Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells
Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signalin...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 50; pp. E3473 - E3482 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
11-12-2012
National Acad Sciences |
Series: | PNAS Plus |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 ᴿ²⁴C) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. |
---|---|
AbstractList | Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4(R24C)) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4^sup R24C^) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. [PUBLICATION ABSTRACT] Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 R24C ) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. The establishment of persistent EBV infection in premalignant NPE cells harboring genetic alterations has long been postulated to be an early and important event in the pathogenesis of NPC. As illustrated in Fig. P1 , our results provide evidence that preexisting genetic alterations in premalignant NPE cells, notably the overexpression of cyclin D1 and related molecular events, support latent EBV infection and facilitate NPC development. By overexpressing cyclin D1 and CDK4 R24C or knocking down p16 in our telomerase-immortalized cell systems, we observed that the inhibitory effects of EBV infection on the growth of NPE cells could be suppressed, resulting in multiple colonies of EBV-infected NPE cells. This result indicates that genetic alterations that impair growth inhibition may be crucial for supporting EBV infection. We also examined the effect of cyclin D1 on the regulation of representative latent and lytic EBV genes. Up-regulation of EBV latent genes (including EBNA1 and EBER1/2 ) and down-regulation of lytic EBV genes (including BZLF1 , BRLF1 , BMRF1 , and BGLF4 ) were observed in NPE cells that overexpressed cyclin D1. BZLF1 -expressing cells were lost rapidly upon serial passages, indicating that cells undergoing lytic infection might not facilitate the long-term persistence of EBV. We then investigated the ability of EBV to infect and propagate in NP550hTert and NP361hTert cells. We observed that the immortalization of NPE cells, per se, is not sufficient to support stable EBV propagation. EBV infection readily induced the arrest of growth in these telomerase-immortalized cell lines. Examination of these EBV-infected immortalized cells revealed the expression of senescence-associated β-galactosidase (a cell senescence marker) and the up-regulated expression of p16 and p21 (which are proteins that arrest the cell cycle). Because EBV infection is highly associated with poorly or undifferentiated NPC, we investigated whether overexpression of cyclin D1 or the activation of the cyclin D1/CDK4 pathway might contribute to the undifferentiated property of dysplastic NPE cells by using telomerase-immortalized NPE cell lines derived from primary NPE tissues. Cyclin D1 or CDK4 R24C (a p16-insensitive mutant of CDK4) was overexpressed in the telomerase-immortalized cell lines (NP550hTert and NP361hTert) and was found to resist serum-induced differentiation. This observation may have implications