Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation

The polyurethane elastomer (PU) Corethane 80A (Corvita) is being considered as the acetabular bearing material in a novel total replacement hip joint. The biostability of Corethane 80A was investigated in vitro (this work) and in vivo (reported separately) in a fully functioning ovine total hip arth...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials Vol. 26; no. 6; pp. 621 - 631
Main Authors: Khan, Imran, Smith, Nigel, Jones, Eric, Finch, Dudley S, Cameron, Ruth Elizabeth
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01-02-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The polyurethane elastomer (PU) Corethane 80A (Corvita) is being considered as the acetabular bearing material in a novel total replacement hip joint. The biostability of Corethane 80A was investigated in vitro (this work) and in vivo (reported separately) in a fully functioning ovine total hip arthroplasty (THA) model, with the PU as the bearing layer in a prototype compliant layer acetabular cup. The in vitro studies assessed the resistance of Corethane 80A to the main degradation mechanisms observed in PUs: hydrolysis, environmental stress cracking (ESC), metal ion oxidation (MIO) and calcification. The performance of the polycarbonate PU Corethane 80A was assessed alongside three other commercially available biomedical PUs: polyether PUs Pellethane 2363-80A (DOW Chemical) and PHMO-PU (CSIRO, not supplied as a commercial material) as well as polycarbonate PU ChronoFlex AL-80A (CardioTech). Chemical and structural variables that affect the properties of the materials were analysed with particular attention to the nature of the material's hard and soft segments. PU degradation was probed using a range of analytical tools and physical-testing methods, including mechanical testing, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and environmental scanning microscopy (ESEM). Corethane 80A displayed the best overall resistance to hydrolysis, ESC, MIO and calcification, followed by ChronoFlex 80A and PHMO-PU. Pellethane 80A was the least stable. This study provides compelling evidence for the biostability and effectiveness of Corethane 80A and points to its suitability for use as a compliant bearing layer in hip arthroplasty, and possibly also other joints.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2004.02.065