Human adipose tissue-derived SSEA-4 subpopulation multi-differentiation potential towards the endothelial and osteogenic lineages
Human adipose tissue has been recently recognized as a potential source of stem cells for regenerative medicine applications, including bone tissue engineering (TE). Despite the gathered knowledge regarding the differentiation potential of human adipose tissue-derived stem cells (hASCs), in what con...
Saved in:
Published in: | Tissue engineering. Part A Vol. 19; no. 1-2; p. 235 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-01-2013
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Human adipose tissue has been recently recognized as a potential source of stem cells for regenerative medicine applications, including bone tissue engineering (TE). Despite the gathered knowledge regarding the differentiation potential of human adipose tissue-derived stem cells (hASCs), in what concerns the endothelial lineage many uncertainties are still present. The existence of a cell subpopulation within the human adipose tissue that expresses a SSEA-4 marker, usually associated to pluripotency, raises expectations on the differentiation capacity of these cells (SSEA-4(+)hASCs). In the present study, the endothelial and osteogenic differentiation potential of the SSEA-4(+)hASCs was analyzed, aiming at proposing a single-cell source/subpopulation for the development of vascularized bone TE constructs. SSEA-4(+)hASCs were isolated using immunomagnetic sorting and cultured either in α-MEM, in EGM-2 MV (endothelial growth medium), or in osteogenic medium. SSEA-4(+)hASCs cultured in EGM-2 MV formed endothelial cell-like colonies characterized by a cobblestone morphology and expression of CD31, CD34, CD105, and von Willebrand factor as determined by quantitative reverse transcriptase (RT)-polymerase chain reaction, immunofluorescence, and flow cytometry. The endothelial phenotype was also confirmed by their ability to incorporate acetylated low-density lipoprotein and to form capillary-like structures when seeded on Matrigel. SSEA-4(+)hASCs cultured in α-MEM displayed fibroblastic-like morphology and exhibited a mesenchymal surface marker profile (>90% CD90(+)/CD73(+)/CD105(+)). After culture in osteogenic conditions, an overexpression of osteogenic-related markers (osteopontin and osteocalcin) was observed both at molecular and protein levels. Matrix mineralization detected by Alizarin Red staining confirmed SSEA-4(+)hASCs osteogenic differentiation. Herein, we demonstrate that from a single-cell source, human adipose tissue, and by selecting the appropriate subpopulation it is possible to obtain microvascular-like endothelial cells and osteoblasts, the most relevant cell types for the creation of vascularized bone tissue-engineered constructs. |
---|---|
AbstractList | Human adipose tissue has been recently recognized as a potential source of stem cells for regenerative medicine applications, including bone tissue engineering (TE). Despite the gathered knowledge regarding the differentiation potential of human adipose tissue-derived stem cells (hASCs), in what concerns the endothelial lineage many uncertainties are still present. The existence of a cell subpopulation within the human adipose tissue that expresses a SSEA-4 marker, usually associated to pluripotency, raises expectations on the differentiation capacity of these cells (SSEA-4(+)hASCs). In the present study, the endothelial and osteogenic differentiation potential of