A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments

The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, mak...

Full description

Saved in:
Bibliographic Details
Published in:The ISME Journal Vol. 12; no. 7; pp. 1706 - 1714
Main Authors: Munson-McGee, Jacob H., Peng, Shengyun, Dewerff, Samantha, Stepanauskas, Ramunas, Whitaker, Rachel J., Weitz, Joshua S., Young, Mark J.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-07-2018
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus–host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus–host interactions in extreme environments, provides evidence that extensive virus–host associations are common, and further expands the unseen impact of viruses on cellular life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-7362
1751-7370
1751-7370
DOI:10.1038/s41396-018-0071-7