Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells
The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs....
Saved in:
Published in: | Journal of cellular physiology Vol. 224; no. 2; pp. 509 - 515 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-08-2010
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV‐FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV‐FGF18 is mediated by activation of ERK1/2‐MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2‐mediated ERK1/2‐MAPKs and PI3K signaling. J. Cell. Physiol. 224: 509–515, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling. J. Cell. Physiol. 224: 509-515, 2010. (C) 2010 Wiley-Liss, Inc. The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV‐FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV‐FGF18 is mediated by activation of ERK1/2‐MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2‐mediated ERK1/2‐MAPKs and PI3K signaling. J. Cell. Physiol. 224: 509–515, 2010. © 2010 Wiley‐Liss, Inc. The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling. |
Author | Miraoui, Hichem Marie, Pierre J. Fromigué, Olivia Jakob, Franz Pages, Jean-Christophe Ebert, Regina Hamidouche, Zahia Nuber, Ulrike Vaudin, Pascal |
Author_xml | – sequence: 1 givenname: Zahia surname: Hamidouche fullname: Hamidouche, Zahia organization: Inserm U606, Hopital Lariboisiere, Paris, France – sequence: 2 givenname: Olivia surname: Fromigué fullname: Fromigué, Olivia organization: Inserm U606, Hopital Lariboisiere, Paris, France – sequence: 3 givenname: Ulrike surname: Nuber fullname: Nuber, Ulrike organization: Lund Strategic Research Center for Stem Cell Biology, Lund University, Lund, Sweden – sequence: 4 givenname: Pascal surname: Vaudin fullname: Vaudin, Pascal organization: Inserm U966, Tours, France – sequence: 5 givenname: Jean-Christophe surname: Pages fullname: Pages, Jean-Christophe organization: Inserm U966, Tours, France – sequence: 6 givenname: Regina surname: Ebert fullname: Ebert, Regina organization: Orthopedic Center for Musculoskeletal Research, Experimental and Clinical Osteology, University of Würzburg, Germany – sequence: 7 givenname: Franz surname: Jakob fullname: Jakob, Franz organization: Orthopedic Center for Musculoskeletal Research, Experimental and Clinical Osteology, University of Würzburg, Germany – sequence: 8 givenname: Hichem surname: Miraoui fullname: Miraoui, Hichem organization: Inserm U606, Hopital Lariboisiere, Paris, France – sequence: 9 givenname: Pierre J. surname: Marie fullname: Marie, Pierre J. email: pierre.marie@inserm.fr organization: Inserm U606, Hopital Lariboisiere, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20432451$$D View this record in MEDLINE/PubMed https://hal.science/hal-01129484$$DView record in HAL https://lup.lub.lu.se/record/1629063$$DView record from Swedish Publication Index |
BookMark | eNp1kcFu1DAQhi1URLeFAy-AfOWQ1nbiOD4uq9JSLQWkIhAXy3bGXZckXtlZtnvj0es2dBEHDiNLnm8-jeY_QgdDGACh15ScUELY6a1dnzBGOXuGZpRIUVQ1Zwdolnu0kLyih-gopVtCiJRl-QIdMlKVrOJ0hn7PN2Ow0Q-AnTcxmE6nEd_EsB1X2Gk7hohpg3tovR4h4RbudA_jSqe8QuGHdmOhxSGNEG5g8Ba33jmIMIyZ92HAweF-8-jvIcFgV7tedzjzPbbQdekleu50l-DVn_cYfX1_dr24KJafzj8s5svC8pKywlLHJWFMtlBzJ7ipjZAAWhDCaVk5zqwjYKnQombSMDCcCy4Y07J10tjyGC0nb9rCemPUOvpex50K2qtus85lcqkEihLBG101inPiVOUsV6akjRKOZrdrKunqrHs76Va6-8d1MV-qhz9CKZNVU_2if1kbQ0oR3H6AEvUQoMoBqscAM_tmYvOO-eh78imxDJxOwNZ3sPu_SV0uPj8pi2nC56vf7Sd0_KlqUQquvl2dq4_X777wK_5d_SjvAS5EtwI |