for the close association of EBV infection with undifferentiated and poorly differentiated NPC but not with differentiated NPC. We previously reported that overexpression of cyclin D1 is closely associated with NPC ( 5 ). The relationship between cyclin D1 expression and EBV infection in dysplastic nasopharyngeal epithelium is unknown. It is difficult to find dysplastic NPE tissues, because most patients with NPC present clinically with late stages of the disease. However, for this study, we were able to retrieve six cases from our archival pathological specimens of dysplastic nasopharyngeal biopsies. The overexpression of cyclin D1 was observed in all six of these cases, as was the coexisting expression of EBV-encoded RNA (EBER), which is a reliable indicator of EBV infection. This finding indicates that cyclin D1 overexpression and EBV infection are closely correlated in the early stage of NPC development. The EBV genome has been detected in almost all, if not all, undifferentiated nasopharyngeal carcinoma (NPC) cells ( 1 ). EBV infection has been postulated to be an important etiological factor for NPC development ( 2 ). Clonal EBV genomes are present in early preinvasive dysplastic lesions and carcinomas in situ in nasopharyngeal epithelium, indicating that EBV infection is an early event in NPC development ( 3 ). The establishment of persistent EBV infection in premalignant nasopharyngeal epithelial (NPE) cells may represent a crucial step in the pathogenesis of NPC. Interestingly, EBV readily infects and propagates in B cells but not in NPE cells. Furthermore, EBV episomes in infected NPC are lost rapidly during long-term propagation in culture. At present, events regulating the infection and propagation of EBV in NPE cells are largely unknown. We previously reported the presence of genetic alterations, including the allelic deletion of chromosome 9p (which includes the p16 locus), in low-grade dysplastic lesions and histologically normal nasopharyngeal epithelium from human individuals at a high risk of developing NPC ( 4 ). Furthermore, the overexpression of cyclin D1, a protein involved in the regulation of cell-cycle progression, is common in primary NPC biopsies (detected in 35 of 38 cases) ( 5 ). The common deletion of p16, a key protein involved in inhibiting the activity of cyclin D1/CDK4 complex, in premalignant and cancerous nasopharyngeal epithelium and the frequent overexpression of cyclin D1 in NPC indicate that the dysregulation of the cyclin D1 pathway has a significant impact on the maintenance and propagation of EBV in premalignant NPE cells. It has been postulated that these genetic alterations in premalignant NPE cells provide a permissive cellular environment that supports the clonal expansion and propagation of EBV. In this study, we observed that EBV infection of telomerase-immortalized NPE cells induced cell-cycle arrest and senescence. Overexpression of cyclin D1 could suppress these growth-inhibitory effects associated with EBV infection and allow long-term propagation of EBV in infected NPE cells. Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 R24C ) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of the disease and the role of EBV in disease pathogenesis are largely undefined. Genetic alterations leading to activation of cyclin D1 signaling in premalignant nasopharyngeal epithelial (NPE) cells have been postulated to predispose cells to EBV infection. We previously reported that loss of p16, a negative regulator of cyclin D1 signaling, is a frequent feature of NPC tumors. Here, we report that early premalignant lesions of nasopharyngeal epithelium overexpress cyclin D1. Furthermore, overexpression of cyclin D1 is closely associated with EBV infection. Therefore we investigated the potential role of cyclin D1 overexpression in dysplastic NPE cells in vitro. In human telomerase reverse transcriptase-immortalized NPE cells, overexpression of cyclin D1 or a p16-resistant form of CDK4 (CDK4 ᴿ²⁴C) suppressed differentiation. This suppression may have implications for the close association of EBV infection with undifferentiated NPC. In these in vitro models, we found that cellular growth arrest and senescence occurred in EBV-infected cell populations immediately after infection. Nevertheless, overexpression of cyclin D1 or a p16-resistant form of CDK4 or knockdown of p16 in the human telomerase reverse transcriptase-immortalized NPE cell lines could counteract the EBV-induced growth arrest and senescence. We conclude that dysregulated expression of cyclin D1 in NPE cells may contribute to NPC pathogenesis by enabling persistent infection of EBV. |
Author | Deng, Wen Zeng, Musheng Lau, Victoria Ming Yi Middeldorp, Jaap Michiel Yip, Yim Ling Lung, Maria Li Tsao, Sai Wah Lo, Kwok Wai To, Ka Fai Hau, Pok Man Tsang, Chi Man Lui, Vivian Wai Yan Cheung, Annie Lai-Man Takada, Kenzo Chen, Honglin |
Author_xml | – sequence: 1 fullname: Tsang, Chi Man – sequence: 2 fullname: Yip, Yim Ling – sequence: 3 fullname: Lo, Kwok Wai – sequence: 4 fullname: Deng, Wen – sequence: 5 fullname: To, Ka Fai – sequence: 6 fullname: Hau, Pok Man – sequence: 7 fullname: Lau, Victoria Ming Yi – sequence: 8 fullname: Takada, Kenzo – sequence: 9 fullname: Lui, Vivian Wai Yan – sequence: 10 fullname: Lung, Maria Li – sequence: 11 fullname: Chen, Honglin – sequence: 12 fullname: Zeng, Musheng – sequence: 13 fullname: Middeldorp, Jaap Michiel – sequence: 14 fullname: Cheung, Annie Lai-Man – sequence: 15 fullname: Tsao, Sai Wah |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23161911$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1v1DAQxS1URLeFMzeIxDnt2LOO4wsSLMuHVIkDFImT5TiTXVepHexsRf97vNqlhYtteX7z5mneGTsJMRBjLzlccFB4OQWbL7gA0aDioJ-wRTl53Sw1nLAFgFB1uxTLU3aW8w0AaNnCM3YqkDdcc75gP1f3bvSh-sCreEeJfk-JcvYxVHk3TTHNucqz7Uaq1u9_VD4M5OZ9tbSU0XHa2nQfNmTHiiY_b2n05eloHPNz9nSwY6YXx_ucXX9cf199rq--fvqyendVO4nNXGuNvWhFQ21vxSDQESA2oBqlwJIDJ6RGzUlKaaUbeId9Vz76TjnQKC2es7cH3WnX3VLvKMzJjmZK_rZ4M9F6838l-K3ZxDuDUrQSVRF4cxRI8deO8mxu4i6F4tlwga2QHCUU6vJAuRRzTjQ8TOBg9lmYfRbmMYvS8epfYw_83-UXoDoC-85HOW0kmDUuFRbk9QEZbDR2k3w2198E8AaAI8iymj_NiZvq |
