Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus

At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic in...

Full description

Saved in:
Bibliographic Details
Published in:Circulation (New York, N.Y.) Vol. 114; no. 13; pp. 1372 - 1379
Main Authors: ZHIGANG HONG, FANGXIAO HONG, OLSCHEWSKI, Andrea, CABRERA, Jesus A, VARGHESE, Anthony, NELSON, Daniel P, WEIR, E. Kenneth
Format: Journal Article
Language:English
Published: Hagerstown, MD Lippincott Williams & Wilkins 26-09-2006
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms. Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP3-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase. Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants.
AbstractList BACKGROUND: At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms. METHOD:S: and Results- Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP sub(3)-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase. CONCLUSIONS: Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants.
At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms. Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP3-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase. Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants.
Background— At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms. Methods and Results— Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP 3 -sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase. Conclusions— Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes ≈10% of all congenital heart disease and is especially common in premature infants.
BACKGROUNDAt birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms.METHODS AND RESULTSUsing ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP3-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase.CONCLUSIONSMuch of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants.
Author CABRERA, Jesus A
ZHIGANG HONG
OLSCHEWSKI, Andrea
WEIR, E. Kenneth
FANGXIAO HONG
VARGHESE, Anthony
NELSON, Daniel P
Author_xml – sequence: 1
  surname: ZHIGANG HONG
  fullname: ZHIGANG HONG
  organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States
– sequence: 2
  surname: FANGXIAO HONG
  fullname: FANGXIAO HONG
  organization: Department of Anesthesiology, Beijing Friendship Hospital, affiliated with Capital University of Medical Science, Beijing, China
– sequence: 3
  givenname: Andrea
  surname: OLSCHEWSKI
  fullname: OLSCHEWSKI, Andrea
  organization: Experimental Anesthesiology, Department of Anesthesiology, University of Graz Medical School, Graz, Austria
– sequence: 4
  givenname: Jesus A
  surname: CABRERA
  fullname: CABRERA, Jesus A
  organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States
– sequence: 5
  givenname: Anthony
  surname: VARGHESE
  fullname: VARGHESE, Anthony
  organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States
– sequence: 6
  givenname: Daniel P
  surname: NELSON
  fullname: NELSON, Daniel P
  organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States
– sequence: 7
  givenname: E. Kenneth
  surname: WEIR
  fullname: WEIR, E. Kenneth
  organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18164810$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16982938$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVISSZp_0JRF83OUz1sPZbDkMfAkEBI1kaWromKLU0lGdr--jiZgSGrrC738J1z4Z4LdBpiAIR-ULKkVNBf683j-nm7eto83K_uVktKxFLUlDJxgha0YXVVN1yfogUhRFeSM3aOLnL-Pa-Cy-YMnVOhFdNcLVB6jAPg2ONcYoIq7iCZAg5bM1g_jdi-mBBgyNiEo5ghZF_8f1N8DNgHHGIa419vsY2hJGPf9Tm0vAB2ky3T7E8Fko95yl_Rl94MGb4d5iV6vrl-Wt9V24fbzXq1rWzDRalo1znHeC1J73TTSNnVChRrNAUA0tV939dOE22dYUp30GjHtRXSdZ3U1jJ-ia72ubsU_0yQSzv6bGEYTIA45VYopaVS6lOQai6FEnIG9R60KeacoG93yY8m_Wspad-aaT82M8ui3Tcze78fjkzdCO7oPFQxAz8PgMnzo_tkgvX5yCkqakUJfwWwf51s