the SSEA-4(+)hASCs was analyzed, aiming at proposing a single-cell source/subpopulation for the development of vascularized bone TE constructs. SSEA-4(+)hASCs were isolated using immunomagnetic sorting and cultured either in α-MEM, in EGM-2 MV (endothelial growth medium), or in osteogenic medium. SSEA-4(+)hASCs cultured in EGM-2 MV formed endothelial cell-like colonies characterized by a cobblestone morphology and expression of CD31, CD34, CD105, and von Willebrand factor as determined by quantitative reverse transcriptase (RT)-polymerase chain reaction, immunofluorescence, and flow cytometry. The endothelial phenotype was also confirmed by their ability to incorporate acetylated low-density lipoprotein and to form capillary-like structures when seeded on Matrigel. SSEA-4(+)hASCs cultured in α-MEM displayed fibroblastic-like morphology and exhibited a mesenchymal surface marker profile (>90% CD90(+)/CD73(+)/CD105(+)). After culture in osteogenic conditions, an overexpression of osteogenic-related markers (osteopontin and osteocalcin) was observed both at molecular and protein levels. Matrix mineralization detected by Alizarin Red staining confirmed SSEA-4(+)hASCs osteogenic differentiation. Herein, we demonstrate that from a single-cell source, human adipose tissue, and by selecting the appropriate subpopulation it is possible to obtain microvascular-like endothelial cells and osteoblasts, the most relevant cell types for the creation of vascularized bone tissue-engineered constructs. |
Author | Rada, Tommaso Gomes, Manuela E Marques, Alexandra P Pirraco, Rogério P Mihaila, Silvia M Frias, Ana M Reis, Rui L |
Author_xml | – sequence: 1 givenname: Silvia M surname: Mihaila fullname: Mihaila, Silvia M organization: Department of Polymer Engineering, 3B's Research Group, University of Minho, Guimarães, Portugal – sequence: 2 givenname: Ana M surname: Frias fullname: Frias, Ana M – sequence: 3 givenname: Rogério P surname: Pirraco fullname: Pirraco, Rogério P – sequence: 4 givenname: Tommaso surname: Rada fullname: Rada, Tommaso – sequence: 5 givenname: Rui L surname: Reis fullname: Reis, Rui L – sequence: 6 givenname: Manuela E surname: Gomes fullname: Gomes, Manuela E – sequence: 7 givenname: Alexandra P surname: Marques fullname: Marques, Alexandra P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22924692$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kL1OwzAYRS0EoqXwACzIL-Dgv8T1WFWFIlViKEhslWN_KUaJHcUOiJE3p1CYju4Z7nAu0GmIARC6ZrRgdK5vM4Qigyk4ZbygVPMTNGVaKCJE-TJBFym9UVrRSqlzNOFcc1lpPkVf67EzARvn-5gAZ5_SCMTB4N_B4e12tSASp7HuYz-2JvsYcDe22RPnmwYGCNkfbR_z72hxjh9mcAnnV8AQXDyw_fEmOBxThriH4C1ufQCzh3SJzhrTJrj64ww9362elmuyebx_WC42xJZCZOKs5lxZPWfC8Fopw5jkVAsLjXJlzcq5qritTekaW4taOsHEIYyUTirHreQzdHP87ce6A7frB9-Z4XP334J_AzcTZVU |
CitedBy_id | crossref_primary_10_1007_s12033_013_9702_4 crossref_primary_10_2217_rme_14_72 crossref_primary_10_1007_s40883_017_0029_8 crossref_primary_10_1371_journal_pone_0095583 crossref_primary_10_1002_term_2495 crossref_primary_10_3390_ijms21041408 crossref_primary_10_1088_1748_605X_aac78b crossref_primary_10_1002_term_2096 crossref_primary_10_1016_j_biomaterials_2014_07_052 crossref_primary_10_1089_ten_tea_2013_0273 crossref_primary_10_1002_jbm_a_34614 crossref_primary_10_1021_bm500036a crossref_primary_10_1155_2023_1842958 crossref_primary_10_1016_j_actbio_2016_05_033 crossref_primary_10_1016_j_actbio_2017_09_014 crossref_primary_10_1111_cpr_12493 crossref_primary_10_1016_j_nano_2017_04_016 crossref_primary_10_1155_2016_3187491 crossref_primary_10_1016_j_ijscr_2022_107861 crossref_primary_10_1089_ten_tea_2013_0740 crossref_primary_10_4252_wjsc_v6_i3_256 crossref_primary_10_1155_2022_1309684 crossref_primary_10_1016_j_biomaterials_2014_11_047 crossref_primary_10_1186_s13287_022_02928_7 crossref_primary_10_1080_23808993_2016_1140004 crossref_primary_10_1038_srep16681 crossref_primary_10_3390_biom12091317 crossref_primary_10_1016_j_addr_2022_114299 crossref_primary_10_1155_2015_350718 crossref_primary_10_1134_S1062360415020058 crossref_primary_10_1038_s12276_022_00839_4 crossref_primary_10_3390_cells10020218 crossref_primary_10_1002_term_2967 crossref_primary_10_1097_SAP_0000000000000704 crossref_primary_10_1016_j_arthro_2013_12_009 crossref_primary_10_3390_cells9051097 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/ten.tea.2012.0092 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-335X |
ExternalDocumentID | 22924692 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 1-M 123 29Q 3V. 4.4 53G 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ ABBKN ABUWG ACGFO ACGOD ACPRK AENEX AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI CAG CCPQU CGR COF CS3 CUY CVF DU5 DWQXO EBS ECM EIF EJD F5P FYUFA GNUQQ HCIFZ HMCUK IAO IER IGS IHR ITC LK8 M0L M1P M2P M7P MV1 NPM NQHIM O9- PQQKQ PROAC PSQYO RML RNS UE5 UKHRP |
ID | FETCH-LOGICAL-c533t-dc9227c9813a2b77a1142093cef7d5b158762cba5dfcb3b4d31310844d47d2c42 |
IngestDate | Sat Sep 28 08:04:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c533t-dc9227c9813a2b77a1142093cef7d5b158762cba5dfcb3b4d31310844d47d2c42 |
OpenAccessLink | http://hdl.handle.net/1822/23722 |
PMID | 22924692 |
ParticipantIDs | pubmed_primary_22924692 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Tissue engineering. Part A |
PublicationTitleAlternate | Tissue Eng Part A |
PublicationYear | 2013 |
References | 20058201 - Stem Cell Rev. 2009 Dec;5(4):378-86 15641985 - J Oral Pathol Med. 2005 Feb;34(2):70-6 12009786 - Exp Mol Pathol. 2002 Jun;72(3):221-9 19111010 - J Tissue Eng Regen Med. 2009 Feb;3(2):158-9 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 17525234 - Stem Cells. 2007 Sep;25(9):2269-76 18393893 - Curr Top Med Chem. 2008;8(4):300-10 12757882 - Cardiovasc Res. 2003 May 1;58(2):478-86 16798864 - J Dent Res. 2006 Jul;85(7):633-7 19508152 - Stem Cells Dev. 2009 Nov;18(9):1299-308 17928113 - Clin Biomech (Bristol, Avon). 2008;23 Suppl 1:S118-24 15153613 - Stem Cells. 2004;22(3):367-76 15880450 - J Cell Physiol. 2005 Oct;205(1):114-22 15639471 - Cardiovasc Res. 2005 Feb 1;65(2):328-33 11081514 - Nature. 2000 Nov 2;408(6808):92-6 15661340 - Trends Biotechnol. 2005 Feb;23(2):64-6 20396979 - Stem Cell Rev. 2011 Mar;7(1):64-76 9129027 - Blood. 1997 May 1;89(9):3228-35 12609567 - Lung Cancer. 2003 Mar;39(3):289-96 19375653 - Exp Hematol. 2009 May;37(5):629-40 9576104 - Circ Res. 1998 May 4;82(8):845-51 16263424 - Exp Hematol. 2005 Nov;33(11):1402-16 18770637 - Curr Protoc Stem Cell Biol. 2008 Jul;Chapter 2:Unit 2C.1 4355998 - J Clin Invest. 1973 Nov;52(11):2745-56 12475952 - Mol Biol Cell. 2002 Dec;13(12):4279-95 17974012 - J Transl Med. 2007;5:55 9020076 - Science. 1997 Feb 14;275(5302):964-7 18564036 - Stem Cells Dev. 2008 Oct;17(5):909-16 14656930 - Circ Res. 2004 Feb 6;94(2):223-9 1693532 - Blood. 1990 Jun 15;75(12):2417-26 17095706 - Stem Cells. 2007 Mar;25(3):750-60 17569886 - Circ Res. 2007 Aug 3;101(3):286-94 9811868 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13726-31 15389528 - J Cell Physiol. 2005 Jan;202(1):41-8 18819086 - Curr Protoc Stem Cell Biol. 2008 Sep;Chapter 1:Unit 1F.5 16386732 - Exp Cell Res. 2006 Apr 1;312(6):727-36 11407479 - Virchows Arch. 2001 May;438(5):498-504 15004192 - J Immunol. 2004 Mar 15;172(6):3850-9 12110702 - Stem Cells. 2002;20(4):329-37 17518736 - Tissue Eng. 2007 Aug;13(8):1799-808 15965465 - Nat Biotechnol. 2005 Jul;23(7):879-84 18454639 - Tissue Eng Part B Rev. 2008 Mar;14(1):133-47 19852056 - Cytometry A. 2010 Jan;77(1):22-30 12027467 - Eur J Vasc Endovasc Surg. 2002 May;23(5):404-12 15153614 - Stem Cells. 2004;22(3):377-84 11304456 - Tissue Eng. 2001 Apr;7(2):211-28 15238461 - Circulation. 2004 Jul 20;110(3):349-55 11069627 - J Invest Dermatol. 2000 Nov;115(5):882-8 19880177 - Biomaterials. 2010 Feb;31(6):1171-9 17495232 - Circ Res. 2007 May 11;100(9):1249-60 20865694 - J Tissue Eng Regen Med. 2011 Apr;5(4):e52-62 18534784 - Pathol Biol (Paris). 2009 Jun;57(4):309-17 19883577 - J Surg Res. 2009 Mar;152(1):157-66 15694406 - Biochem Biophys Res Commun. 2005 Mar 18;328(3):721-7 12837583 - Trends Cardiovasc Med. 2003 Jul;13(5):201-6 17421060 - J Gene Med. 2007 Jun;9(6):452-61 12835573 - Cells Tissues Organs. 2003;174(3):101-9 16003365 - Nat Biotechnol. 2005 Jul;23(7):821-3 11722432 - Br J Haematol. 2001 Oct;115(1):186-94 |
References_xml | |
SSID | ssj0060677 |
Score | 2.272167 |
Snippet | Human adipose tissue has been recently recognized as a potential source of stem cells for regenerative medicine applications, including bone tissue engineering... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 235 |
SubjectTerms | Adipocytes - cytology Adipocytes - metabolism Blood Vessels - cytology Blood Vessels - growth & development Cell Differentiation Cells, Cultured Endothelial Cells - cytology Endothelial Cells - physiology Female Humans Middle Aged Osteoblasts - cytology Osteoblasts - physiology Osteogenesis - physiology Stage-Specific Embryonic Antigens - metabolism Tissue Engineering - methods |
Title | Human adipose tissue-derived SSEA-4 subpopulation multi-differentiation potential towards the endothelial and osteogenic lineages |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22924692 |
Volume | 19 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbsdmmHou93waGbwdSiKJEcg9RBlhRF7QLZAoqUWgK2JFhK9v7zHkm9nLRAOnQRbBJ6gPfp-JG6-w6hj0yLRIOfI6rQS8JggiJCpIIooaVYcpprr1NwtuZfLsTnFVvNZn1117Htv1oa2sDWLnP2H6w9XBQa4DfYHI5gdTjeye5hV14ZW7tI9NaPKzFw52tHLderY8IWzVVWD4W7Qkwh6SultMFWi7pq_Z8tsFMXWduE8I_SuJStre0kBlyKSAXPYvXC8VVwTs2U7m787eGsQfTwCDjrvh13UM_tT2W3nsGu7fbaqnF79hRGK9RKLietX-1-D148RIX_CN_597Ya89S-KeMvt6l2O9VU020NV2Ji2NbIgysG4kTiOLk48NVyiskucbJzvUH25NaUsBROURWG7AjeGhfL5xRaQ_29CRzqnccDpbAeTe_Se0Olu--aozlwLkfLT857RpA6lb7-i7qQn249i1Ok7s6_sbrxLGfzGD3qlif4OODqCZrl5VP0cCJa-Qz98gjDHcLwIcJwQBg-QBj-I8LwgDDcIQwDsvAEYRgQhkeE4R5hz9H309Xm5Ix0hTyIhtVES4yWlHJ4-aNY0Yxz5RK4lzLWecFNkkWJm5J1phJT6CzOmIkjWHUIxgzjhoIreYHulVWZv0JYUxPlQqayyDVjiotUmUKySApdcJqa1-hlGL_LOqi1XPYj--avPW_RgxGB79D9AlxB_h7NG3P1wRvyN5U8hHk |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+adipose+tissue-derived+SSEA-4+subpopulation+multi-differentiation+potential+towards+the+endothelial+and+osteogenic+lineages&rft.jtitle=Tissue+engineering.+Part+A&rft.au=Mihaila%2C+Silvia+M&rft.au=Frias%2C+Ana+M&rft.au=Pirraco%2C+Rog%C3%A9rio+P&rft.au=Rada%2C+Tommaso&rft.date=2013-01-01&rft.eissn=1937-335X&rft.volume=19&rft.issue=1-2&rft.spage=235&rft_id=info:doi/10.1089%2Ften.tea.2012.0092&rft_id=info%3Apmid%2F22924692&rft_id=info%3Apmid%2F22924692&rft.externalDocID=22924692 |