Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines

This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and...

Full description

Saved in:
Bibliographic Details
Published in:SAE International journal of engines Vol. 5; no. 3; pp. 1009 - 1032
Main Authors: Dec, John E., Yang, Yi, Dronniou, Nicolas
Format: Journal Article
Language:English
Published: Warrendale SAE International 16-04-2012
SAE International, a Pennsylvania Not-for Profit
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin< 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation. This study considers several engine operating parameters, including: intake temperature, fueling rate, engine speed, fuel type, and the effect of various amounts of mixture stratification using three fueling methods: fully premixed, early-DI, and premixed + late-DI (termed partial fuel stratification, PFS). The effects of these operating parameters on the factors affecting thermal efficiency, such as combustion phasing (CA50), amount of EGR required, ringing intensity, combustion efficiency,γ= cp/cv, and heat transfer are also explored and discussed. The study showed that in general, thermal efficiency improves when parameters are adjusted for lower intake temperatures, less CA50 retard, and less EGR, as long as the ringing intensity is ≤ 5 MW/m² to prevent knock, and combustion efficiency is good (i.e.≥ about 96%). Additionally, applying a small amount of mixture stratification (using PFS or early-DI fueling) improves efficiency by allowing more CA50 advance when boost levels are sufficient for these fuels to be ϕ-sensitive. E10 gives a small increase in thermal efficiency because EGR requirements are reduced. E10 is also effective for increasing the maximum load for Pin≥ 2.4 bar, and increasing the high-load limit to IMEPg = 18.1 bar, with no engine knock and ultra-low NOx and soot emissions, compared to IMEPg = 16.3 bar for gasoline. Overall, this study showed that the efficiencies for boosted HCCI can be increased above their already good baseline values. For our engine configuration, improvements of 3 - 5 thermal-efficiency percentage units were achieved corresponding to a reduction in fuel consumption of 7 - 11%.
AbstractList This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin< 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation. This study considers several engine operating parameters, including: intake temperature, fueling rate, engine speed, fuel type, and the effect of various amounts of mixture stratification using three fueling methods: fully premixed, early-DI, and premixed + late-DI (termed partial fuel stratification, PFS). The effects of these operating parameters on the factors affecting thermal efficiency, such as combustion phasing (CA50), amount of EGR required, ringing intensity, combustion efficiency,γ= cp/cv, and heat transfer are also explored and discussed. The study showed that in general, thermal efficiency improves when parameters are adjusted for lower intake temperatures, less CA50 retard, and less EGR, as long as the ringing intensity is ≤ 5 MW/m² to prevent knock, and combustion efficiency is good (i.e.≥ about 96%). Additionally, applying a small amount of mixture stratification (using PFS or early-DI fueling) improves efficiency by allowing more CA50 advance when boost levels are sufficient for these fuels to be ϕ-sensitive. E10 gives a small increase in thermal efficiency because EGR requirements are reduced. E10 is also effective for increasing the maximum load for Pin≥ 2.4 bar, and increasing the high-load limit to IMEPg = 18.1 bar, with no engine knock and ultra-low NOx and soot emissions, compared to IMEPg = 16.3 bar for gasoline. Overall, this study showed that the efficiencies for boosted HCCI can be increased above their already good baseline values. For our engine configuration, improvements of 3 - 5 thermal-efficiency percentage units were achieved corresponding to a reduction in fuel consumption of 7 - 11%.
This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin < 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation.
This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin < 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation. This study considers several engine operating parameters, including: intake temperature, fueling rate, engine speed, fuel type, and the effect of various amounts of mixture stratification using three fueling methods: fully premixed, early-DI, and premixed + late-DI (termed partial fuel stratification, PFS). The effects of these operating parameters on the factors affecting thermal efficiency, such as combustion phasing (CA50), amount of EGR required, ringing intensity, combustion efficiency, γ = cp/cv, and heat transfer are also explored and discussed. The study showed that in general, thermal efficiency improves when parameters are adjusted for lower intake temperatures, less CA50 retard, and less EGR, as long as the ringing intensity is ≤ 5 MW/m2 to prevent knock, and combustion efficiency is good (i.e., ≥ about 96%). Additionally, applying a small amount of mixture stratification (using PFS or early-DI fueling) improves efficiency by allowing more CA50 advance when boost levels are sufficient for these fuels to be ϕ-sensitive. E10 gives a small increase in thermal efficiency because EGR requirements are reduced. E10 is also effective for increasing the maximum load for Pin ≥ 2.4 bar, and increasing the high-load limit to IMEPg = 18.1 bar, with no engine knock and ultra-low NOx and soot emissions, compared to IMEPg = 16.3 bar for gasoline. Overall, this study showed that the efficiencies for boosted HCCI can be increased above their already good baseline values. For our engine configuration, improvements of 3 - 5 thermal-efficiency percentage units were achieved corresponding to a reduction in fuel consumption of 7 - 11%.