CODEN CIRCAZ
CitedBy_id crossref_primary_10_1152_ajpregu_00664_2010
crossref_primary_10_1055_s_0039_1692389
crossref_primary_10_1203_PDR_0b013e3181aa07eb
crossref_primary_10_1590_S1807_59322010000700004
crossref_primary_10_3390_ijms23094681
crossref_primary_10_1007_s00246_011_0082_x
crossref_primary_10_1529_biophysj_107_118893
crossref_primary_10_1096_fj_12_226225
crossref_primary_10_1371_journal_pone_0086892
crossref_primary_10_1080_15513815_2023_2178866
crossref_primary_10_1097_JPN_0000000000000025
crossref_primary_10_1152_ajpregu_00001_2008
crossref_primary_10_1016_j_pharmthera_2008_03_008
crossref_primary_10_1038_s41390_019_0387_7
crossref_primary_10_1152_ajplung_00092_2009
crossref_primary_10_1074_jbc_M109_017061
crossref_primary_10_1111_bph_15828
crossref_primary_10_1203_PDR_0b013e31819746a1
crossref_primary_10_3389_fped_2020_00516
crossref_primary_10_1093_cvr_cvu199
crossref_primary_10_1203_PDR_0b013e3181ed8609
crossref_primary_10_1007_s00109_014_1162_1
crossref_primary_10_1542_peds_2009_3506
crossref_primary_10_1016_j_semperi_2023_151715
crossref_primary_10_1203_PDR_0b013e31815ed059
crossref_primary_10_1089_ars_2012_4752
crossref_primary_10_1152_ajpregu_00300_2007
crossref_primary_10_3390_ijms20020411
crossref_primary_10_1016_j_freeradbiomed_2019_04_008
crossref_primary_10_3109_14767058_2010_509920
crossref_primary_10_1038_bjp_2008_291
Cites_doi 10.1038/sj.jp.7211465
10.1152/ajplung.00372.2002
10.1161/res.72.6.8495551
10.1152/physiolgenomics.00231.2005
10.1161/01.res.0000171894.03801.03
10.1515/BC.2004.014
10.1113/jphysiol.1956.sp005526
10.1113/jphysiol.1981.sp013824
10.1152/physrev.00023.2003
10.1161/res.89.10.923
10.1152/ajpheart.1999.277.4.H1521
10.1152/ajplung.00452.2003
10.1056/NEJM200009073431009
10.1152/ajpheart.1998.275.5.H1620
10.1074/jbc.M213271200
10.1016/0002-9149(60)90052-7
10.1161/01.cir.0000145159.16637.5d
10.1152/ajplung.2001.280.5.L870
10.1038/35077544
10.1152/ajpcell.00192.2003
10.1111/j.1469-7793.2001.0253b.x
10.1097/00007611-197810000-00015
10.1161/01.cir.0000141292.28616.65
10.1161/01.res.0000138952.16382.ad
10.1152/ajplung.00403.2004
10.1172/JCI118999
10.1074/jbc.M313975200
10.1016/S0140-6736(00)02452-1
10.1203/00006450-199901000-00005
10.1161/01.RES.88.1.84
10.1152/ajplung.00412.2001
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7X8
DOI 10.1161/CIRCULATIONAHA.106.641126
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 1379
ExternalDocumentID 10_1161_CIRCULATIONAHA_106_641126
16982938
18164810
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL 65322
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
08R
0R~
0ZK
18M
1CY
1J1
29B
2FS
2WC
354
40H
41~
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAXR
AAEJM
AAGIX
AAHPQ
AAJCS
AAMOA
AAMTA
AAPBV
AAQKA
AARTV
AASOK
AASXQ
AAUGY
AAWTL
AAXQO
AAYOK
ABASU
ABBUW
ABDIG
ABOCM
ABPMR
ABPTK
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACRZS
ACWDW
ACWRI
ACXNZ
ADBBV
ADCYY
ADFPA
ADGGA
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFCHL
AFDTB
AFFNX
AFUWQ
AGINI
AHMBA
AHOMT
AHRYX
AHVBC
AIJEX
AJIOK
AJJEV
AJNWD
AJNYG
AKALU
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
ASPBG
AVWKF
AWKKM
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BS7
BYPQX
C1A
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FEDTE
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
IPNFZ
IQODW
J5H
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
M18
MVM
N4W
N9A
NEJ
N~7
N~B
N~M
O9-
OAG
OAH
OBH
OCB
OCUKA
ODA
ODMTH
OGEVE
OHH
OHT
OHYEH
OJAPA
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RHF
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WHG
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YQJ
YSK
YXB
YYM
YYP
YZZ
ZA5
ZFV
ZGI
ZXP
ZY1
ZZMQN
~H1
AAAAV
AAIQE
AAUEB
ABJNI
ADHPY
AFEXH
AHQNM
AINUH
AJZMW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7X8
ID FETCH-LOGICAL-c536t-1bbdd23470fd95577b48e82591eee0b4fff4d909cda289be59d39c67dbb79cc23
ISSN 0009-7322
IngestDate Fri Oct 25 00:37:32 EDT 2024
Thu Oct 24 22:44:09 EDT 2024
Thu Nov 21 23:17:07 EST 2024
Tue Oct 15 23:34:36 EDT 2024
Sun Oct 22 16:08:45 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Oxygen
Calcium
ductus arteriosus, patent
Vasoconstriction
Persistence of ductus arteriosus
Cardiovascular disease
Ductus arteriosus
Inorganic element
Contraction
ion channels
Vasomotricity
heart defects, congenital
Congenital cardiopathy
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-1bbdd23470fd95577b48e82591eee0b4fff4d909cda289be59d39c67dbb79cc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.106.641126
PMID 16982938
PQID 19376867
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_68897888
proquest_miscellaneous_19376867
crossref_primary_10_1161_CIRCULATIONAHA_106_641126
pubmed_primary_16982938
pascalfrancis_primary_18164810
PublicationCentury 2000
PublicationDate 2006-09-26
PublicationDateYYYYMMDD 2006-09-26
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-26
  day: 26
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2006
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References e_1_3_2_26_2
(e_1_3_2_16_2) 1978; 54
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_7_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
(e_1_3_2_17_2) 1998; 50
References_xml – ident: e_1_3_2_10_2
  doi: 10.1038/sj.jp.7211465
– ident: e_1_3_2_8_2
  doi: 10.1152/ajplung.00372.2002
– ident: e_1_3_2_25_2
  doi: 10.1161/res.72.6.8495551
– ident: e_1_3_2_1_2
  doi: 10.1152/physiolgenomics.00231.2005
– ident: e_1_3_2_14_2
  doi: 10.1161/01.res.0000171894.03801.03
– ident: e_1_3_2_9_2
  doi: 10.1515/BC.2004.014
– ident: e_1_3_2_2_2
  doi: 10.1113/jphysiol.1956.sp005526
– ident: e_1_3_2_23_2
  doi: 10.1113/jphysiol.1981.sp013824
– ident: e_1_3_2_33_2
  doi: 10.1152/physrev.00023.2003
– volume: 50
  start-page: 35
  year: 1998
  ident: e_1_3_2_17_2
  publication-title: Pharmacol Rev
– ident: e_1_3_2_26_2
  doi: 10.1161/res.89.10.923
– ident: e_1_3_2_20_2
  doi: 10.1152/ajpheart.1999.277.4.H1521
– ident: e_1_3_2_29_2
  doi: 10.1152/ajplung.00452.2003
– ident: e_1_3_2_11_2
  doi: 10.1056/NEJM200009073431009
– ident: e_1_3_2_4_2
  doi: 10.1152/ajpheart.1998.275.5.H1620
– ident: e_1_3_2_12_2
  doi: 10.1074/jbc.M213271200
– ident: e_1_3_2_3_2
  doi: 10.1016/0002-9149(60)90052-7
– ident: e_1_3_2_18_2
  doi: 10.1161/01.cir.0000145159.16637.5d
– ident: e_1_3_2_27_2
  doi: 10.1152/ajplung.2001.280.5.L870
– ident: e_1_3_2_24_2
  doi: 10.1038/35077544
– ident: e_1_3_2_31_2
  doi: 10.1152/ajpcell.00192.2003
– ident: e_1_3_2_7_2
  doi: 10.1111/j.1469-7793.2001.0253b.x
– ident: e_1_3_2_15_2
  doi: 10.1097/00007611-197810000-00015
– ident: e_1_3_2_22_2
  doi: 10.1161/01.cir.0000141292.28616.65
– ident: e_1_3_2_32_2
  doi: 10.1161/01.res.0000138952.16382.ad
– ident: e_1_3_2_21_2
  doi: 10.1152/ajplung.00403.2004
– ident: e_1_3_2_6_2
  doi: 10.1172/JCI118999
– ident: e_1_3_2_13_2
  doi: 10.1074/jbc.M313975200
– ident: e_1_3_2_5_2
  doi: 10.1016/S0140-6736(00)02452-1
– volume: 54
  start-page: 700
  year: 1978
  ident: e_1_3_2_16_2
  publication-title: S Afr Med J
– ident: e_1_3_2_19_2
  doi: 10.1203/00006450-199901000-00005
– ident: e_1_3_2_30_2
  doi: 10.1161/01.RES.88.1.84
– ident: e_1_3_2_28_2
  doi: 10.1152/ajplung.00412.2001
SSID ssj0006375
Score 2.1348808
Snippet At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by...
Background— At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is...
BACKGROUND: At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is...
BACKGROUNDAt birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is...
