Design, development and optimization of s (-) Atenolol floating sustained release matrix tablets using surface response methodology
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug re...
Saved in:
Published in: | Indian journal of pharmaceutical sciences Vol. 77; no. 5; pp. 563 - 572 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
India
Medknow Publications
01-09-2015
Medknow Publications and Media Pvt. Ltd Medknow Publications & Media Pvt. Ltd Medknow Publications & Media Pvt Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P<0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0250-474X 1998-3743 |
DOI: | 10.4103/0250-474X.169036 |