CitedBy_id | crossref_primary_10_1016_j_semcancer_2019_09_006 crossref_primary_10_1124_molpharm_121_000361 crossref_primary_10_3389_fimmu_2021_734293 crossref_primary_10_3390_medicina59010002 crossref_primary_10_3389_fonc_2023_1202117 crossref_primary_10_1099_jgv_0_000012 crossref_primary_10_3389_fviro_2021_753366 crossref_primary_10_1016_j_gene_2018_12_004 crossref_primary_10_3390_pathogens10081057 crossref_primary_10_1007_s12250_015_3592_5 crossref_primary_10_1098_rstb_2016_0270 crossref_primary_10_36233_0507_4088_181 crossref_primary_10_1007_s13277_013_0824_x crossref_primary_10_1093_femsre_fuz023 crossref_primary_10_1146_annurev_pathmechdis_012418_013023 crossref_primary_10_3390_v14122700 crossref_primary_10_1007_s10014_013_0161_1 crossref_primary_10_1038_nrc_2016_92 crossref_primary_10_17116_otorino20208502167 crossref_primary_10_1371_journal_pone_0062284 crossref_primary_10_1002_jcp_26410 crossref_primary_10_1371_journal_pone_0078395 crossref_primary_10_1016_j_semcancer_2014_04_004 crossref_primary_10_1038_s41467_018_06889_5 crossref_primary_10_1158_2767_9764_CRC_23_0341 crossref_primary_10_1016_j_iccn_2017_08_006 crossref_primary_10_1038_s41698_022_00251_1 crossref_primary_10_1038_s41388_019_0749_y crossref_primary_10_1016_j_tvr_2023_200272 crossref_primary_10_3390_microorganisms10050888 crossref_primary_10_2217_fvl_2018_0071 crossref_primary_10_1186_s13027_021_00391_2 crossref_primary_10_1038_s41698_017_0018_x crossref_primary_10_3389_fonc_2018_00257 crossref_primary_10_1016_j_actbio_2019_10_043 crossref_primary_10_1016_j_oraloncology_2014_02_006 crossref_primary_10_3390_v13020300 crossref_primary_10_1080_14728222_2020_1751820 crossref_primary_10_1186_s13046_020_01763_z crossref_primary_10_1053_j_seminoncol_2014_10_003 crossref_primary_10_1038_s41467_021_24348_6 crossref_primary_10_18632_oncotarget_10120 crossref_primary_10_3390_pathogens9121059 crossref_primary_10_1038_nmicrobiol_2016_38 crossref_primary_10_1073_pnas_1821752116 crossref_primary_10_1016_j_semcancer_2014_01_002 crossref_primary_10_1186_s12967_022_03400_z crossref_primary_10_1002_ijc_30418 crossref_primary_10_3390_v14112372 crossref_primary_10_1128_JVI_01987_16 crossref_primary_10_1016_j_virusres_2016_11_002 crossref_primary_10_1007_s12672_022_00597_9 crossref_primary_10_1111_cas_13473 crossref_primary_10_3390_cancers10040086 crossref_primary_10_1016_j_celrep_2013_09_012 crossref_primary_10_1016_j_molmed_2016_05_004 crossref_primary_10_3389_fonc_2019_00713 crossref_primary_10_3389_fonc_2020_00600 crossref_primary_10_1371_journal_ppat_1005195 crossref_primary_10_3390_curroncol29090475 crossref_primary_10_3390_cancers14133120 crossref_primary_10_1038_s41388_020_01631_2 crossref_primary_10_1128_JVI_01677_16 crossref_primary_10_1002_path_4448 crossref_primary_10_1128_mSphereDirect_00453_17 crossref_primary_10_1371_journal_pone_0123645 crossref_primary_10_1007_s00428_019_02670_1 crossref_primary_10_1128_JVI_01216_18 crossref_primary_10_1371_journal_ppat_1005344 crossref_primary_10_3390_pathogens11020132 crossref_primary_10_1016_j_ebiom_2022_104357 crossref_primary_10_1053_j_seminoncol_2015_02_019 crossref_primary_10_1128_jvi_01032_22 crossref_primary_10_1128_JVI_00736_17 crossref_primary_10_3390_biology10121232 crossref_primary_10_2222_jsv_64_95 crossref_primary_10_3390_ijms232415512 crossref_primary_10_1126_scitranslmed_adh7668 crossref_primary_10_1099_jgv_0_001243 crossref_primary_10_1038_s41392_018_0010_0 crossref_primary_10_1371_journal_pone_0156833 crossref_primary_10_1016_S0140_6736_15_00055_0 crossref_primary_10_3389_fcimb_2022_935205 crossref_primary_10_1002_bab_1856 crossref_primary_10_1038_s41598_018_26201_1 crossref_primary_10_3389_fmicb_2023_1116143 crossref_primary_10_3390_cancers12092565 crossref_primary_10_3390_v9110341 crossref_primary_10_1002_ijc_29850 crossref_primary_10_1002_rmv_1786 crossref_primary_10_3390_cancers12092441 crossref_primary_10_1002_ijc_31652 crossref_primary_10_1186_s12935_019_0915_x crossref_primary_10_1186_1476_4598_13_184 crossref_primary_10_3390_cancers10030076 crossref_primary_10_1038_s41374_018_0034_7 crossref_primary_10_1158_1535_7163_MCT_19_0572 crossref_primary_10_3950_jibiinkoka_121_174 crossref_primary_10_1101_gr_275348_121 crossref_primary_10_1016_j_oraloncology_2014_01_009 crossref_primary_10_1038_s41571_021_00524_x crossref_primary_10_3390_cancers13194944 crossref_primary_10_3390_v12111222 crossref_primary_10_1128_JVI_00060_16 crossref_primary_10_3390_cells13070559 |
Cites_doi | 10.1016/S1535-6108(04)00119-9 10.4161/cc.8.1.7411 10.1086/323992 10.1056/NEJM199509143331103 10.1016/S1044579X02000901 10.1038/nrc1452 10.1128/MCB.21.16.5631-5643.2001 10.1128/JVI.01216-10 10.1128/JVI.79.2.1296-1307.2005 10.1128/JVI.00108-09 10.1128/JVI.74.23.11115-11120.2000 10.1099/0022-1317-80-6-1501 10.1158/0008-5472.CAN-05-0648 10.1038/356347a0 10.1002/j.1460-2075.1996.tb00635.x 10.1002/jcb.21978 10.1089/jir.2009.0073 10.1128/JVI.00091-08 10.1016/j.semcancer.2012.01.004 10.1073/pnas.91.8.2945 10.1016/S1044579X02000883 10.1016/j.semcancer.2011.12.011 10.1006/scbi.1996.0023 10.1002/ijc.25173 10.1073/pnas.0611128104 10.1002/ijc.22032 10.1016/S1044579X0200086X 10.1128/JVI.01051-09 10.1016/j.semcancer.2012.02.004 10.1038/sj.onc.1210240 10.1128/JVI.79.19.12280-12285.2005 10.1073/pnas.1019599108 10.1038/sj.emboj.7601853 10.1099/0022-1317-83-12-2995 10.1128/JVI.78.11.5658-5669.2004 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Dec 11, 2012 |
Copyright_xml | – notice: Copyright National Academy of Sciences Dec 11, 2012 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1202637109 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Cyclin D1 supports EBV infection |
EISSN | 1091-6490 |
EndPage | E3482 |
ExternalDocumentID | 2841633761 10_1073_pnas_1202637109 23161911 109_50_E3473 US201600130559 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC ABXSQ ADACV AQVQM CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c536t-993d2826e8da2f23ce0336076770aec0c259391e555a5cf1b3db939db7c0935a3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:24:00 EDT 2024 Thu Oct 10 17:59:42 EDT 2024 Thu Nov 21 23:54:05 EST 2024 Sat Sep 28 07:59:23 EDT 2024 Wed Nov 11 00:30:13 EST 2020 Wed Dec 27 19:31:01 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-993d2826e8da2f23ce0336076770aec0c259391e555a5cf1b3db939db7c0935a3 |
Notes | http://dx.doi.org/10.1073/pnas.1202637109 Edited by Elliott Kieff, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, and approved October 12, 2012 (received for review March 6, 2012) 1C.M.T. and Y.L.Y. contributed equally to this work. Author contributions: C.M.T., P.M.H., and S.W.T. designed research; C.M.T., Y.L.Y., K.W.L., W.D., and V.M.Y.L. performed research; K.F.T., K.T., M.Z., J.M.M., and A.L.-M.C. contributed new reagents/analytic tools; C.M.T., K.W.L., W.D., H.C., and S.W.T. analyzed data; and C.M.T., V.W.Y.L., M.L.L., and S.W.T. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/50/E3473.full.pdf |