CitedBy_id | crossref_primary_10_1089_ten_teb_2019_0349 crossref_primary_10_3109_08977194_2012_656761 crossref_primary_10_1007_s12038_020_00122_6 crossref_primary_10_1039_C7RA12234A crossref_primary_10_1002_jcp_26838 crossref_primary_10_3389_fbioe_2018_00036 crossref_primary_10_1089_ten_tea_2010_0719 crossref_primary_10_3892_br_2015_450 crossref_primary_10_1016_j_biomaterials_2014_10_015 crossref_primary_10_1186_s13287_018_1085_9 crossref_primary_10_1080_13697137_2024_2302967 crossref_primary_10_1152_physiol_00061_2014 crossref_primary_10_1177_20417314231187960 crossref_primary_10_1186_s13287_021_02278_w crossref_primary_10_1016_j_biomaterials_2012_06_003 crossref_primary_10_1016_j_abb_2014_05_003 crossref_primary_10_1101_gad_266551_115 crossref_primary_10_1371_journal_pone_0279584 crossref_primary_10_1089_ten_tea_2012_0233 crossref_primary_10_3892_mmr_2017_6178 crossref_primary_10_1177_0885328218763318 crossref_primary_10_1016_j_gene_2012_01_086 crossref_primary_10_1016_j_ejcb_2016_11_003 crossref_primary_10_1038_s41421_024_00689_6 crossref_primary_10_1002_jcp_30682 crossref_primary_10_1039_D0BM01496F crossref_primary_10_1038_s41598_017_18753_5 crossref_primary_10_1515_hsz_2021_0290 crossref_primary_10_1089_ten_teb_2012_0672 crossref_primary_10_1016_j_mtbio_2022_100360 crossref_primary_10_3390_jfb14010036 crossref_primary_10_1002_jcb_24369 crossref_primary_10_3390_biom13050809 crossref_primary_10_1089_dna_2021_0206 crossref_primary_10_1016_S1286_935X_19_42130_8 crossref_primary_10_1038_s41598_019_53884_x crossref_primary_10_1155_2015_421746 crossref_primary_10_1186_s12967_020_02504_8 crossref_primary_10_3233_BME_221406 crossref_primary_10_1126_scitranslmed_abl8146 crossref_primary_10_1016_S1762_827X_19_42712_0 crossref_primary_10_1021_acsami_7b15845 crossref_primary_10_1111_cbdd_13588 crossref_primary_10_1038_srep42841 crossref_primary_10_1016_j_mce_2013_05_017 crossref_primary_10_1016_j_aquaculture_2024_740865 crossref_primary_10_1186_s41232_017_0043_8 crossref_primary_10_1016_j_msec_2018_04_008 crossref_primary_10_1038_srep26298 |
Cites_doi | 10.1210/endo.134.1.8275945 10.1083/jcb.200401138 10.1359/jbmr.1999.14.9.1522 10.1016/j.cytogfr.2005.01.001 10.1016/j.abb.2008.02.030 10.1074/jbc.275.13.9645 10.1002/jcb.21648 10.1210/endo.138.10.5425 10.1006/dbio.1994.1022 10.1038/ng0797-307 10.1074/jbc.M410148200 10.1002/jor.1100090504 10.1002/jcp.21080 10.1016/j.cytogfr.2005.01.007 10.1074/jbc.M500608200 10.1196/annals.1354.062 10.1101/gad.965702 10.1096/fj.08-106302 10.1074/jbc.M203250200 10.1634/stemcells.19-3-180 10.1074/jbc.M608995200 10.1101/gad.965602 10.1523/JNEUROSCI.0809-04.2004 10.1615/CritRevEukaryotGeneExpr.v14.i12.10 10.1101/gad.990702 10.2217/17460751.1.4.549 10.1006/cyto.1997.0209 10.1634/stemcells.22-5-849 10.1083/jcb.200610046 10.1083/jcb.127.6.1755 10.1073/pnas.0408742102 10.1101/gad.1482906 10.1359/jbmr.1999.14.5.700 10.1016/S8756-3282(98)00087-8 10.2217/17460751.1.4.539 10.1634/stemcells.2007-0637 10.1359/jbmr.070503 10.1074/jbc.M314323200 10.1016/S0378-1119(03)00748-0 10.1074/jbc.M805432200 10.1196/annals.1334.010 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 1XC ADTPV AOWAS D95 |
DOI | 10.1002/jcp.22152 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Hyper Article en Ligne (HAL) SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 515 |
ExternalDocumentID | oai_lup_lub_lu_se_10758a48_550f_4fc5_b318_7f1762f849f6 oai_HAL_hal_01129484v1 10_1002_jcp_22152 20432451 JCP22152 ark_67375_WNG_MTBQ5N5X_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Etablissement Français du Sang (EFS, France) funderid: 2004‐08; 2005.11 – fundername: Integrated Project of the European Commission funderid: FP6 LSHB‐CT‐2003‐503161 – fundername: Association Rhumatisme et Travail (Hôpital Lariboisière, Paris, France) |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AETEA G8K CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 1XC ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c5312-c1f590229de65f75b6b79eea7005134f52cf0ec17a7629b2eb5575722a9df9bc3 |
