The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model
Abstract We have shown that platinum nanoparticle species (nano-Pt) is a superoxide dismutase/catalase mimetic that scavenges superoxide and hydrogen peroxide. In Caenorhabditis elegans , nano-Pt functions as an effective antioxidant that induces an extension in lifespan and strong resistance agains...
Saved in:
Published in: | Biomaterials Vol. 31; no. 22; pp. 5849 - 5854 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Ltd
01-08-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We have shown that platinum nanoparticle species (nano-Pt) is a superoxide dismutase/catalase mimetic that scavenges superoxide and hydrogen peroxide. In Caenorhabditis elegans , nano-Pt functions as an effective antioxidant that induces an extension in lifespan and strong resistance against excessive oxidative stress. Our study with C. elegans was the first trial to use nano-Pt as a bio-active substance. However, a high concentration of nano-Pt was required for these survival effects, probably due to limited membrane permeability. Here, we show that the conjugation of nano-Pt with an HIV-1 TAT fusion protein C-terminally linked to a peptide with high affinity for platinum improves internalization, eliciting a similar level of antioxidant effects at one hundredth the concentration of unconjugated nano-Pt. This approach is a potential method to facilitate translocation of bio-active nanoparticles into living organisms and could be a model assay for estimate the effects of antioxidant in living organism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2010.03.077 |