Development of a User-Adaptable Human Fall Detection Based on Fall Risk Levels Using Depth Sensor

Unintentional falls are a major public health concern for many communities, especially with aging populations. There are various approaches used to classify human activities for fall detection. Related studies have employed wearable, non-invasive sensors, video cameras and depth sensor-based approac...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 18; no. 7; p. 2260
Main Authors: Nizam, Yoosuf, Mohd, Mohd Norzali Haji, Jamil, M Mahadi Abdul
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 13-07-2018
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unintentional falls are a major public health concern for many communities, especially with aging populations. There are various approaches used to classify human activities for fall detection. Related studies have employed wearable, non-invasive sensors, video cameras and depth sensor-based approaches to develop such monitoring systems. The proposed approach in this study uses a depth sensor and employs a unique procedure which identifies the fall risk levels to adapt the algorithm for different people with their physical strength to withstand falls. The inclusion of the fall risk level identification, further enhanced and improved the accuracy of the fall detection. The experimental results showed promising performance in adapting the algorithm for people with different fall risk levels for fall detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s18072260