Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus
At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic in...
Saved in:
Published in: | Circulation (New York, N.Y.) Vol. 114; no. 13; pp. 1372 - 1379 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hagerstown, MD
Lippincott Williams & Wilkins
26-09-2006
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms.
Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP3-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase.
Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants. |
---|---|
AbstractList | BACKGROUND: At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms. METHOD:S: and Results- Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP sub(3)-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase. CONCLUSIONS: Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants. At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms. Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP3-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase. Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants. Background— At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms. Methods and Results— Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP 3 -sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase. Conclusions— Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes ≈10% of all congenital heart disease and is especially common in premature infants. BACKGROUNDAt birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms.METHODS AND RESULTSUsing ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP3-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase.CONCLUSIONSMuch of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants. |
Author | CABRERA, Jesus A ZHIGANG HONG OLSCHEWSKI, Andrea WEIR, E. Kenneth FANGXIAO HONG VARGHESE, Anthony NELSON, Daniel P |
Author_xml | – sequence: 1 surname: ZHIGANG HONG fullname: ZHIGANG HONG organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States – sequence: 2 surname: FANGXIAO HONG fullname: FANGXIAO HONG organization: Department of Anesthesiology, Beijing Friendship Hospital, affiliated with Capital University of Medical Science, Beijing, China – sequence: 3 givenname: Andrea surname: OLSCHEWSKI fullname: OLSCHEWSKI, Andrea organization: Experimental Anesthesiology, Department of Anesthesiology, University of Graz Medical School, Graz, Austria – sequence: 4 givenname: Jesus A surname: CABRERA fullname: CABRERA, Jesus A organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States – sequence: 5 givenname: Anthony surname: VARGHESE fullname: VARGHESE, Anthony organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States – sequence: 6 givenname: Daniel P surname: NELSON fullname: NELSON, Daniel P organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States – sequence: 7 givenname: E. Kenneth surname: WEIR fullname: WEIR, E. Kenneth organization: Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18164810$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16982938$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVISSZp_0JRF83OUz1sPZbDkMfAkEBI1kaWromKLU0lGdr--jiZgSGrrC738J1z4Z4LdBpiAIR-ULKkVNBf683j-nm7eto83K_uVktKxFLUlDJxgha0YXVVN1yfogUhRFeSM3aOLnL-Pa-Cy-YMnVOhFdNcLVB6jAPg2ONcYoIq7iCZAg5bM1g_jdi-mBBgyNiEo5ghZF_8f1N8DNgHHGIa419vsY2hJGPf9Tm0vAB2ky3T7E8Fko95yl_Rl94MGb4d5iV6vrl-Wt9V24fbzXq1rWzDRalo1znHeC1J73TTSNnVChRrNAUA0tV939dOE22dYUp30GjHtRXSdZ3U1jJ-ia72ubsU_0yQSzv6bGEYTIA45VYopaVS6lOQai6FEnIG9R60KeacoG93yY8m_Wspad-aaT82M8ui3Tcze78fjkzdCO7oPFQxAz8PgMnzo_tkgvX5yCkqakUJfwWwf51s |
CODEN | CIRCAZ |