IEDL.DBID | 33P |
ISSN | 0021-9541 1097-4652 |
IngestDate | Tue Oct 01 22:50:35 EDT 2024 Tue Oct 15 15:50:46 EDT 2024 Thu Nov 21 22:29:51 EST 2024 Sat Sep 28 08:18:21 EDT 2024 Sat Aug 24 01:01:20 EDT 2024 Wed Oct 30 09:52:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | MESENCHYME REGENERATION OSSEUSE |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5312-c1f590229de65f75b6b79eea7005134f52cf0ec17a7629b2eb5575722a9df9bc3 |
Notes | istex:6610A36EED16FB689740C9744E62C5A993CAD693 Integrated Project of the European Commission - No. FP6 LSHB-CT-2003-503161 ark:/67375/WNG-MTBQ5N5X-Z Zahia Hamidouche and Olivia Fromigué contributed equally to this work. ArticleID:JCP22152 Etablissement Français du Sang (EFS, France) - No. 2004-08; No. 2005.11 Association Rhumatisme et Travail (Hôpital Lariboisière, Paris, France) |
ORCID | 0000-0003-4875-3434 |
PMID | 20432451 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_lup_lub_lu_se_10758a48_550f_4fc5_b318_7f1762f849f6 hal_primary_oai_HAL_hal_01129484v1 crossref_primary_10_1002_jcp_22152 pubmed_primary_20432451 wiley_primary_10_1002_jcp_22152_JCP22152 istex_primary_ark_67375_WNG_MTBQ5N5X_Z |
PublicationCentury | 2000 |
PublicationDate | August 2010 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: August 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J. Cell. Physiol |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Marie PJ, Fromigue O. 2006. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1: 539-548. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. 2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275: 9645-9652. Ge C, Xiao G, Jiang D, Franceschi RT. 2007. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176: 709-718. Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I. 1994. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol 161: 218-228. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL. 1999. Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522-1535. Ornitz DM, Marie PJ. 2002. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16: 1446-1465. Marie PJ. 2008. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473: 98-105. Marie PJ. 2003. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 316: 23-32. Hamidouche Z, Hay E, Vaudin P, Charbord P, Schule R, Marie PJ, Fromigue O. 2008. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/{beta}-catenin signaling-dependent Runx2 expression. FASEB J 22: 3813-3822. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI. 1999. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14: 700-709. Etheridge SL, Spencer GJ, Heath DJ, Genever PG. 2004. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22: 849-860. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV. 1994. Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone. Endocrinology 134: 277-286. Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. 2002. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16: 870-879. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA. 2005. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 102: 3324-3329. Reinhold MI, Naski MC. 2007. Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J Biol Chem 282: 3653-3663. Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE. 2005. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280: 20509-20515. Eswarakumar VP, Lax I, Schlessinger J. 2005. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16: 139-149. Liu Z, Xu J, Colvin JS, Ornitz DM. 2002. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16: 859-869. Beak JY, Kang HS, Kim YS, Jetten AM. 2007. Kruppel-like zinc finger protein Glis3 promotes osteoblast differentiation by regulating FGF18 expression. J Bone Miner Res 22: 1234-1244. Fromigue O, Marie PJ, Lomri A. 1997. Differential effects of transforming growth factor beta2, dexamethasone and 1,25-dihydroxyvitamin D on human bone marrow stromal cells. Cytokine 9: 613-623. Gurok U, Steinhoff C, Lipkowitz B, Ropers HH, Scharff C, Nuber UA. 2004. Gene expression changes in the course of neural progenitor cell differentiation. J Neurosci 24: 5982-6002. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB. 2005. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280: 33132-33140. Kassem M. 2006. Stem cells: Potential therapy for age-related diseases. Ann NY Acad Sci 1067: 436-442. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. 1997. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138: 4456-4462. Hinoi E, Bialek P, Chen YT, Rached MT, Groner Y, Behringer RR, Ornitz DM, Karsenty G. 2006. Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev 20: 2937-2942. Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL, Stein GS. 2004. Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 14: 1-41. Pri-Chen S, Pitaru S, Lokiec F, Savion N. 1998. Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture. Bone 23: 111-117. Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ. 2009. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem 284: 4897-4904. Gregory CA, Gunn WG, Reyes E, Smolarz AJ, Munoz J, Spees JL, Prockop DJ. 2005. How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann NY Acad Sci 1049: 97-106. Baksh D, Tuan RS. 2007. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 212: 817-826. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127: 1755-1766. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G. 1997. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16: 307-310. Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T. 2004. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166: 85-95. Phinney DG, Prockop DJ. 2007. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25: 2896-2902. Xiao L, Naganawa T, Obugunde E, Gronowicz G, Ornitz DM, Coffin JD, Hurley MM. 2004. Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem 279: 27743-27752. Bianco P, Riminucci M, Gronthos S, Robey PG. 2001. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19: 180-192. Kimelman N, Pelled G, Gazit Z, Gazit D. 2006. Applications of gene therapy and adult stem cells in bone bioengineering. Regen Med 1: 549-561. Dailey L, Ambrosetti D, Mansukhani A, Basilico C. 2005. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16: 233-247. Fromigue O, Hamidouche Z, Chateauvieux S, Charbord P, Marie PJ. 2008. Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma-derived mesenchymal stem cells. J Cell Biochem 104: 620-628. Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA. 2003. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278: 1998-2007. 1994; 134 2002; 16 2004; 22 2004; 166 1997; 138 2003; 316 2007; 282 2004; 24 1999; 284 2006; 1067 2008; 104 2000; 275 2006; 1 2003; 278 1997; 9 1998; 23 2005; 280 2007; 212 1994; 127 2006; 20 2004; 279 2005; 102 2007; 176 2004; 14 1994; 161 1999; 14 2001; 19 1997; 16 2008; 22 2009; 284 2005; 16 2007; 22 2008; 473 2005; 1049 2007; 25 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 166 start-page: 85 year: 2004 end-page: 95 article-title: Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K‐Akt signaling publication-title: J Cell Biol – volume: 1049 start-page: 97 year: 2005 end-page: 106 article-title: How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow publication-title: Ann NY Acad Sci – volume: 22 start-page: 3813 year: 2008 end-page: 3822 article-title: FHL2 mediates dexamethasone‐induced mesenchymal cell differentiation into osteoblasts by activating Wnt/{beta}‐catenin signaling‐dependent Runx2 expression publication-title: FASEB J – volume: 473 start-page: 98 year: 2008 end-page: 105 article-title: Transcription factors controlling osteoblastogenesis publication-title: Arch Biochem Biophys – volume: 104 start-page: 620 year: 2008 end-page: 628 article-title: Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma‐derived mesenchymal stem cells publication-title: J Cell Biochem – volume: 280 start-page: 20509 year: 2005 end-page: 20515 article-title: Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis publication-title: J Biol Chem – volume: 176 start-page: 709 year: 2007 end-page: 718 article-title: Critical role of the extracellular signal‐regulated kinase‐MAPK pathway in osteoblast differentiation and skeletal development publication-title: J Cell Biol – volume: 20 start-page: 2937 year: 2006 end-page: 2942 article-title: Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium publication-title: Genes Dev – volume: 22 start-page: 849 year: 2004 end-page: 860 article-title: Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells publication-title: Stem Cells – volume: 24 start-page: 5982 year: 2004 end-page: 6002 article-title: Gene expression changes in the course of neural progenitor cell differentiation publication-title: J Neurosci – volume: 16 start-page: 1446 year: 2002 end-page: 1465 article-title: FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease publication-title: Genes Dev – volume: 14 start-page: 1 year: 2004 end-page: 41 article-title: Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors publication-title: Crit Rev Eukaryot Gene Expr – volume: 161 start-page: 218 year: 1994 end-page: 228 article-title: Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP‐2 publication-title: Dev Biol – volume: 19 start-page: 180 year: 2001 end-page: 192 article-title: Bone marrow stromal stem cells: Nature, biology, and potential applications publication-title: Stem Cells – volume: 284 start-page: 4897 year: 2009 end-page: 4904 article-title: Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling publication-title: J Biol Chem – volume: 25 start-page: 2896 year: 2007 end-page: 2902 article-title: Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair–current views publication-title: Stem Cells – volume: 14 start-page: 700 year: 1999 end-page: 709 article-title: A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse publication-title: J Bone Miner Res – volume: 23 start-page: 111 year: 1998 end-page: 117 article-title: Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone‐treated human bone marrow‐derived bone‐like cells in culture publication-title: Bone – volume: 1 start-page: 539 year: 2006 end-page: 548 article-title: Osteogenic differentiation of human marrow‐derived mesenchymal stem cells publication-title: Regen Med – volume: 1 start-page: 549 year: 2006 end-page: 561 article-title: Applications of gene therapy and adult stem cells in bone bioengineering publication-title: Regen Med – volume: 16 start-page: 307 year: 1997 end-page: 310 article-title: Missense mutations abolishing DNA binding of the osteoblast‐specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia publication-title: Nat Genet – volume: 279 start-page: 27743 year: 2004 end-page: 27752 article-title: Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts publication-title: J Biol Chem – volume: 9 start-page: 613 year: 1997 end-page: 623 article-title: Differential effects of transforming growth factor beta2, dexamethasone and 1,25‐dihydroxyvitamin D on human bone marrow stromal cells publication-title: Cytokine – volume: 1067 start-page: 436 year: 2006 end-page: 442 article-title: Stem cells: Potential therapy for age‐related diseases publication-title: Ann NY Acad Sci – volume: 278 start-page: 1998 year: 2003 end-page: 2007 article-title: Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass publication-title: J Biol Chem – volume: 275 start-page: 9645 year: 2000 end-page: 9652 article-title: Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen‐activated protein kinase publication-title: J Biol Chem – volume: 134 start-page: 277 year: 1994 end-page: 286 article-title: Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone publication-title: Endocrinology – volume: 212 start-page: 817 year: 2007 end-page: 826 article-title: Canonical and non‐canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells publication-title: J Cell Physiol – volume: 127 start-page: 1755 year: 1994 end-page: 1766 article-title: Bone morphogenetic protein‐2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage publication-title: J Cell Biol – volume: 280 start-page: 33132 year: 2005 end-page: 33140 article-title: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression publication-title: J Biol Chem – volume: 138 start-page: 4456 year: 1997 end-page: 4462 article-title: Fibroblast growth factor‐2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow publication-title: Endocrinology – volume: 316 start-page: 23 year: 2003 end-page: 32 article-title: Fibroblast growth factor signaling controlling osteoblast differentiation publication-title: Gene – volume: 16 start-page: 139 year: 2005 end-page: 149 article-title: Cellular signaling by fibroblast growth factor receptors publication-title: Cytokine Growth Factor Rev – volume: 102 start-page: 3324 year: 2005 end-page: 3329 article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 233 year: 2005 end-page: 247 article-title: Mechanisms underlying differential responses to FGF signaling publication-title: Cytokine Growth Factor Rev – volume: 284 start-page: 143 year: 1999 end-page: 147 article-title: Multilineage potential of adult human mesenchymal stem cells publication-title: Science – volume: 14 start-page: 1522 year: 1999 end-page: 1535 article-title: Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein‐2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation publication-title: J Bone Miner Res – volume: 22 start-page: 1234 year: 2007 end-page: 1244 article-title: Kruppel‐like zinc finger protein Glis3 promotes osteoblast differentiation by regulating FGF18 expression publication-title: J Bone Miner Res – volume: 16 start-page: 870 year: 2002 end-page: 879 article-title: FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis publication-title: Genes Dev – volume: 282 start-page: 3653 year: 2007 end-page: 3663 article-title: Direct interactions of Runx2 and canonical Wnt signaling induce FGF18 publication-title: J Biol Chem – volume: 16 start-page: 859 year: 2002 end-page: 869 article-title: Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18 publication-title: Genes Dev – ident: e_1_2_6_6_1 doi: 10.1210/endo.134.1.8275945 – ident: e_1_2_6_14_1 doi: 10.1083/jcb.200401138 – ident: e_1_2_6_17_1 doi: 10.1359/jbmr.1999.14.9.1522 – ident: e_1_2_6_10_1 doi: 10.1016/j.cytogfr.2005.01.001 – ident: e_1_2_6_31_1 doi: 10.1016/j.abb.2008.02.030 – ident: e_1_2_6_23_1 doi: 