ArticleNumber 2012-01-1107
Author Dec, John E.
Yang, Yi
Dronniou, Nicolas
Author_xml – sequence: 1
  givenname: John E.
  surname: Dec
  fullname: Dec, John E.
– sequence: 2
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
– sequence: 3
  givenname: Nicolas
  surname: Dronniou
  fullname: Dronniou, Nicolas
BookMark eNpVkE1Lw0AQhhepYFu9eRUWvBqd_cgmOWqotljwYs9LspnULXa37qZC_72pEcXTvAwPzwzvhIycd0jIJYNbyTN2x4HxBFjCGGQnZMwKqRJRSDn6zUKdkUmMGwCVgYAxeV5sd8F_Wrems7a1xqIzB1q5hq7i95IBbX2gc7t-w0CXvmoitY4-eB87bOi8LBd05tbWYTwnp231HvHiZ07J6nH2Ws6T5cvTorxfJiYVokukVApkK1NViAJZXedSMMSGKSPz3JisQAG1qNE0BvK6qkSF0BY1KFBYcCWm5Hrw9p9_7DF2euP3wfUnNU8lpEpxxnrqZqBM8DEGbPUu2G0VDpqBPtalj3VpYPpYV48nAx4r1NZ12As763vrn_w_fzXwm9j58OvmimdZyqX4ArXkdOY
CitedBy_id crossref_primary_10_4271_2015_01_0824
crossref_primary_10_1177_14680874231171429
crossref_primary_10_4271_2016_01_2295
crossref_primary_10_4271_2016_01_9044
crossref_primary_10_4271_2013_01_2627
crossref_primary_10_1021_ef401575e
crossref_primary_10_1016_j_cbpa_2013_03_039
crossref_primary_10_1115_1_4029866
crossref_primary_10_3389_fmech_2020_00028
crossref_primary_10_1177_1468087419877718
crossref_primary_10_4271_2014_01_1272
crossref_primary_10_4271_2017_01_0731
crossref_primary_10_1080_13647830_2023_2281379
crossref_primary_10_1177_1468087414552831
crossref_primary_10_1016_j_fuel_2020_117867
crossref_primary_10_5916_jamet_2022_46_2_56
crossref_primary_10_1016_j_proci_2022_07_126
crossref_primary_10_1177_1468087419896511
crossref_primary_10_1115_1_4027361
crossref_primary_10_1016_j_combustflame_2017_05_023
crossref_primary_10_1016_j_pecs_2013_05_002
crossref_primary_10_1016_j_combustflame_2019_07_013
crossref_primary_10_1016_j_egypro_2015_03_271
crossref_primary_10_1177_14680874221134147
crossref_primary_10_4271_2014_01_1282
crossref_primary_10_1016_j_fuel_2022_125456
crossref_primary_10_1016_j_enconman_2022_115257
crossref_primary_10_1016_j_combustflame_2013_10_008
crossref_primary_10_4271_2012_01_1120
Cites_doi 10.4271/2003-01-0743
10.4271/2005-01-2125
10.4271/2004-01-2994
10.4271/2000-01-1835
10.4271/2008-01-0054
10.4271/2010-01-0338
10.4271/2009-01-2647
10.4271/2001-01-1896
10.4271/2007-01-1858
10.4271/2002-01-2859
10.4271/2004-01-1900
10.4271/980787
10.4271/2010-01-2198
10.4271/2011-01-0357
10.1016/j.proci.2010.06.114
10.4271/2010-01-1086
10.4271/2009-01-0923
10.4271/2011-01-1359
10.1021/ef101125c
10.4271/2011-01-1291
10.4271/2007-01-0191
10.4271/2002-01-0111
10.4271/2010-01-1471
10.4271/2009-01-0650
10.4271/2009-01-2665
10.4271/2009-01-0499
10.4271/892068
10.4271/2011-01-0907
10.4271/2004-01-0557
10.4271/2007-01-0207
10.4271/2003-01-0752
10.4271/2011-01-0897
10.4271/2002-01-0108
ContentType Journal Article
Copyright Copyright © 2012 SAE International
Copyright SAE International, a Pennsylvania Not-for Profit 2012
Copyright_xml – notice: Copyright © 2012 SAE International
– notice: Copyright SAE International, a Pennsylvania Not-for Profit 2012
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4271/2012-01-1107
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Engineering Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1946-3944
EndPage 1032
ExternalDocumentID 10_4271_2012_01_1107
2012_01_1107
26277524
GroupedDBID 6P2
ABBHK
ABJCF
ABJNI
ABXSQ
ACGFS
ADULT
AEUPB
AFKRA
AIFVT
AIRJO
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
EBS
EJD
EQZMY
HCIFZ
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
L7B
M7S
PTHSS
PV9
PYD
RHI
RZL
SA0
SWMRO
ADACV
AAYXX
AEKFB
CITATION
H13
8FE
8FG
DWQXO
L6V
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c533t-446604f456939e1bb8431eed16c488cc79e30b3becdc08baa3ae0f9b0606e9263
IEDL.DBID SWMRO
ISSN 1946-3936
1946-3944
IngestDate Thu Oct 10 17:57:33 EDT 2024
Fri Aug 23 01:22:04 EDT 2024
Thu Apr 18 22:55:02 EDT 2024
Fri Feb 02 07:06:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MeetingName SAE 2012 World Congress & Exhibition
MergedId FETCHMERGED-LOGICAL-c533t-446604f456939e1bb8431eed16c488cc79e30b3becdc08baa3ae0f9b0606e9263
Notes 2012-04-24 ANNUAL 192355 Detroit, Michigan, United States
OpenAccessLink https://www.osti.gov/biblio/1111670
PQID 2540566211
PQPubID 5013118
PageCount 24
ParticipantIDs proquest_journals_2540566211
crossref_primary_10_4271_2012_01_1107
sae_internationaljournals_2012_01_1107
jstor_primary_26277524
PublicationCentury 2000
PublicationDate 2012-04-16
PublicationDateYYYYMMDD 2012-04-16
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-16
  day: 16
PublicationDecade 2010
PublicationPlace Warrendale
PublicationPlace_xml – name: Warrendale
PublicationTitle SAE International journal of engines
PublicationYear 2012
Publisher SAE International
SAE International, a Pennsylvania Not-for Profit
Publisher_xml – name: SAE International
– name: SAE International, a Pennsylvania Not-for Profit
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.4271/2003-01-0743
– ident: ref34
  doi: 10.4271/2005-01-2125
– ident: ref4
  doi: 10.4271/2004-01-2994
– ident: ref14
  doi: 10.4271/2000-01-1835
– ident: ref19
  doi: 10.4271/2008-01-0054
– ident: ref12
  doi: 10.4271/2010-01-0338
– ident: ref22
– ident: ref7
  doi: 10.4271/2009-01-2647
– ident: ref15
  doi: 10.4271/2001-01-1896
– ident: ref27
  doi: 10.4271/2007-01-1858
– ident: ref26
  doi: 10.4271/2002-01-2859
– ident: ref33
  doi: 10.4271/2004-01-1900
– ident: ref13
  doi: 10.4271/980787
– ident: ref10
  doi: 10.4271/2010-01-2198
– ident: ref8
  doi: 10.4271/2011-01-0357
– ident: ref21
  doi: 10.1016/j.proci.2010.06.114
– ident: ref1
  doi: 10.4271/2010-01-1086
– ident: ref6
  doi: 10.4271/2009-01-0923
– ident: ref32
  doi: 10.4271/2011-01-1359
– ident: ref36
– ident: ref20
  doi: 10.1021/ef101125c
– ident: ref30
  doi: 10.4271/2011-01-1291
– ident: ref16
  doi: 10.4271/2007-01-0191
– ident: ref24
  doi: 10.4271/2002-01-0111
– ident: ref3
  doi: 10.4271/2002-01-0111
– ident: ref9
  doi: 10.4271/2010-01-1471
– ident: ref29
  doi: 10.4271/2009-01-0650
– ident: ref11
  doi: 10.4271/2009-01-2665
– ident: ref5
  doi: 10.4271/2009-01-0499
– ident: ref23
  doi: 10.4271/892068
– ident: ref35
  doi: 10.4271/2011-01-0907
– ident: ref31
  doi: 10.4271/2004-01-0557
– ident: ref17
  doi: 10.4271/2007-01-0207
– ident: ref18
  doi: 10.4271/2003-01-0752
– ident: ref2
  doi: 10.4271/2011-01-0897
– ident: ref25
  doi: 10.4271/2002-01-0108
SSID ssj0067030
Score 2.2579157
Snippet This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential...
This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential...
SourceID proquest
crossref
sae
jstor
SourceType Aggregation Database
Publisher
StartPage 1009
SubjectTerms Combustion
Combustion efficiency
Data acquisition
Engines
Ethanol
Fuel combustion
Fuel efficiency
Fuels
Gasoline
Heat transfer
Octane
Parameters
Refueling
Spontaneous combustion
Thermodynamic efficiency
Title Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines
URI https://www.jstor.org/stable/26277524
https://doi.org/10.4271/2012-01-1107
https://www.proquest.com/docview/2540566211
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4IXPTg24ii6UG8NXZ3S8seFSEYX4lo9LbpaxMSsxiB_--0yyIcTLw32803beebzjdTgAuntdTWplQwwynPtaPadCIqldR4JHPJwnNvw5F8-uje9n2bnHZVC-NllUEXGLL4SJD0p7uKRSxlJ-Y1aMToMHkdGqP3x5fn6sgVftmG9DEXNEl9PtIr3HksIwzug_aA-jhnzfeU8sM1YlmbKrfiXQY7__yvXdhe0EdyXdp7DzZcsQ9bK00FD-B-eU9A-qE_hC-uJKqwJMgDSD9iBJkqKRUe5GGi7JSMC3IzCfUeZNjr3ZHyi9NDeBv0X3tDungygRrkbTPqs7OM58iK0iR1kdZdJAiIeSQM7lRjZOoSphM0nDWsq5VKlGN5qhnGMS6NRXIE9WJSuGMgkTXOMCW6wneoUanOkezk1hqT25zHugntCszsq-yMkWFE4UHPPOgZizIPehOOAnDLQRVqTWhV0GeLjTPNYs8ghcCwtAmXaI5svHox-jtsZYKTvyY4hc3S-pxGogX12ffcnaGR7fx8sYB-AJPUwMA
link.rule.ids 315,782,786,25844,27933,27934,54536,54542
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60PagH38X6zEG9BbO7adI9aq20WBV8oLeQ10JBtmL1_zvJdrUeBO9hs3yTZL7JfDMBOPbGSONcTgWznPLCeGpsJ6FSS4NHMpcsPvc2eJC3L93LfmiTc1LXwgRZZdQFxiw-EiTz6s9SkUrZSfkiNNHh87QBzYfnm_u7-sgVYdnG9DEXNMtDPjIo3HkqEwzuo_aAhjjnl--p5Ie_iOXiVPs573K19s__WofVGX0k55W9N2DBl5uwMtdUcAuuv-8JSD_2hwjFlUSXjkR5AOknjCBTJZXCg4wm2k3JuCQXk1jvQQa93pBUX5xuw9NV_7E3oLMnE6hF3vZBQ3aW8QJZUZ7lPjGmiwQBMU-ExZ1qrcx9xkyGhnOWdY3WmfasyA3DOMbnqcha0Cgnpd8BkjjrLdOiK0KHGp2bAslO4Zy1hSt4atpwUoOp3qrOGAojigC6CqArlqgAehtaEbjvQTVqbdivoVezjTNVaWCQQmBY2oZTNIcaz1-M_gybm2D3rwmOYGnweDNSo-Ht9R4sVyuB00TsQ-Pj_dMfoMHd5-FsMX0BtA7Dpw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gOjBt1ifOajgIZjdTZPuUWtLS33hA72FvBYE2Rar_99Jtqv14MF72CzfTJJvMt9MAI68MdI4l1PBLKe8MJ4a20yo1NLglswli8-99R7kzUvrshPa5JzWtTBBVhl1gTGLjwTJvPmzkSvOUpFK2Uz5LMzjoZ-hM88_PF_f39bbrgiuG1PIXNAsDznJoHLnqUwwwI_6AxpinV_nTyVB_EUuZ8faT50w3ZV__NsqLE9oJDmv7L4GM75ch6Wp5oIbMPi-LyCd2CciFFkSXToSZQKkkzCCjJVUSg9yNdRuTF5LcjGMdR-k1273SfXF8SY8dTuP7R6dPJ1ALfK3DxqytIwXyI7yLPeJMS0kCoh9IiyuWGtl7jNmMjSgs6xltM60Z0VuGMYzPk9FtgVz5bD020ASZ71lWrRE6FSjc1Mg6Smcs7ZwBU9NA45rQNWo6pChMLIIwKsAvGKJCsA3YCuC9z2oRq0BezX8arKAxioNTFIIDE8bcIImUa_TF6Q_w6Ym2PlrgkNYuLvsqqv-zWAXFitn4DQRezD38f7p99Hm7vNg4k9fSTTGKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Efficiency+and+Using+E10+for+Higher+Loads+in+Boosted+HCCI+Engines&rft.jtitle=SAE+International+journal+of+engines&rft.au=Dec%2C+John+E.&rft.au=Yang%2C+Yi&rft.au=Dronniou%2C+Nicolas&rft.date=2012-04-16&rft.pub=SAE+International&rft.issn=1946-3936&rft.eissn=1946-3944&rft.volume=5&rft.issue=3&rft.spage=1009&rft.epage=1032&rft_id=info:doi/10.4271%2F2012-01-1107&rft.externalDocID=26277524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-3936&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-3936&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-3936&client=summon