Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression
Smac mimetics target cancer cells in a TNFα-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2. Degradation of cIAPs triggers the release of receptor interacting protein kinase (RIPK1) from TNF receptor I (TNFR1) to form a caspase-8 activating...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 26; pp. 11936 - 11941 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
29-06-2010
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Smac mimetics target cancer cells in a TNFα-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2. Degradation of cIAPs triggers the release of receptor interacting protein kinase (RIPK1) from TNF receptor I (TNFR1) to form a caspase-8 activating complex together with the adaptor protein Fas-associated death domain (FADD). We report here a means through which cancer cells mediate resistance to Smac mimetic/TNFα-induced apoptosis and corresponding strategies to overcome such resistance. These human cancer cell lines evades Smac mimetic-induced apoptosis by up-regulation of cIAP2, which although initially degraded, rebounds and is refractory to subsequent degradation. cIAP2 is induced by TNFα via NF-κB and modulation of the NF-κB signal renders otherwise resistant cells sensitive to Smac mimetics. In addition, other signaling pathways, including phosphatidyl inositol-3 kinase (PI3K), have the potential to concurrently regulate cIAP2. Using the PI3K inhibitor, LY294002, dAP2 up-regulation was suppressed and resistance to Smac mimetics-induced apoptosis was also overcome. |
---|---|
AbstractList | Smac mimetics target cancer cells in a TNFα-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2. Degradation of cIAPs triggers the release of receptor interacting protein kinase (RIPK1) from TNF receptor I (TNFR1) to form a caspase-8 activating complex together with the adaptor protein Fas-associated death domain (FADD). We report here a means through which cancer cells mediate resistance to Smac mimetic/TNFα-induced apoptosis and corresponding strategies to overcome such resistance. These human cancer cell lines evades Smac mimetic-induced apoptosis by up-regulation of cIAP2, which although initially degraded, rebounds and is refractory to subsequent degradation. cIAP2 is induced by TNFα via NF-κB and modulation of the NF-κB signal renders otherwise resistant cells sensitive to Smac mimetics. In addition, other signaling pathways, including phosphatidyl inositol-3 kinase (PI3K), have the potential to concurrently regulate cIAP2. Using the PI3K inhibitor, LY294002, cIAP2 up-regulation was suppressed and resistance to Smac mimetics-induced apoptosis was also overcome. Smac mimetics target cancer cells in a TNFalpha-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2. Degradation of cIAPs triggers the release of receptor interacting protein kinase (RIPK1) from TNF receptor I (TNFR1) to form a caspase-8 activating complex together with the adaptor protein Fas-associated death domain (FADD). We report here a means through which cancer cells mediate resistance to Smac mimetic/TNFalpha-induced apoptosis and corresponding strategies to overcome such resistance. These human cancer cell lines evades Smac mimetic-induced apoptosis by up-regulation of cIAP2, which although initially degraded, rebounds and is refractory to subsequent degradation. cIAP2 is induced by TNFalpha via NF-kappaB and modulation of the NF-kappaB signal renders otherwise resistant cells sensitive to Smac mimetics. In addition, other signaling pathways, including phosphatidyl inositol-3 kinase (PI3K), have the potential to concurrently regulate cIAP2. Using the PI3K inhibitor, LY294002, cIAP2 up-regulation was suppressed and resistance to Smac mimetics-induced apoptosis was also overcome. Smac mimetics target cancer cells in a TNFα-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2. Degradation of cIAPs triggers the release of receptor interacting protein kinase (RIPK1) from TNF receptor I (TNFR1) to form a caspase-8 activating complex together with the adaptor protein Fas-associated death domain (FADD). We report here a means through which cancer cells mediate resistance to Smac mimetic/TNFα-induced apoptosis and corresponding strategies to overcome such resistance. These human cancer cell lines evades Smac mimetic-induced apoptosis by up-regulation of cIAP2, which although initially degraded, rebounds and is refractory to subsequent degradation. cIAP2 is induced by TNFα via NF-κB and modulation of the NF-κB signal renders otherwise resistant cells sensitive to Smac mimetics. In addition, other signaling pathways, including phosphatidyl inositol-3 kinase (PI3K), have the potential to concurrently regulate cIAP2. Using the PI3K inhibitor, LY294002, dAP2 up-regulation was suppressed and resistance to Smac mimetics-induced apoptosis was also overcome. Smac mimetics target cancer cells in a TNFα-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2. Degradation of cIAPs triggers the release of receptor interacting protein kinase (RIPK1) from TNF receptor I (TNFR1) to form a caspase-8 activating complex together with the adaptor protein Fas-associated death domain (FADD). We report here a means through which cancer cells mediate resistance to Smac mimetic/TNFα-induced apoptosis and corresponding strategies to overcome such resistance. These human cancer cell lines evades Smac mimetic-induced apoptosis by up-regulation of cIAP2, which although initially degraded, rebounds and is refractory to subsequent degradation. cIAP2 is induced by TNFα via NF-...B and modulation of the NF-...B signal renders otherwise resistant cells sensitive to Smac mimetics. In addition, other signaling pathways, including phosphatidyl inositol-3 kinase (PI3K), have the potential to concurrently regulate cIAP2. Using the PI3K inhibitor, LY294002, cIAP2 up-regulation was suppressed and resistance to Smac mimetics-induced apoptosis was also overcome. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Wang, Xiaodong Petersen, Sean L. Minna, John D. Peyton, Michael |
Author_xml | – sequence: 1 givenname: Sean L. surname: Petersen fullname: Petersen, Sean L. – sequence: 2 givenname: Michael surname: Peyton fullname: Peyton, Michael – sequence: 3 givenname: John D. surname: Minna fullname: Minna, John D. – sequence: 4 givenname: Xiaodong surname: Wang fullname: Wang, Xiaodong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20547836$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkctv3CAQh1GVqNk8zj21Qr27GcCAfakURX1EipRKbc8IMJuyssEFHCX_fdnsNo8TaPjmmxG_Y3QQYnAIvSPwiYBk53PQud6ACyFr4Q1aEehJI9oeDtAKgMqma2l7hI5z3gBAzzt4i44o8FZ2TKyQvblzycbJh1tsdbAuYevGESeXfS7bAi4R_5y0xZOfXPEW-zAs1g1Yz3EusWLYPOApDsuoy6Pm6uJHQ7G7n6sk-xhO0eFaj9md7c8T9Pvrl1-X35vrm29XlxfXjeWMlsZ2g-OtkCA4XwtiTEcGbYBQarRxeuioYNQxS1jfa2NIR9fUUNrT1lDOOLAT9HnnnRczucG6UJIe1Zz8pNODitqr1y_B_1G38U7RHkACr4KPe0GKfxeXi9rEJYW6s-L1u1jLQVTofAfZFHNObv00gIDahqK2oajnUGrHh5d7PfH_U6gA3gPbzmedVFQoQvpH5P0O2eQS0wuFpC2RnP0DyA6ffQ |
CitedBy_id | crossref_primary_10_3390_molecules28010446 crossref_primary_10_1074_jbc_M110_183616 crossref_primary_10_1038_cdd_2011_163 crossref_primary_10_1089_cbr_2012_1261 crossref_primary_10_1111_j_1744_6198_2011_00227_x crossref_primary_10_1016_j_csbj_2019_01_009 crossref_primary_10_1016_j_bbamcr_2013_01_014 crossref_primary_10_1016_j_cell_2013_09_041 crossref_primary_10_1016_j_canlet_2011_06_016 crossref_primary_10_1038_s41419_018_1200_y crossref_primary_10_1080_23723556_2015_1029829 crossref_primary_10_3390_cancers13112618 crossref_primary_10_3390_cells9030663 crossref_primary_10_1007_s12672_011_0065_7 crossref_primary_10_1126_scisignal_aax5647 crossref_primary_10_1007_s10495_010_0542_4 crossref_primary_10_1073_pnas_1807711115 crossref_primary_10_1371_journal_pone_0058325 crossref_primary_10_1016_j_jbiotec_2013_08_028 crossref_primary_10_1074_mcp_M117_068189 crossref_primary_10_1016_j_canlet_2018_01_082 crossref_primary_10_1016_j_drup_2020_100712 crossref_primary_10_1038_cddis_2013_305 crossref_primary_10_3389_fphar_2018_01298 crossref_primary_10_1186_s12935_023_02904_y crossref_primary_10_1111_j_1365_2796_2010_02282_x crossref_primary_10_1038_cdd_2011_50 crossref_primary_10_3390_ijms15033816 crossref_primary_10_3892_ijo_2014_2265 crossref_primary_10_1093_jnci_djt440 crossref_primary_10_1038_cddis_2014_347 crossref_primary_10_1016_j_molmet_2022_101582 crossref_primary_10_1016_j_bcp_2018_11_012 crossref_primary_10_1016_j_ejphar_2024_176608 crossref_primary_10_1016_j_bbrc_2013_12_068 crossref_primary_10_3390_cancers11121835 crossref_primary_10_1158_1535_7163_MCT_17_0848 crossref_primary_10_3389_fonc_2022_992260 crossref_primary_10_1038_nm_4229 crossref_primary_10_1038_s41419_022_05505_1 crossref_primary_10_1158_1535_7163_MCT_13_0798 crossref_primary_10_1016_j_pharmthera_2014_05_007 crossref_primary_10_1155_2012_265691 crossref_primary_10_1016_j_csbj_2021_11_034 crossref_primary_10_1038_s41419_019_1505_5 crossref_primary_10_1038_bjc_2015_420 crossref_primary_10_1016_j_lfs_2023_121496 crossref_primary_10_1021_acs_jcim_0c00518 crossref_primary_10_3390_cancers13143386 crossref_primary_10_1146_annurev_immunol_032414_112248 crossref_primary_10_1016_j_canlet_2016_07_008 crossref_primary_10_1038_cdd_2014_234 crossref_primary_10_1016_j_bcp_2019_01_009 crossref_primary_10_1016_j_ijpharm_2020_119650 crossref_primary_10_1016_j_bbagen_2018_04_005 crossref_primary_10_3390_cells10123465 crossref_primary_10_3390_cells9041012 crossref_primary_10_1016_j_ymthe_2018_02_004 crossref_primary_10_1021_acs_jmedchem_8b01668 crossref_primary_10_1038_leu_2014_2 crossref_primary_10_1158_2326_6066_CIR_17_0490 crossref_primary_10_1038_cddis_2012_3 crossref_primary_10_1038_srep08293 crossref_primary_10_1038_s41467_022_32066_w crossref_primary_10_1016_j_toxrep_2015_07_004 crossref_primary_10_1158_1541_7786_MCR_19_0243 crossref_primary_10_1016_j_canlet_2011_09_007 crossref_primary_10_1038_cdd_2011_10 crossref_primary_10_1530_ERC_17_0479 crossref_primary_10_18632_oncotarget_9619 crossref_primary_10_1038_onc_2012_265 crossref_primary_10_1158_0008_5472_CAN_16_3232 crossref_primary_10_1038_s41598_017_11426_3 crossref_primary_10_1016_j_febslet_2014_12_004 crossref_primary_10_1158_0008_5472_CAN_11_2428 crossref_primary_10_1016_j_canlet_2011_12_024 crossref_primary_10_1016_j_bbamcr_2020_118688 crossref_primary_10_1016_j_ccell_2016_12_003 crossref_primary_10_4161_cc_27880 crossref_primary_10_1038_cdd_2015_150 crossref_primary_10_1093_oncolo_oyad029 crossref_primary_10_1002_pro_523 crossref_primary_10_1038_bjc_2011_387 crossref_primary_10_1371_journal_pone_0035073 crossref_primary_10_3390_ijms242015405 crossref_primary_10_18632_oncotarget_14207 crossref_primary_10_3389_fonc_2020_00375 crossref_primary_10_1161_JAHA_113_000259 crossref_primary_10_1021_jm401075x crossref_primary_10_1002_open_201900059 crossref_primary_10_1007_s10495_018_1507_2 crossref_primary_10_1038_s41420_019_0155_9 crossref_primary_10_1158_0008_5472_CAN_10_3947 crossref_primary_10_18632_oncotarget_6915 |
Cites_doi | 10.1016/S0959-437X(01)00273-8 10.1158/0008-5472.CAN-08-2655 10.1016/j.cell.2008.03.036 10.1016/S0092-8674(00)00008-8 10.1186/1471-2121-9-6 10.1074/jbc.M503724200 10.1126/science.1098231 10.1038/sj.cdd.4401189 10.1073/pnas.161506698 10.1074/jbc.M306541200 10.1016/j.semcancer.2004.04.002 10.1038/35050006 10.1038/sj.onc.1210220 10.1093/jb/mvi029 10.1016/j.cell.2007.10.030 10.1016/j.bbrc.2008.10.021 10.1016/S0092-8674(00)00009-X 10.1074/jbc.M209677200 10.1016/j.ccr.2007.08.029 10.1016/j.molcel.2008.05.014 10.1038/35050012 10.1016/j.cell.2007.10.037 10.1038/35065125 10.1128/MCB.25.8.3348-3356.2005 10.1073/pnas.1533221100 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 29, 2010 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 29, 2010 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1005667107 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11941 |
ExternalDocumentID | 2072882701 10_1073_pnas_1005667107 20547836 107_26_11936 20724175 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P50 CA070907 – fundername: NCI NIH HHS grantid: P01 CA 95471 – fundername: NCI NIH HHS grantid: P01 CA095471 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW AS DZ F20 H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c532t-c8de54670655f61bb81dab0122babead82632e3c1399abb182f2b22924b253503 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:20:53 EDT 2024 Thu Oct 10 20:23:37 EDT 2024 Thu Nov 21 21:02:53 EST 2024 Sat Sep 28 07:47:40 EDT 2024 Wed Nov 11 00:30:47 EST 2020 Fri Feb 02 07:04:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-c8de54670655f61bb81dab0122babead82632e3c1399abb182f2b22924b253503 |
Notes | Author contributions: S.L.P. and X.W. designed research; S.L.P. performed research; M.P. and J.D.M. contributed new reagents/analytic tools; S.L.P. and X.W. analyzed data; and S.L.P. and X.W. wrote the paper. Contributed by Xiaodong Wang, April 28, 2010 (sent for review March 30, 2010) |
OpenAccessLink | https://doi.org/10.1073/pnas.1005667107 |
PMID | 20547836 |
PQID | 578334506 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_20547836 pnas_primary_107_26_11936 crossref_primary_10_1073_pnas_1005667107 proquest_journals_578334506 jstor_primary_20724175 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2900705 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2010-06-29 |
PublicationDateYYYYMMDD | 2010-06-29 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 18929542 - Biochem Biophys Res Commun. 2008 Dec 12;377(2):508-11 11140638 - Nature. 2000 Dec 21-28;408(6815):1008-12 15353805 - Science. 2004 Sep 3;305(5689):1471-4 18570872 - Mol Cell. 2008 Jun 20;30(6):689-700 15798218 - Mol Cell Biol. 2005 Apr;25(8):3348-56 19010913 - Cancer Res. 2008 Nov 15;68(22):9384-93 11140637 - Nature. 2000 Dec 21-28;408(6815):1004-8 11447297 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8662-7 12403772 - J Biol Chem. 2003 Jan 17;278(3):1450-6 10929712 - Cell. 2000 Jul 7;102(1):43-53 18485876 - Cell. 2008 May 16;133(4):693-703 17996648 - Cancer Cell. 2007 Nov;12(5):445-56 15219616 - Semin Cancer Biol. 2004 Aug;14(4):231-43 14527959 - J Biol Chem. 2003 Dec 19;278(51):51091-9 18226221 - BMC Cell Biol. 2008;9:6 11790564 - Curr Opin Genet Dev. 2002 Feb;12(1):111-5 12655295 - Cell Death Differ. 2003 Jan;10(1):45-65 16115895 - J Biol Chem. 2005 Nov 11;280(45):37383-92 17322918 - Oncogene. 2007 Feb 26;26(9):1324-37 10929711 - Cell. 2000 Jul 7;102(1):33-42 15749826 - J Biochem. 2005 Feb;137(2):125-32 11242052 - Nature. 2001 Mar 1;410(6824):112-6 18022363 - Cell. 2007 Nov 16;131(4):682-93 12837940 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8921-6 18022362 - Cell. 2007 Nov 16;131(4):669-81 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_1_2 doi: 10.1016/S0959-437X(01)00273-8 – ident: e_1_3_3_14_2 doi: 10.1158/0008-5472.CAN-08-2655 – ident: e_1_3_3_16_2 doi: 10.1016/j.cell.2008.03.036 – ident: e_1_3_3_9_2 doi: 10.1016/S0092-8674(00)00008-8 – ident: e_1_3_3_23_2 doi: 10.1186/1471-2121-9-6 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M503724200 – ident: e_1_3_3_11_2 doi: 10.1126/science.1098231 – ident: e_1_3_3_18_2 doi: 10.1038/sj.cdd.4401189 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.161506698 – ident: e_1_3_3_24_2 doi: 10.1074/jbc.M306541200 – ident: e_1_3_3_3_2 doi: 10.1016/j.semcancer.2004.04.002 – ident: e_1_3_3_4_2 doi: 10.1038/35050006 – ident: e_1_3_3_2_2 doi: 10.1038/sj.onc.1210220 – ident: e_1_3_3_7_2 doi: 10.1093/jb/mvi029 – ident: e_1_3_3_13_2 doi: 10.1016/j.cell.2007.10.030 – ident: e_1_3_3_22_2 doi: 10.1016/j.bbrc.2008.10.021 – ident: e_1_3_3_10_2 doi: 10.1016/S0092-8674(00)00009-X – ident: e_1_3_3_20_2 doi: 10.1074/jbc.M209677200 – ident: e_1_3_3_15_2 doi: 10.1016/j.ccr.2007.08.029 – ident: e_1_3_3_17_2 doi: 10.1016/j.molcel.2008.05.014 – ident: e_1_3_3_6_2 doi: 10.1038/35050012 – ident: e_1_3_3_12_2 doi: 10.1016/j.cell.2007.10.037 – ident: e_1_3_3_5_2 doi: 10.1038/35065125 – ident: e_1_3_3_19_2 doi: 10.1128/MCB.25.8.3348-3356.2005 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.1533221100 |
SSID | ssj0009580 |
Score | 2.3829892 |
Snippet | Smac mimetics target cancer cells in a TNFα-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2.... Smac mimetics target cancer cells in a TNFalpha-dependent manner, partly via proteasome degradation of cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2.... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11936 |
SubjectTerms | Antibodies Apoptosis Apoptosis - drug effects Apoptosis - physiology Baculoviral IAP Repeat-Containing 3 Protein Base Sequence Biological Sciences Biomimetic Materials - pharmacology Cancer Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Cell death Cell Line, Tumor Cell lines Cells Chromones - pharmacology Drug Resistance, Neoplasm - genetics Drug Resistance, Neoplasm - physiology Gene expression Humans I-kappa B Kinase - antagonists & inhibitors I-kappa B Kinase - genetics Imidazoles - pharmacology Inhibitor of Apoptosis Proteins - genetics Inhibitor of Apoptosis Proteins - metabolism Intracellular Signaling Peptides and Proteins - physiology Kinases Lung Neoplasms - drug therapy Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - pathology Mitochondrial Proteins - physiology Morpholines - pharmacology NF-kappa B - antagonists & inhibitors Oncology Phosphatidylinositol 3-Kinases - antagonists & inhibitors Phosphorylation Proteases Proteins Proto-Oncogene Proteins c-akt - antagonists & inhibitors Quinoxalines - pharmacology Receptor-Interacting Protein Serine-Threonine Kinases - antagonists & inhibitors Receptor-Interacting Protein Serine-Threonine Kinases - genetics Receptors RNA, Small Interfering - genetics Small interfering RNA Tumor Necrosis Factor-alpha - pharmacology Ubiquitin-Protein Ligases Up regulation Up-Regulation - drug effects Western blotting |
SummonAdditionalLinks | – databaseName: JSTOR Life Sciences Collection dbid: JLS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7cPXnx_airkoOCHoK7SdPHcdEVvaiggreSpC0KbrvsA_TfO5O2664oCD01kxAyk8w3yeQLwIkNfBv3hOZWipj7mTJco5_khG1R4WFPOcr8m8fw7iW6GhBNzmlzF4bSKl1eoDvFR4Bk3jPaBUFHE6oWtKJuVOXtLTDrRtU9E4HLrS_8hr8nlBejQk8oDQAhCzrScMn1VNmHRGmKQr_By59Zkgtu53r9nx3egLUaV7J-ZQibsJIVW7BZz9wJO6vppc-3wd6j9aKdoc9ilnQ-ZrR7zzDuJiyJP9i0ZI9DbdnwbUh3HBnG7WgBKdOjcjQtUYyZTzYsU_f0FzVz23_ggmUfdVZtsQPP14OnyxteP7XArZJiym2UZgrXTAQkKg96xiCM1YaO3Yw2aGwR0bpn0iJejLUxGJTkwgiBwZsRSqqu3IV2URbZPjBaFGyqgtw3Er_cyCgItNRC5LHpRr4HZ40WklHFqJG4k_BQJqSL5FthHuy6oZ3LNePqgedEv-uHiQgwmoll4EGn0WVSz8dJguuSlL7qYulepdWFNonSjOqFS_qeCxAB93JJ8fbqiLhFTGxJ6uCvbnZgtUo2CLiID6E9Hc-yI2hN0tmxs-EvYYzrxQ priority: 102 providerName: JSTOR |
Title | Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression |
URI | https://www.jstor.org/stable/20724175 http://www.pnas.org/content/107/26/11936.abstract https://www.ncbi.nlm.nih.gov/pubmed/20547836 https://www.proquest.com/docview/578334506 https://pubmed.ncbi.nlm.nih.gov/PMC2900705 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xnLhUhUIbaFc-9AAHs9lxnMcR8RA9tEUCpN4i20nUlZqH2EWCf8-Mk-xC1VOlnJJxFHnGnm_iz58Bvro4ctkcjXQKMxmV2kpDeVIytiWHJ3PtJfOvb5Mfv9KLS5bJ0eNeGE_ad3Zx2vypT5vFb8-t7Go3G3lis5vv55ixSo2eTWBC2HAs0ddKu2m_7wRp-o0wGvV8EjXrGrNkWgBBGEqsfP4ehqxn5fWZN1mpJyay2inZ_wt5_k2gfJWRrt7DuwFKirP-k3dhq2z2YHcYrEtxPChKn3wA95MClkKL0pRw7OYHwT_sBZXaDB_phli14rY2TtSLmrc1CirVyemFMF3brVoyE_ZZ1G3hT_vi13w7u5EoyqeBSNvsw_3V5d35tRxOV5BOK1xJlxalpmmSMIiu4rm1hFyN5ZU2ayzFV8pK7qVyBBEzYy3VIRVaRKrXLGqlQ3UA203blJ9A8DzgCh1XkVV0VValcWyUQawyG6ZRAMdj7-ZdL6KR-8XvROXcx_nGJwEc-N5f22GYEMhIdACBN920T3KMqYDJVBzA0eijfBiCy5ymIqUiHdLTj723Xr2z93oAyRs_rg1Yc_vtEwpFr709hN7hf7c8gp2egBBLzD7D9urhsfwCk2XxOPV81Kk_9GLqY_oFWJD2Mg |
link.rule.ids | 230,315,729,782,786,808,811,887,27934,27935,53802,53804,58027,58039,58260,58272 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB48HvTF-6hnHhT0IbibND0exYMVT1DBt5KkLS647eKuoP_embTVXVEQ-tRMQshMMt8kky8AezbwbdwWmlspYu5nynCNfpITtkWFh23lKPM79-HNU3R6RjQ5-81dGEqrdHmB7hQfAZJ5yWgXBB1NqCZhWkUYR1UPA4xw60bVTROBC64v_IbBJ5RH_UIPKBEAQQu60nDM-VT5h0RqikK_AcyfeZIjjud8_p9dXoC5Glmy48oUFmEiK5ZgsZ67A3ZQE0wfLoO9RftFS0OvxSxp_ZXR_j3DyJvQJP5gw5Ld97RlvW6PbjkyjNzRBlKm-2V_WKIYMx-sV6bu8S9q5uL4jguWvdd5tcUKPJ6fPZx0eP3YArdKiiG3UZopXDURkqg8aBuDQFYbOngz2qC5RUTsnkmLiDHWxmBYkgsjBIZvRiipWnIVpoqyyNaB0bJgUxXkvpH45UZGQaClFiKPTSvyPThotJD0K06NxJ2FhzIhXSTfCvNg1Q3tl1wzrh54TvS7fpiIAOOZWAYebDa6TOoZOUhwZZLSVy0sXau0OtImkZpRvXBM318CRME9XlJ0nx0Vt4iJL0lt_NXNXZjpPFxfJVcXN5ebMFulHgRcxFswNXx9y7ZhcpC-7Th7_gTaYO8N |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB0VkCoupbTQBgr1gQMcLHbHcZwcUWEFakWRoBK3yHYSFambROwitX_fGSeB3aockHKKx5blGXve2ONngAOfxD4bo5VeYSbjUjtpyU9KxrakcDPWgTL__Npc3qanZ0yTczTcheG0ypAXGE7xCSC5X-VxW1S8E0LOxugVWNMpGuyy9xb4ddPutgnSohtjPLD4GHXc1nbGyQAEXMidmiUH1OUgMrEpCf0PZP6bK7ngfCYbL-j2W3jTI0xx0pnEJrwq63ew2c_hmTjsiaaP3oP_TnZMFkfeS3jW_r3gfXxBETijSvoh5o24nlovpndTvu0oKIInWyiEbZt23pCYcH_EtCnCI2DczMXJlURR_u7za-st-DE5u_lyLvtHF6TXCufSp0WpafUkaKKrZOwcAVrr-ADOWUdmlzLBe6k8IcfMOkfhSYUOkcI4h1rpkdqG1bqpy48geHnwhU6q2Cn6KqfSJLHKIlaZG6VxBIeDJvK249bIw5m4UTnrI39SWgTbYXgf5YZxjSAKok_1TY4JxTWZSiLYHfSZ9zNzltMKpVSsR1T6odPsQptMbsb1zJLOHwWYinu5pL77GSi5MWPeJL3zXDc_w-ur00n-7eLy6y6sdxkIicTsE6zO7x_KPViZFQ_7waT_ArEa8Zc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+cancer+cell+resistance+to+Smac+mimetic+induced+apoptosis+by+modulating+cIAP-2+expression&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Petersen%2C+Sean+L.&rft.au=Peyton%2C+Michael&rft.au=Minna%2C+John+D.&rft.au=Wang%2C+Xiaodong&rft.date=2010-06-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=26&rft.spage=11936&rft.epage=11941&rft_id=info:doi/10.1073%2Fpnas.1005667107&rft.externalDocID=20724175 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F26.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F26.cover.gif |