CitedBy_id | crossref_primary_10_1152_ajpregu_00664_2010 crossref_primary_10_1055_s_0039_1692389 crossref_primary_10_1203_PDR_0b013e3181aa07eb crossref_primary_10_1590_S1807_59322010000700004 crossref_primary_10_3390_ijms23094681 crossref_primary_10_1007_s00246_011_0082_x crossref_primary_10_1529_biophysj_107_118893 crossref_primary_10_1096_fj_12_226225 crossref_primary_10_1371_journal_pone_0086892 crossref_primary_10_1080_15513815_2023_2178866 crossref_primary_10_1097_JPN_0000000000000025 crossref_primary_10_1152_ajpregu_00001_2008 crossref_primary_10_1016_j_pharmthera_2008_03_008 crossref_primary_10_1038_s41390_019_0387_7 crossref_primary_10_1152_ajplung_00092_2009 crossref_primary_10_1074_jbc_M109_017061 crossref_primary_10_1111_bph_15828 crossref_primary_10_1203_PDR_0b013e31819746a1 crossref_primary_10_3389_fped_2020_00516 crossref_primary_10_1093_cvr_cvu199 crossref_primary_10_1203_PDR_0b013e3181ed8609 crossref_primary_10_1007_s00109_014_1162_1 crossref_primary_10_1542_peds_2009_3506 crossref_primary_10_1016_j_semperi_2023_151715 crossref_primary_10_1203_PDR_0b013e31815ed059 crossref_primary_10_1089_ars_2012_4752 crossref_primary_10_1152_ajpregu_00300_2007 crossref_primary_10_3390_ijms20020411 crossref_primary_10_1016_j_freeradbiomed_2019_04_008 crossref_primary_10_3109_14767058_2010_509920 crossref_primary_10_1038_bjp_2008_291 |
Cites_doi | 10.1038/sj.jp.7211465 10.1152/ajplung.00372.2002 10.1161/res.72.6.8495551 10.1152/physiolgenomics.00231.2005 10.1161/01.res.0000171894.03801.03 10.1515/BC.2004.014 10.1113/jphysiol.1956.sp005526 10.1113/jphysiol.1981.sp013824 10.1152/physrev.00023.2003 10.1161/res.89.10.923 10.1152/ajpheart.1999.277.4.H1521 10.1152/ajplung.00452.2003 10.1056/NEJM200009073431009 10.1152/ajpheart.1998.275.5.H1620 10.1074/jbc.M213271200 10.1016/0002-9149(60)90052-7 10.1161/01.cir.0000145159.16637.5d 10.1152/ajplung.2001.280.5.L870 10.1038/35077544 10.1152/ajpcell.00192.2003 10.1111/j.1469-7793.2001.0253b.x 10.1097/00007611-197810000-00015 10.1161/01.cir.0000141292.28616.65 10.1161/01.res.0000138952.16382.ad 10.1152/ajplung.00403.2004 10.1172/JCI118999 10.1074/jbc.M313975200 10.1016/S0140-6736(00)02452-1 10.1203/00006450-199901000-00005 10.1161/01.RES.88.1.84 10.1152/ajplung.00412.2001 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7X8 |
DOI | 10.1161/CIRCULATIONAHA.106.641126 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 1379 |
ExternalDocumentID | 10_1161_CIRCULATIONAHA_106_641126 16982938 18164810 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL 65322 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 08R 0R~ 0ZK 18M 1CY 1J1 29B 2FS 2WC 354 40H 41~ 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAXR AAEJM AAGIX AAHPQ AAJCS AAMOA AAMTA AAPBV AAQKA AARTV AASOK AASXQ AAUGY AAWTL AAXQO AAYOK ABASU ABBUW ABDIG ABOCM ABPMR ABPTK ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACRZS ACWDW ACWRI ACXNZ ADBBV ADCYY ADFPA ADGGA ADNKB AE3 AE6 AEBDS AEETU AENEX AFCHL AFDTB AFFNX AFUWQ AGINI AHMBA AHOMT AHRYX AHVBC AIJEX AJIOK AJJEV AJNWD AJNYG AKALU AKULP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW ASPBG AVWKF AWKKM AYCSE AZFZN BAWUL BOYCO BQLVK BS7 BYPQX C1A C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EEVPB EJD EX3 F2K F2L F2M F2N F5P FCALG FEDTE FL- FW0 GNXGY GQDEL GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ IPNFZ IQODW J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B M18 MVM N4W N9A NEJ N~7 N~B N~M O9- OAG OAH OBH OCB OCUKA ODA ODMTH OGEVE OHH OHT OHYEH OJAPA OK1 OL1 OLB OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RHF RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WHG WOQ WOW X3V X3W X7M XXN XYM YFH YOC YQJ YSK YXB YYM YYP YZZ ZA5 ZFV ZGI ZXP ZY1 ZZMQN ~H1 AAAAV AAIQE AAUEB ABJNI ADHPY AFEXH AHQNM AINUH AJZMW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7X8 |
ID | FETCH-LOGICAL-c536t-1bbdd23470fd95577b48e82591eee0b4fff4d909cda289be59d39c67dbb79cc23 |
ISSN | 0009-7322 |
IngestDate | Fri Oct 25 00:37:32 EDT 2024 Thu Oct 24 22:44:09 EDT 2024 Thu Nov 21 23:17:07 EST 2024 Tue Oct 15 23:34:36 EDT 2024 Sun Oct 22 16:08:45 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Oxygen Calcium ductus arteriosus, patent Vasoconstriction Persistence of ductus arteriosus Cardiovascular disease Ductus arteriosus Inorganic element Contraction ion channels Vasomotricity heart defects, congenital Congenital cardiopathy |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-1bbdd23470fd95577b48e82591eee0b4fff4d909cda289be59d39c67dbb79cc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.106.641126 |
PMID | 16982938 |
PQID | 19376867 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68897888 proquest_miscellaneous_19376867 crossref_primary_10_1161_CIRCULATIONAHA_106_641126 pubmed_primary_16982938 pascalfrancis_primary_18164810 |
PublicationCentury | 2000 |
PublicationDate | 2006-09-26 |
PublicationDateYYYYMMDD | 2006-09-26 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-26 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2006 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_2_26_2 (e_1_3_2_16_2) 1978; 54 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_7_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_17_2) 1998; 50 |
References_xml | – ident: e_1_3_2_10_2 doi: 10.1038/sj.jp.7211465 – ident: e_1_3_2_8_2 doi: 10.1152/ajplung.00372.2002 – ident: e_1_3_2_25_2 doi: 10.1161/res.72.6.8495551 – ident: e_1_3_2_1_2 doi: 10.1152/physiolgenomics.00231.2005 – ident: e_1_3_2_14_2 doi: 10.1161/01.res.0000171894.03801.03 – ident: e_1_3_2_9_2 doi: 10.1515/BC.2004.014 – ident: e_1_3_2_2_2 doi: 10.1113/jphysiol.1956.sp005526 – ident: e_1_3_2_23_2 doi: 10.1113/jphysiol.1981.sp013824 – ident: e_1_3_2_33_2 doi: 10.1152/physrev.00023.2003 – volume: 50 start-page: 35 year: 1998 ident: e_1_3_2_17_2 publication-title: Pharmacol Rev – ident: e_1_3_2_26_2 doi: 10.1161/res.89.10.923 – ident: e_1_3_2_20_2 doi: 10.1152/ajpheart.1999.277.4.H1521 – ident: e_1_3_2_29_2 doi: 10.1152/ajplung.00452.2003 – ident: e_1_3_2_11_2 doi: 10.1056/NEJM200009073431009 – ident: e_1_3_2_4_2 doi: 10.1152/ajpheart.1998.275.5.H1620 – ident: e_1_3_2_12_2 doi: 10.1074/jbc.M213271200 – ident: e_1_3_2_3_2 doi: 10.1016/0002-9149(60)90052-7 – ident: e_1_3_2_18_2 doi: 10.1161/01.cir.0000145159.16637.5d – ident: e_1_3_2_27_2 doi: 10.1152/ajplung.2001.280.5.L870 – ident: e_1_3_2_24_2 doi: 10.1038/35077544 – ident: e_1_3_2_31_2 doi: 10.1152/ajpcell.00192.2003 – ident: e_1_3_2_7_2 doi: 10.1111/j.1469-7793.2001.0253b.x – ident: e_1_3_2_15_2 doi: 10.1097/00007611-197810000-00015 – ident: e_1_3_2_22_2 doi: 10.1161/01.cir.0000141292.28616.65 – ident: e_1_3_2_32_2 doi: 10.1161/01.res.0000138952.16382.ad – ident: e_1_3_2_21_2 doi: 10.1152/ajplung.00403.2004 – ident: e_1_3_2_6_2 doi: 10.1172/JCI118999 – ident: e_1_3_2_13_2 doi: 10.1074/jbc.M313975200 – ident: e_1_3_2_5_2 doi: 10.1016/S0140-6736(00)02452-1 – volume: 54 start-page: 700 year: 1978 ident: e_1_3_2_16_2 publication-title: S Afr Med J – ident: e_1_3_2_19_2 doi: 10.1203/00006450-199901000-00005 – ident: e_1_3_2_30_2 doi: 10.1161/01.RES.88.1.84 – ident: e_1_3_2_28_2 doi: 10.1152/ajplung.00412.2001 |
SSID | ssj0006375 |