SourceID proquest
crossref
pubmed
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 1372
SubjectTerms Animals
Arachidonic Acids - pharmacology
Associated diseases and complications
Biological and medical sciences
Blood and lymphatic vessels
Boron Compounds - pharmacology
Calcium - pharmacology
Calcium Channel Blockers - pharmacology
Calcium Channels, L-Type - drug effects
Calcium Channels, L-Type - physiology
Calcium Signaling - physiology
Cardiology. Vascular system
Cytosol - metabolism
Diabetes. Impaired glucose tolerance
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Ductus Arteriosus - embryology
Ductus Arteriosus - physiology
Endocannabinoids
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Imidazoles - pharmacology
In Vitro Techniques
Indoles - pharmacology
Intracellular Signaling Peptides and Proteins - physiology
Isoquinolines - pharmacology
Maleimides - pharmacology
Medical sciences
Menthol - pharmacology
Mibefradil - pharmacology
Muscle Contraction - drug effects
Muscle Contraction - physiology
Nifedipine - pharmacology
Niflumic Acid - pharmacology
Orthopedic surgery
Oxidation-Reduction
Oxygen - pharmacology
Patch-Clamp Techniques
Polyunsaturated Alkamides
Potassium Channels - drug effects
Potassium Channels - physiology
Protein-Serine-Threonine Kinases - physiology
Rabbits - embryology
rho-Associated Kinases
Ruthenium Red - pharmacology
Sulfonamides - pharmacology
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Tetraethylammonium - pharmacology
Thapsigargin - pharmacology
Thiourea - analogs & derivatives
Thiourea - pharmacology
Title Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus
URI https://www.ncbi.nlm.nih.gov/pubmed/16982938
https://search.proquest.com/docview/19376867
https://search.proquest.com/docview/68897888
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpC2UwxtbuI93WaTD25iy2ZVl6DGlCAlkKTQJlL8aW5c2w2iG2of3vd7LkOBkN2x72YpIjkePcz3f6ne8DoU9e4lI79GKLhI5vEdW9ldsRtVzpqfaVlIiwDl0s_PktuxqRUafTDFlrZf9V0yADXavK2X_Q9nZREMBr0DkcQetw_Cu935h0wQWQaWldr1XTZBXFDX-KtLqrqwky8If1Q4NGuFBZ7KWpyFQRkDnsZPP7VKiCwHJjxombbIKrSpRVoaL6cDl5YQIHTbODdCPMQLDH5vzsxB0mJhf424_0e2jc5454DLL7NMzbIDDQcDDIesp2nYbZ5hiFwOs3OulXFuq3_R7L4JYumN_aZ275rq5U7kljkh1iEU-3PNrabF152oDT3THBtus7O-4c3vLHXQVVrmI4vRmuZrrx8GTQA4Lco0SVVbX-sckJmF8H49VsFixHt8sjdOKAZQPDejIYTmfTrfOnru81w_vUhZyij-ZkXw6eam9L9HQdFnB3JnqsymHeU-9_ls_RM0Nc8EAj7gXqyOwMnQ-ysMzvHvBnXKcS189oztDpV5OxcY42Co84T_A-HrGBHm7wiAGPW-EeHnGa4QaPeAePalHAI9Z4xC0eX6LVeLQcTiwz58MSnktLy46iOHZc4veTmHue70eESQa83JZS9iOSJAmJeZ-LOHQYj6THY5cL6sdR5HMhHPcVOs7yTL5BGPgPV-2LBOcJEYRxCXycOkkkE9iIC6-LnOavDta6nUtQ02BqB_v6ATENtH666HJPKe03mU0Js_td9KHRUgDWWT1yCzOZV0UA9Aj4PPUPf4IyxlUYqotea_W2q1POYDPOLv64-lv0pL2b3qHjclPJ9-ioiKtLg89fQ4q_CQ
link.rule.ids 315,782,786,27933,27934
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Store-Operated+Calcium+Channels+and+Calcium+Sensitization+in+Normoxic+Contraction+of+the+Ductus+Arteriosus&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Hong%2C+Zhigang&rft.au=Hong%2C+Fangxiao&rft.au=Olschewski%2C+Andrea&rft.au=Cabrera%2C+Jesus+A&rft.date=2006-09-26&rft.issn=0009-7322&rft.eissn=1524-4539&rft.volume=114&rft.issue=13&rft.spage=1372&rft.epage=1379&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.106.641126&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon