Magnesium Sulfate Reduces Carrageenan-Induced Rat Paw Inflammatory Edema Via Nitric Oxide Production
Background Magnesium is an antagonist of the N-methyl-D-aspartate receptor. This study aimed to investigate the anti-edematous effect of magnesium sulfate (MS) in different protocols of use and the possible mechanism of its action. Methods In a rat model of carrageenan-induced paw inflammation, the...
Saved in:
Published in: | Dose-response Vol. 21; no. 1; p. 15593258231155788 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Los Angeles, CA
SAGE Publications
01-01-2023
SAGE PUBLICATIONS, INC SAGE Publishing |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Magnesium is an antagonist of the N-methyl-D-aspartate receptor. This study aimed to investigate the anti-edematous effect of magnesium sulfate (MS) in different protocols of use and the possible mechanism of its action.
Methods
In a rat model of carrageenan-induced paw inflammation, the anti-edematous activity of MS was assessed with a plethysmometer. The effects of the nonselective inhibitor (L-NAME), selective inhibitor of neuronal (L-NPA) and inducible (SMT) nitric oxide synthase on the effects of MS were evaluated.
Results
MS administered systemically before or after inflammation reduced edema by 30% (5 mg/kg, P < .05) and 55% (30 mg/kg, P < .05). MS administered locally (.5 mg/paw, P < .05) significantly prevented the development of inflammatory edema by 60%. L-NAME, intraperitoneally administered before MS, potentiated (5 mg/kg, P < .05) or reduced (3 mg/kg, P < .05), while in the highest tested dose L-NPA (2 mg/kg, P < .01) and SMT (.015 mg/kg, P < .01) reduced the anti-edematous effect of MS.
Conclusions
Magnesium is a more effective anti-edematous drug in therapy than for preventing inflammatory edema. The effect of MS is achieved after systemic and local peripheral administration and when MS is administered as a single drug in a single dose. This effect is mediated at least in part via the production of nitric oxide. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1559-3258 1559-3258 |
DOI: | 10.1177/15593258231155788 |