PMID | 23161911 |
PQID | 1238251350 |
PQPubID | 42026 |
ParticipantIDs | pnas_primary_109_50_E3473 fao_agris_US201600130559 proquest_journals_1238251350 crossref_primary_10_1073_pnas_1202637109 pubmed_primary_23161911 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3528537 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2012-12-11 |
PublicationDateYYYYMMDD | 2012-12-11 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 17853891 - EMBO J. 2007 Oct 3;26(19):4252-62 22497025 - Semin Cancer Biol. 2012 Apr;22(2):137-43 8654372 - EMBO J. 1996 Jun 3;15(11):2748-59 22249143 - Semin Cancer Biol. 2012 Apr;22(2):144-53 16166286 - Cancer Res. 2005 Sep 15;65(18):8125-33 17360652 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3366-71 15510157 - Nat Rev Cancer. 2004 Oct;4(10):757-68 8946600 - Semin Cancer Biol. 1996 Aug;7(4):165-74 16688717 - Int J Cancer. 2006 Oct 1;119(7):1567-76 10374969 - J Gen Virol. 1999 Jun;80 ( Pt 6):1501-12 12450729 - Semin Cancer Biol. 2002 Dec;12(6):431-41 19439479 - J Virol. 2009 Aug;83(15):7749-60 15144950 - Cancer Cell. 2004 May;5(5):423-8 7743498 - Cancer Res. 1995 May 15;55(10):2039-43 17322915 - Oncogene. 2007 Feb 26;26(9):1297-305 19021145 - J Cell Biochem. 2009 Jan 1;106(1):63-72 19098430 - Cell Cycle. 2009 Jan 1;8(1):58-65 1312681 - Nature. 1992 Mar 26;356(6367):347-50 20091869 - Int J Cancer. 2010 Oct 1;127(7):1570-83 11463844 - Mol Cell Biol. 2001 Aug;21(16):5631-43 16160154 - J Virol. 2005 Oct;79(19):12280-5 15613356 - J Virol. 2005 Jan;79(2):1296-307 8159685 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2945-9 20861262 - J Virol. 2010 Dec;84(24):12832-40 18596104 - J Virol. 2008 Sep;82(17):8442-55 15140963 - J Virol. 2004 Jun;78(11):5658-69 19587049 - J Virol. 2009 Sep;83(18):9554-66 11740724 - J Infect Dis. 2001 Dec 15;184(12):1499-507 22245473 - Semin Cancer Biol. 2012 Apr;22(2):79-86 12466475 - J Gen Virol. 2002 Dec;83(Pt 12):2995-8 19708815 - J Interferon Cytokine Res. 2009 Sep;29(9):581-98 21245331 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1919-24 11070007 - J Virol. 2000 Dec;74(23):11115-20 12450731 - Semin Cancer Biol. 2002 Dec;12(6):451-62 12450733 - Semin Cancer Biol. 2002 Dec;12(6):473-87 7637746 - N Engl J Med. 1995 Sep 14;333(11):693-8 e_1_1_2_17_10_5_2 e_1_1_2_17_10_4_2 e_1_1_2_17_10_3_2 e_1_1_2_17_10_2_2 e_1_1_2_17_10_1_2 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 Lo KW (e_1_3_3_9_2) 1995; 55 e_1_3_3_21_2 |