Score | 2.1348808 |
Snippet | At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by... Background— At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is... BACKGROUND: At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is... BACKGROUNDAt birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is... |
SourceID | proquest crossref pubmed pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 1372 |
SubjectTerms | Animals Arachidonic Acids - pharmacology Associated diseases and complications Biological and medical sciences Blood and lymphatic vessels Boron Compounds - pharmacology Calcium - pharmacology Calcium Channel Blockers - pharmacology Calcium Channels, L-Type - drug effects Calcium Channels, L-Type - physiology Calcium Signaling - physiology Cardiology. Vascular system Cytosol - metabolism Diabetes. Impaired glucose tolerance Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Ductus Arteriosus - embryology Ductus Arteriosus - physiology Endocannabinoids Endocrine pancreas. Apud cells (diseases) Endocrinopathies Imidazoles - pharmacology In Vitro Techniques Indoles - pharmacology Intracellular Signaling Peptides and Proteins - physiology Isoquinolines - pharmacology Maleimides - pharmacology Medical sciences Menthol - pharmacology Mibefradil - pharmacology Muscle Contraction - drug effects Muscle Contraction - physiology Nifedipine - pharmacology Niflumic Acid - pharmacology Orthopedic surgery Oxidation-Reduction Oxygen - pharmacology Patch-Clamp Techniques Polyunsaturated Alkamides Potassium Channels - drug effects Potassium Channels - physiology Protein-Serine-Threonine Kinases - physiology Rabbits - embryology rho-Associated Kinases Ruthenium Red - pharmacology Sulfonamides - pharmacology Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Tetraethylammonium - pharmacology Thapsigargin - pharmacology Thiourea - analogs & derivatives Thiourea - pharmacology |
Title | Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16982938 https://search.proquest.com/docview/19376867 https://search.proquest.com/docview/68897888 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpC2UwxtbuI93WaTD25iy2ZVl6DGlCAlkKTQJlL8aW5c2w2iG2of3vd7LkOBkN2x72YpIjkePcz3f6ne8DoU9e4lI79GKLhI5vEdW9ldsRtVzpqfaVlIiwDl0s_PktuxqRUafTDFlrZf9V0yADXavK2X_Q9nZREMBr0DkcQetw_Cu935h0wQWQaWldr1XTZBXFDX-KtLqrqwky8If1Q4NGuFBZ7KWpyFQRkDnsZPP7VKiCwHJjxombbIKrSpRVoaL6cDl5YQIHTbODdCPMQLDH5vzsxB0mJhf424_0e2jc5454DLL7NMzbIDDQcDDIesp2nYbZ5hiFwOs3OulXFuq3_R7L4JYumN_aZ275rq5U7kljkh1iEU-3PNrabF152oDT3THBtus7O-4c3vLHXQVVrmI4vRmuZrrx8GTQA4Lco0SVVbX-sckJmF8H49VsFixHt8sjdOKAZQPDejIYTmfTrfOnru81w_vUhZyij-ZkXw6eam9L9HQdFnB3JnqsymHeU-9_ls_RM0Nc8EAj7gXqyOwMnQ-ysMzvHvBnXKcS189oztDpV5OxcY42Co84T_A-HrGBHm7wiAGPW-EeHnGa4QaPeAePalHAI9Z4xC0eX6LVeLQcTiwz58MSnktLy46iOHZc4veTmHue70eESQa83JZS9iOSJAmJeZ-LOHQYj6THY5cL6sdR5HMhHPcVOs7yTL5BGPgPV-2LBOcJEYRxCXycOkkkE9iIC6-LnOavDta6nUtQ02BqB_v6ATENtH666HJPKe03mU0Js_td9KHRUgDWWT1yCzOZV0UA9Aj4PPUPf4IyxlUYqotea_W2q1POYDPOLv64-lv0pL2b3qHjclPJ9-ioiKtLg89fQ4q_CQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Ovid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Store-Operated+Calcium+Channels+and+Calcium+Sensitization+in+Normoxic+Contraction+of+the+Ductus+Arteriosus&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Hong%2C+Zhigang&rft.au=Hong%2C+Fangxiao&rft.au=Olschewski%2C+Andrea&rft.au=Cabrera%2C+Jesus+A&rft.date=2006-09-26&rft.issn=0009-7322&rft.eissn=1524-4539&rft.volume=114&rft.issue=13&rft.spage=1372&rft.epage=1379&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.106.641126&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |