_j_actbio_2019_10_043
crossref_primary_10_1016_j_oraloncology_2014_02_006
crossref_primary_10_3390_v13020300
crossref_primary_10_1080_14728222_2020_1751820
crossref_primary_10_1186_s13046_020_01763_z
crossref_primary_10_1053_j_seminoncol_2014_10_003
crossref_primary_10_1038_s41467_021_24348_6
crossref_primary_10_18632_oncotarget_10120
crossref_primary_10_3390_pathogens9121059
crossref_primary_10_1038_nmicrobiol_2016_38
crossref_primary_10_1073_pnas_1821752116
crossref_primary_10_1016_j_semcancer_2014_01_002
crossref_primary_10_1186_s12967_022_03400_z
crossref_primary_10_1002_ijc_30418
crossref_primary_10_3390_v14112372
crossref_primary_10_1128_JVI_01987_16
crossref_primary_10_1016_j_virusres_2016_11_002
crossref_primary_10_1007_s12672_022_00597_9
crossref_primary_10_1111_cas_13473
crossref_primary_10_3390_cancers10040086
crossref_primary_10_1016_j_celrep_2013_09_012
crossref_primary_10_1016_j_molmed_2016_05_004
crossref_primary_10_3389_fonc_2019_00713
crossref_primary_10_3389_fonc_2020_00600
crossref_primary_10_1371_journal_ppat_1005195
crossref_primary_10_3390_curroncol29090475
crossref_primary_10_3390_cancers14133120
crossref_primary_10_1038_s41388_020_01631_2
crossref_primary_10_1128_JVI_01677_16
crossref_primary_10_1002_path_4448
crossref_primary_10_1128_mSphereDirect_00453_17
crossref_primary_10_1371_journal_pone_0123645
crossref_primary_10_1007_s00428_019_02670_1
crossref_primary_10_1128_JVI_01216_18
crossref_primary_10_1371_journal_ppat_1005344
crossref_primary_10_3390_pathogens11020132
crossref_primary_10_1016_j_ebiom_2022_104357
crossref_primary_10_1053_j_seminoncol_2015_02_019
crossref_primary_10_1128_jvi_01032_22
crossref_primary_10_1128_JVI_00736_17
crossref_primary_10_3390_biology10121232
crossref_primary_10_2222_jsv_64_95
crossref_primary_10_3390_ijms232415512
crossref_primary_10_1126_scitranslmed_adh7668
crossref_primary_10_1099_jgv_0_001243
crossref_primary_10_1038_s41392_018_0010_0
crossref_primary_10_1371_journal_pone_0156833
crossref_primary_10_1016_S0140_6736_15_00055_0
crossref_primary_10_3389_fcimb_2022_935205
crossref_primary_10_1002_bab_1856
crossref_primary_10_1038_s41598_018_26201_1
crossref_primary_10_3389_fmicb_2023_1116143
crossref_primary_10_3390_cancers12092565
crossref_primary_10_3390_v9110341
crossref_primary_10_1002_ijc_29850
crossref_primary_10_1002_rmv_1786
crossref_primary_10_3390_cancers12092441
crossref_primary_10_1002_ijc_31652
crossref_primary_10_1186_s12935_019_0915_x
crossref_primary_10_1186_1476_4598_13_184
crossref_primary_10_3390_cancers10030076
crossref_primary_10_1038_s41374_018_0034_7
crossref_primary_10_1158_1535_7163_MCT_19_0572
crossref_primary_10_3950_jibiinkoka_121_174
crossref_primary_10_1101_gr_275348_121
crossref_primary_10_1016_j_oraloncology_2014_01_009
crossref_primary_10_1038_s41571_021_00524_x
crossref_primary_10_3390_cancers13194944
crossref_primary_10_3390_v12111222
crossref_primary_10_1128_JVI_00060_16
crossref_primary_10_3390_cells13070559
Cites_doi 10.1016/S1535-6108(04)00119-9
10.4161/cc.8.1.7411
10.1086/323992
10.1056/NEJM199509143331103
10.1016/S1044579X02000901
10.1038/nrc1452
10.1128/MCB.21.16.5631-5643.2001
10.1128/JVI.01216-10
10.1128/JVI.79.2.1296-1307.2005
10.1128/JVI.00108-09
10.1128/JVI.74.23.11115-11120.2000
10.1099/0022-1317-80-6-1501
10.1158/0008-5472.CAN-05-0648
10.1038/356347a0
10.1002/j.1460-2075.1996.tb00635.x
10.1002/jcb.21978
10.1089/jir.2009.0073
10.1128/JVI.00091-08
10.1016/j.semcancer.2012.01.004
10.1073/pnas.91.8.2945
10.1016/S1044579X02000883
10.1016/j.semcancer.2011.12.011
10.1006/scbi.1996.0023
10.1002/ijc.25173
10.1073/pnas.0611128104
10.1002/ijc.22032
10.1016/S1044579X0200086X
10.1128/JVI.01051-09
10.1016/j.semcancer.2012.02.004
10.1038/sj.onc.1210240
10.1128/JVI.79.19.12280-12285.2005
10.1073/pnas.1019599108
10.1038/sj.emboj.7601853
10.1099/0022-1317-83-12-2995
10.1128/JVI.78.11.5658-5669.2004
ContentType Journal Article
Copyright Copyright National Academy of Sciences Dec 11, 2012
Copyright_xml – notice: Copyright National Academy of Sciences Dec 11, 2012
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1202637109
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts
CrossRef



Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Cyclin D1 supports EBV infection
EISSN 1091-6490
EndPage E3482
ExternalDocumentID 2841633761
10_1073_pnas_1202637109
23161911
109_50_E3473
US201600130559
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
ABXSQ
ADACV
AQVQM
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c536t-993d2826e8da2f23ce0336076770aec0c259391e555a5cf1b3db939db7c0935a3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:24:00 EDT 2024
Thu Oct 10 17:59:42 EDT 2024
Thu Nov 21 23:54:05 EST 2024
Sat Sep 28 07:59:23 EDT 2024
Wed Nov 11 00:30:13 EST 2020
Wed Dec 27 19:31:01 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-993d2826e8da2f23ce0336076770aec0c259391e555a5cf1b3db939db7c0935a3
Notes http://dx.doi.org/10.1073/pnas.1202637109
Edited by Elliott Kieff, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, and approved October 12, 2012 (received for review March 6, 2012)
1C.M.T. and Y.L.Y. contributed equally to this work.
Author contributions: C.M.T., P.M.H., and S.W.T. designed research; C.M.T., Y.L.Y., K.W.L., W.D., and V.M.Y.L. performed research; K.F.T., K.T., M.Z., J.M.M., and A.L.-M.C. contributed new reagents/analytic tools; C.M.T., K.W.L., W.D., H.C., and S.W.T. analyzed data; and C.M.T., V.W.Y.L., M.L.L., and S.W.T. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/50/E3473.full.pdf
PMID 23161911
PQID 1238251350
PQPubID 42026
ParticipantIDs pnas_primary_109_50_E3473
fao_agris_US201600130559
proquest_journals_1238251350
crossref_primary_10_1073_pnas_1202637109
pubmed_primary_23161911
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3528537
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-12-11
PublicationDateYYYYMMDD 2012-12-11
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 17853891 - EMBO J. 2007 Oct 3;26(19):4252-62
22497025 - Semin Cancer Biol. 2012 Apr;22(2):137-43
8654372 - EMBO J. 1996 Jun 3;15(11):2748-59
22249143 - Semin Cancer Biol. 2012 Apr;22(2):144-53
16166286 - Cancer Res. 2005 Sep 15;65(18):8125-33
17360652 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3366-71
15510157 - Nat Rev Cancer. 2004 Oct;4(10):757-68
8946600 - Semin Cancer Biol. 1996 Aug;7(4):165-74
16688717 - Int J Cancer. 2006 Oct 1;119(7):1567-76
10374969 - J Gen Virol. 1999 Jun;80 ( Pt 6):1501-12
12450729 - Semin Cancer Biol. 2002 Dec;12(6):431-41
19439479 - J Virol. 2009 Aug;83(15):7749-60
15144950 - Cancer Cell. 2004 May;5(5):423-8
7743498 - Cancer Res. 1995 May 15;55(10):2039-43
17322915 - Oncogene. 2007 Feb 26;26(9):1297-305
19021145 - J Cell Biochem. 2009 Jan 1;106(1):63-72
19098430 - Cell Cycle. 2009 Jan 1;8(1):58-65
1312681 - Nature. 1992 Mar 26;356(6367):347-50
20091869 - Int J Cancer. 2010 Oct 1;127(7):1570-83
11463844 - Mol Cell Biol. 2001 Aug;21(16):5631-43
16160154 - J Virol. 2005 Oct;79(19):12280-5
15613356 - J Virol. 2005 Jan;79(2):1296-307
8159685 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2945-9
20861262 - J Virol. 2010 Dec;84(24):12832-40
18596104 - J Virol. 2008 Sep;82(17):8442-55
15140963 - J Virol. 2004 Jun;78(11):5658-69
19587049 - J Virol. 2009 Sep;83(18):9554-66
11740724 - J Infect Dis. 2001 Dec 15;184(12):1499-507
22245473 - Semin Cancer Biol. 2012 Apr;22(2):79-86
12466475 - J Gen Virol. 2002 Dec;83(Pt 12):2995-8
19708815 - J Interferon Cytokine Res. 2009 Sep;29(9):581-98
21245331 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1919-24
11070007 - J Virol. 2000 Dec;74(23):11115-20
12450731 - Semin Cancer Biol. 2002 Dec;12(6):451-62
12450733 - Semin Cancer Biol. 2002 Dec;12(6):473-87
7637746 - N Engl J Med. 1995 Sep 14;333(11):693-8
e_1_1_2_17_10_5_2
e_1_1_2_17_10_4_2
e_1_1_2_17_10_3_2
e_1_1_2_17_10_2_2
e_1_1_2_17_10_1_2
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
Lo KW (e_1_3_3_9_2) 1995; 55
e_1_3_3_21_2
References_xml – ident: e_1_1_2_17_10_4_2
  doi: 10.1016/S1535-6108(04)00119-9
– ident: e_1_3_3_24_2
  doi: 10.4161/cc.8.1.7411
– ident: e_1_3_3_15_2
  doi: 10.1086/323992
– ident: e_1_3_3_4_2
  doi: 10.1056/NEJM199509143331103
– ident: e_1_3_3_32_2
  doi: 10.1016/S1044579X02000901
– ident: e_1_3_3_3_2
  doi: 10.1038/nrc1452
– ident: e_1_3_3_13_2
  doi: 10.1128/MCB.21.16.5631-5643.2001
– ident: e_1_3_3_21_2
  doi: 10.1128/JVI.01216-10
– ident: e_1_3_3_29_2
  doi: 10.1128/JVI.79.2.1296-1307.2005
– ident: e_1_3_3_36_2
  doi: 10.1128/JVI.00108-09
– ident: e_1_3_3_16_2
  doi: 10.1128/JVI.74.23.11115-11120.2000
– ident: e_1_3_3_30_2
  doi: 10.1099/0022-1317-80-6-1501
– ident: e_1_1_2_17_10_5_2
  doi: 10.1158/0008-5472.CAN-05-0648
– ident: e_1_3_3_14_2
  doi: 10.1038/356347a0
– ident: e_1_3_3_23_2
  doi: 10.1002/j.1460-2075.1996.tb00635.x
– ident: e_1_3_3_11_2
  doi: 10.1002/jcb.21978
– ident: e_1_3_3_17_2
  doi: 10.1089/jir.2009.0073
– ident: e_1_3_3_22_2
  doi: 10.1128/JVI.00091-08
– ident: e_1_3_3_33_2
  doi: 10.1016/j.semcancer.2012.01.004
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.91.8.2945
– ident: e_1_3_3_26_2
  doi: 10.1016/S1044579X02000883
– ident: e_1_3_3_5_2
  doi: 10.1016/j.semcancer.2011.12.011
– ident: e_1_3_3_1_2
  doi: 10.1006/scbi.1996.0023
– ident: e_1_3_3_8_2
  doi: 10.1002/ijc.25173
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0611128104
– ident: e_1_3_3_10_2
  doi: 10.1158/0008-5472.CAN-05-0648
– ident: e_1_1_2_17_10_3_2
  doi: 10.1056/NEJM199509143331103
– ident: e_1_3_3_25_2
  doi: 10.1002/ijc.22032
– ident: e_1_3_3_2_2
  doi: 10.1016/S1044579X0200086X
– ident: e_1_3_3_18_2
  doi: 10.1128/JVI.01051-09
– ident: e_1_3_3_7_2
  doi: 10.1016/j.semcancer.2012.02.004
– ident: e_1_3_3_34_2
  doi: 10.1038/sj.onc.1210240
– ident: e_1_3_3_28_2
  doi: 10.1128/JVI.79.19.12280-12285.2005
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.1019599108
– ident: e_1_3_3_6_2
  doi: 10.1016/S1535-6108(04)00119-9
– ident: e_1_1_2_17_10_1_2
  doi: 10.1038/nrc1452
– ident: e_1_3_3_27_2
  doi: 10.1038/sj.emboj.7601853
– ident: e_1_3_3_31_2
  doi: 10.1099/0022-1317-83-12-2995
– volume: 55
  start-page: 2039
  year: 1995
  ident: e_1_3_3_9_2
  article-title: p16 gene alterations in nasopharyngeal carcinoma
  publication-title: Cancer Res
  contributor:
    fullname: Lo KW
– ident: e_1_3_3_20_2
  doi: 10.1128/JVI.78.11.5658-5669.2004
– ident: e_1_1_2_17_10_2_2
  doi: 10.1016/j.semcancer.2012.02.004
SSID ssj0009580
Score 2.4735005
Snippet Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E3473
SubjectTerms Base Sequence
Biological Sciences
carcinoma
Cell Cycle
Cell Differentiation
Cell growth
Cell Line, Tumor
Cell Transformation, Neoplastic
Cell Transformation, Viral
Cells, Cultured
Cellular Senescence
Cyclin D1 - genetics
Cyclin D1 - metabolism
cyclins
DNA, Viral - genetics
epithelial cells
Epithelial Cells - metabolism
Epithelial Cells - pathology
Epithelial Cells - virology
epithelium
Epstein-Barr Virus Infections - complications
Epstein-Barr Virus Infections - genetics
Epstein-Barr Virus Infections - metabolism
Epstein-Barr Virus Infections - virology
Gene Expression
Genes, bcl-1
Genes, Viral
Herpesvirus 4, Human - genetics
Herpesvirus 4, Human - pathogenicity
Humans
Nasopharyngeal Neoplasms - etiology
Nasopharyngeal Neoplasms - genetics
Nasopharyngeal Neoplasms - metabolism
Nasopharyngeal Neoplasms - pathology
Nasopharynx - metabolism
Nasopharynx - pathology
Nasopharynx - virology
Pathogenesis
PNAS Plus
Precancerous Conditions - etiology
Precancerous Conditions - genetics
Precancerous Conditions - metabolism
Precancerous Conditions - pathology
Signal Transduction
Telomerase
Telomerase - genetics
Telomerase - metabolism
Tumors
Viral infections
Title Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells
URI http://www.pnas.org/content/109/50/E3473.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23161911
https://www.proquest.com/docview/1238251350
https://pubmed.ncbi.nlm.nih.gov/PMC3528537
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB51OfVSlb4IBeRDD_SQ3diO4-RYlkVcWlWiVO3J8msBafFGhJXKv-_YmyxdxKmnWIkdOR4_vom_-QzwifmG-lLI3DJqckzQHHFcmXtnEDzUjTB1jB0-v5DfftWnsyiTI4ZYmETat-ZmHBa343BznbiV7a2dDDyxyfev06hIIricjGCE2HBw0TdKu_U67oTh9FuyctDzkXzSBt2NKbr7FY8UxCgEzBHxNJRurUqjuV5GrVPM_RzufEqf_Gc9OnsNr3ogSb6sK7wLL3x4A7v9UO3Ica8n_fkt_J4-xPhHckpJ5Gv6Pz33NZBu1aYdA4IQ0Sw8mZ38JAM7K2CKYN2W7bW-ewhXCCiJb2MExwK7LIk__Lt3cHk2-zE9z_sTFXIreHWfIxhx6GNVvnaazRmPh4XxqpCVlIX2trDoDHE0nhBCCzunhjuDN5yRNm6Yav4edsIy-D0grLSOIxjyeCk1k0aYxjbWOFe4orHzDI6HFlXtWjhDpQ1vyVVsWfVohwz2sMWVvsJpTV1esCh6FzdU0dnJIEuZH9_QKFGoGS8lz-BgsI3qB158K4_BuFwUGXxYm2lTeDB2BnLLgJsMUWp7-wn2wCS53fe4_f8u-RFe4nelc2QoPYCd-7uVP4RR51ZHiYZ6lDrxX9-t8gU
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6x5QAXoLwaKOADh3LIrh9xnBxhu9Ui2gqpLYKTFT-2rbT1Rk1Xov-ecTbZsohTT7Hih2R9fnyjmfkM8JH7kvlMqtRyZlIssBR5XJZ6Z5A8FKU0Rcwdnp6o45_F_iTK5Mg-F6YN2rfmchjmV8NwedHGVtZXdtTHiY2-H42jIokUajSAh7hfKe2N9LXWbrHKPOF4AGc86xV9lBjVoWqGDA3-XMQgxCgFLJDzlIxt3EuDWbWIaqfY-n_M898Ayr9upIOn95zLM3jSUVDyeVW9DQ98eA7b3SZvyF6nRP3pBfwa38bMSbLPSIz09L-7qNlAmmXd-hoIkksz92Ty5Qfp47oClgjOaVFfVNe34RypKPF1zP2Y42In0VXQvISzg8npeJp2bzGkVor8JkUa49A6y33hKj7jIj4zJnKqcqVo5S21aEYJhF1KWUk7Y0Y4gz-cUTa6WivxCrbCIvgdIDyzTiCN8vjJKq6MNKUtrXGOOlraWQJ7PRK6Xklu6NZVroSOiOg7_BLYQaR0dY4Hoj474VEuL7pi0UxKIGkb341Qakn1RGRKJLDbY6q7LRtHFTGNV0iawOsVvOvO_SJJQG0Av24QRbo3axDvVqy7w_fNvXt-gEfT06NDffj1-NtbeIxzbF-jYWwXtm6ul_4dDBq3fN9ugT8uLgaT
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xRUJcgPJqoIAPHMohm9iO4-QI-1ARUFUqRXCy_EpbaZuNmq5E_z3jbLJlESc4xUrGkazPj280M58B3jJfUp8JGVtGTYwNGiOPy2LvDJKHohSmCLXDhyfy6HsxnQWZnM1VX13SvjUX43pxOa4vzrvcyubSJkOeWHL8ZRIUSQSXSeOqZAR3cc2mbHDUN3q7xbr6hOEmnLFsUPWRPGlq3Y4pOv05D4mIQQ6YI-8pKd06m0aVXgbFU7T-G_v8M4nyt1Np_vA_xvMIHvRUlLxfm-zCHV8_ht1-sbfkoFekfvcEfkxuQgUlmVISMj79zz57tibtquliDgRJpll4MvvwjQz5XTW2CI5r2Zzrq5v6DCkp8U2oAVngpCchZNA-hdP57OvkMO7vZIit4Pl1jHTGoZeW-8JpVjEerhvjeSpzKVPtbWrRneIIvxBCC1tRw53BF85IG0Kumj-DnXpZ-z0gLLOOI53y-Mg0k0aY0pbWOJe6tLRVBAcDGqpZS2-oLmQuuQqoqFsMI9hDtJQ-w41RnZ6wIJsXQrLoLkUQdca3fyiVSNWMZ5JHsD_gqvqlG_7KQzkvF2kEz9cQbzoPEyUCuQX-xiCIdW9_Qcw70e4e4xf_3PMN3DueztXnj0efXsJ9HGJ3KQ2l-7BzfbXyr2DUutXrbhX8Ao0lCRM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclin+D1+overexpression+supports+stable+EBV+infection+in+nasopharyngeal+epithelial+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tsang%2C+Chi+Man&rft.au=Yip%2C+Yim+Ling&rft.au=Lo%2C+Kwok+Wai&rft.au=Deng%2C+Wen&rft.date=2012-12-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=50&rft.spage=E3473&rft_id=info:doi/10.1073%2Fpnas.1202637109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2841633761
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F50.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F50.cover.gif