References_xml | – ident: e_1_1_2_17_10_4_2 doi: 10.1016/S1535-6108(04)00119-9 – ident: e_1_3_3_24_2 doi: 10.4161/cc.8.1.7411 – ident: e_1_3_3_15_2 doi: 10.1086/323992 – ident: e_1_3_3_4_2 doi: 10.1056/NEJM199509143331103 – ident: e_1_3_3_32_2 doi: 10.1016/S1044579X02000901 – ident: e_1_3_3_3_2 doi: 10.1038/nrc1452 – ident: e_1_3_3_13_2 doi: 10.1128/MCB.21.16.5631-5643.2001 – ident: e_1_3_3_21_2 doi: 10.1128/JVI.01216-10 – ident: e_1_3_3_29_2 doi: 10.1128/JVI.79.2.1296-1307.2005 – ident: e_1_3_3_36_2 doi: 10.1128/JVI.00108-09 – ident: e_1_3_3_16_2 doi: 10.1128/JVI.74.23.11115-11120.2000 – ident: e_1_3_3_30_2 doi: 10.1099/0022-1317-80-6-1501 – ident: e_1_1_2_17_10_5_2 doi: 10.1158/0008-5472.CAN-05-0648 – ident: e_1_3_3_14_2 doi: 10.1038/356347a0 – ident: e_1_3_3_23_2 doi: 10.1002/j.1460-2075.1996.tb00635.x – ident: e_1_3_3_11_2 doi: 10.1002/jcb.21978 – ident: e_1_3_3_17_2 doi: 10.1089/jir.2009.0073 – ident: e_1_3_3_22_2 doi: 10.1128/JVI.00091-08 – ident: e_1_3_3_33_2 doi: 10.1016/j.semcancer.2012.01.004 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.91.8.2945 – ident: e_1_3_3_26_2 doi: 10.1016/S1044579X02000883 – ident: e_1_3_3_5_2 doi: 10.1016/j.semcancer.2011.12.011 – ident: e_1_3_3_1_2 doi: 10.1006/scbi.1996.0023 – ident: e_1_3_3_8_2 doi: 10.1002/ijc.25173 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0611128104 – ident: e_1_3_3_10_2 doi: 10.1158/0008-5472.CAN-05-0648 – ident: e_1_1_2_17_10_3_2 doi: 10.1056/NEJM199509143331103 – ident: e_1_3_3_25_2 doi: 10.1002/ijc.22032 – ident: e_1_3_3_2_2 doi: 10.1016/S1044579X0200086X – ident: e_1_3_3_18_2 doi: 10.1128/JVI.01051-09 – ident: e_1_3_3_7_2 doi: 10.1016/j.semcancer.2012.02.004 – ident: e_1_3_3_34_2 doi: 10.1038/sj.onc.1210240 – ident: e_1_3_3_28_2 doi: 10.1128/JVI.79.19.12280-12285.2005 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.1019599108 – ident: e_1_3_3_6_2 doi: 10.1016/S1535-6108(04)00119-9 – ident: e_1_1_2_17_10_1_2 doi: 10.1038/nrc1452 – ident: e_1_3_3_27_2 doi: 10.1038/sj.emboj.7601853 – ident: e_1_3_3_31_2 doi: 10.1099/0022-1317-83-12-2995 – volume: 55 start-page: 2039 year: 1995 ident: e_1_3_3_9_2 article-title: p16 gene alterations in nasopharyngeal carcinoma publication-title: Cancer Res contributor: fullname: Lo KW – ident: e_1_3_3_20_2 doi: 10.1128/JVI.78.11.5658-5669.2004 – ident: e_1_1_2_17_10_2_2 doi: 10.1016/j.semcancer.2012.02.004 |
SSID | ssj0009580 |
Score | 2.4735005 |
Snippet | Undifferentiated nasopharyngeal carcinomas (NPCs) are commonly present with latent EBV infection. However, events regulating EBV infection at early stages of... |
SourceID | pubmedcentral proquest crossref pubmed pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E3473 |
SubjectTerms | Base Sequence Biological Sciences carcinoma Cell Cycle Cell Differentiation Cell growth Cell Line, Tumor Cell Transformation, Neoplastic Cell Transformation, Viral Cells, Cultured Cellular Senescence Cyclin D1 - genetics Cyclin D1 - metabolism cyclins DNA, Viral - genetics epithelial cells Epithelial Cells - metabolism Epithelial Cells - pathology Epithelial Cells - virology epithelium Epstein-Barr Virus Infections - complications Epstein-Barr Virus Infections - genetics Epstein-Barr Virus Infections - metabolism Epstein-Barr Virus Infections - virology Gene Expression Genes, bcl-1 Genes, Viral Herpesvirus 4, Human - genetics Herpesvirus 4, Human - pathogenicity Humans Nasopharyngeal Neoplasms - etiology Nasopharyngeal Neoplasms - genetics Nasopharyngeal Neoplasms - metabolism Nasopharyngeal Neoplasms - pathology Nasopharynx - metabolism Nasopharynx - pathology Nasopharynx - virology Pathogenesis PNAS Plus Precancerous Conditions - etiology Precancerous Conditions - genetics Precancerous Conditions - metabolism Precancerous Conditions - pathology Signal Transduction Telomerase Telomerase - genetics Telomerase - metabolism Tumors Viral infections |
Title | Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells |
URI | http://www.pnas.org/content/109/50/E3473.abstract https://www.ncbi.nlm.nih.gov/pubmed/23161911 https://www.proquest.com/docview/1238251350 https://pubmed.ncbi.nlm.nih.gov/PMC3528537 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB51OfVSlb4IBeRDD_SQ3diO4-RYlkVcWlWiVO3J8msBafFGhJXKv-_YmyxdxKmnWIkdOR4_vom_-QzwifmG-lLI3DJqckzQHHFcmXtnEDzUjTB1jB0-v5DfftWnsyiTI4ZYmETat-ZmHBa343BznbiV7a2dDDyxyfev06hIIricjGCE2HBw0TdKu_U67oTh9FuyctDzkXzSBt2NKbr7FY8UxCgEzBHxNJRurUqjuV5GrVPM_RzufEqf_Gc9OnsNr3ogSb6sK7wLL3x4A7v9UO3Ica8n_fkt_J4-xPhHckpJ5Gv6Pz33NZBu1aYdA4IQ0Sw8mZ38JAM7K2CKYN2W7bW-ewhXCCiJb2MExwK7LIk__Lt3cHk2-zE9z_sTFXIreHWfIxhx6GNVvnaazRmPh4XxqpCVlIX2trDoDHE0nhBCCzunhjuDN5yRNm6Yav4edsIy-D0grLSOIxjyeCk1k0aYxjbWOFe4orHzDI6HFlXtWjhDpQ1vyVVsWfVohwz2sMWVvsJpTV1esCh6FzdU0dnJIEuZH9_QKFGoGS8lz-BgsI3qB158K4_BuFwUGXxYm2lTeDB2BnLLgJsMUWp7-wn2wCS53fe4_f8u-RFe4nelc2QoPYCd-7uVP4RR51ZHiYZ6lDrxX9-t8gU |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6x5QAXoLwaKOADh3LIrh9xnBxhu9Ui2gqpLYKTFT-2rbT1Rk1Xov-ecTbZsohTT7Hih2R9fnyjmfkM8JH7kvlMqtRyZlIssBR5XJZ6Z5A8FKU0Rcwdnp6o45_F_iTK5Mg-F6YN2rfmchjmV8NwedHGVtZXdtTHiY2-H42jIokUajSAh7hfKe2N9LXWbrHKPOF4AGc86xV9lBjVoWqGDA3-XMQgxCgFLJDzlIxt3EuDWbWIaqfY-n_M898Ayr9upIOn95zLM3jSUVDyeVW9DQ98eA7b3SZvyF6nRP3pBfwa38bMSbLPSIz09L-7qNlAmmXd-hoIkksz92Ty5Qfp47oClgjOaVFfVNe34RypKPF1zP2Y42In0VXQvISzg8npeJp2bzGkVor8JkUa49A6y33hKj7jIj4zJnKqcqVo5S21aEYJhF1KWUk7Y0Y4gz-cUTa6WivxCrbCIvgdIDyzTiCN8vjJKq6MNKUtrXGOOlraWQJ7PRK6Xklu6NZVroSOiOg7_BLYQaR0dY4Hoj474VEuL7pi0UxKIGkb341Qakn1RGRKJLDbY6q7LRtHFTGNV0iawOsVvOvO_SJJQG0Av24QRbo3axDvVqy7w_fNvXt-gEfT06NDffj1-NtbeIxzbF-jYWwXtm6ul_4dDBq3fN9ugT8uLgaT |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xRUJcgPJqoIAPHMohm9iO4-QI-1ARUFUqRXCy_EpbaZuNmq5E_z3jbLJlESc4xUrGkazPj280M58B3jJfUp8JGVtGTYwNGiOPy2LvDJKHohSmCLXDhyfy6HsxnQWZnM1VX13SvjUX43pxOa4vzrvcyubSJkOeWHL8ZRIUSQSXSeOqZAR3cc2mbHDUN3q7xbr6hOEmnLFsUPWRPGlq3Y4pOv05D4mIQQ6YI-8pKd06m0aVXgbFU7T-G_v8M4nyt1Np_vA_xvMIHvRUlLxfm-zCHV8_ht1-sbfkoFekfvcEfkxuQgUlmVISMj79zz57tibtquliDgRJpll4MvvwjQz5XTW2CI5r2Zzrq5v6DCkp8U2oAVngpCchZNA-hdP57OvkMO7vZIit4Pl1jHTGoZeW-8JpVjEerhvjeSpzKVPtbWrRneIIvxBCC1tRw53BF85IG0Kumj-DnXpZ-z0gLLOOI53y-Mg0k0aY0pbWOJe6tLRVBAcDGqpZS2-oLmQuuQqoqFsMI9hDtJQ-w41RnZ6wIJsXQrLoLkUQdca3fyiVSNWMZ5JHsD_gqvqlG_7KQzkvF2kEz9cQbzoPEyUCuQX-xiCIdW9_Qcw70e4e4xf_3PMN3DueztXnj0efXsJ9HGJ3KQ2l-7BzfbXyr2DUutXrbhX8Ao0lCRM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclin+D1+overexpression+supports+stable+EBV+infection+in+nasopharyngeal+epithelial+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tsang%2C+Chi+Man&rft.au=Yip%2C+Yim+Ling&rft.au=Lo%2C+Kwok+Wai&rft.au=Deng%2C+Wen&rft.date=2012-12-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=50&rft.spage=E3473&rft_id=info:doi/10.1073%2Fpnas.1202637109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2841633761 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F50.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F50.cover.gif |