10.1074/jbc.275.13.9645 – ident: e_1_2_6_13_1 doi: 10.1002/jcb.21648 – ident: e_1_2_6_33_1 doi: 10.1210/endo.138.10.5425 – ident: e_1_2_6_41_1 doi: 10.1006/dbio.1994.1022 – ident: e_1_2_6_27_1 doi: 10.1038/ng0797-307 – ident: e_1_2_6_8_1 doi: 10.1074/jbc.M410148200 – ident: e_1_2_6_38_1 doi: 10.1002/jor.1100090504 – ident: e_1_2_6_2_1 doi: 10.1002/jcp.21080 – ident: e_1_2_6_7_1 doi: 10.1016/j.cytogfr.2005.01.007 – ident: e_1_2_6_15_1 doi: 10.1074/jbc.M500608200 – ident: e_1_2_6_24_1 doi: 10.1196/annals.1354.062 – ident: e_1_2_6_35_1 doi: 10.1101/gad.965702 – ident: e_1_2_6_21_1 doi: 10.1096/fj.08-106302 – ident: e_1_2_6_18_1 doi: 10.1074/jbc.M203250200 – ident: e_1_2_6_5_1 doi: 10.1634/stemcells.19-3-180 – ident: e_1_2_6_40_1 doi: 10.1074/jbc.M608995200 – ident: e_1_2_6_29_1 doi: 10.1101/gad.965602 – ident: e_1_2_6_20_1 doi: 10.1523/JNEUROSCI.0809-04.2004 – ident: e_1_2_6_28_1 doi: 10.1615/CritRevEukaryotGeneExpr.v14.i12.10 – ident: e_1_2_6_36_1 doi: 10.1101/gad.990702 – ident: e_1_2_6_26_1 doi: 10.2217/17460751.1.4.549 – ident: e_1_2_6_12_1 doi: 10.1006/cyto.1997.0209 – ident: e_1_2_6_11_1 doi: 10.1634/stemcells.22-5-849 – ident: e_1_2_6_16_1 doi: 10.1083/jcb.200610046 – ident: e_1_2_6_25_1 doi: 10.1083/jcb.127.6.1755 – ident: e_1_2_6_4_1 doi: 10.1073/pnas.0408742102 – ident: e_1_2_6_22_1 doi: 10.1101/gad.1482906 – ident: e_1_2_6_9_1 doi: 10.1359/jbmr.1999.14.5.700 – ident: e_1_2_6_39_1 doi: 10.1016/S8756-3282(98)00087-8 – ident: e_1_2_6_32_1 doi: 10.2217/17460751.1.4.539 – ident: e_1_2_6_37_1 doi: 10.1634/stemcells.2007-0637 – ident: e_1_2_6_3_1 doi: 10.1359/jbmr.070503 – ident: e_1_2_6_42_1 doi: 10.1074/jbc.M314323200 – ident: e_1_2_6_30_1 doi: 10.1016/S0378-1119(03)00748-0 – ident: e_1_2_6_34_1 doi: 10.1074/jbc.M805432200 – ident: e_1_2_6_19_1 doi: 10.1196/annals.1334.010 |
SSID | ssj0009933 |
Score | 2.290548 |
Snippet | The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The... |
SourceID | swepub hal crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 509 |
SubjectTerms | Animals Autocrine Communication - drug effects Basic Medicine Cell and Molecular Biology Cell Differentiation - drug effects Cell Differentiation - genetics Cell Line Cell- och molekylärbiologi Dexamethasone - pharmacology Extracellular Signal-Regulated MAP Kinases - metabolism Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Gene Expression Regulation, Developmental - drug effects Gene Silencing - drug effects Life Sciences Medical and Health Sciences Medicin och hälsovetenskap Medicinska och farmaceutiska grundvetenskaper Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - enzymology Mesenchymal Stromal Cells - metabolism Mice Models, Biological Osteogenesis - drug effects Phosphatidylinositol 3-Kinases - metabolism Receptor, Fibroblast Growth Factor, Type 1 - metabolism Receptor, Fibroblast Growth Factor, Type 2 - metabolism Signal Transduction - drug effects Up-Regulation - drug effects |
Title | Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells |
URI | https://api.istex.fr/ark:/67375/WNG-MTBQ5N5X-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.22152 https://www.ncbi.nlm.nih.gov/pubmed/20432451 https://hal.science/hal-01129484 https://lup.lub.lu.se/record/1629063 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUhceOzyKC9ZCK24hG0cO67FqSxdKgTVIhax4mLZjk159KFtgrY3xC_gN_JLmLHbLD0gIXGIFCVO7IxnxjPOzDeEPKrAj7WF95lixma8CHlmgnGZdc5zhsF_BeY7D9_K0Unv-QBhcp6uc2ESPkS74YaSEfU1Crixi_1z0NDPbv6EYVVW0L_gJcT0jeLoHHB3VUY-hiAInq9Rhbpsv31yYy3aGmMk5EUk7tkfy9EKQHTTdo2Lz-HV_xr2NXJlZXPSfmKS6-SCn-6Q3f4U_O3Jku7RGAUat9d3yKVUnHK5S370m3rmMDmQBuhxZsHOrulHcNvrMU1lemjeozH1BOxVWvkzg_WoDVjw_tf3n-DsA9tUFLNIZsCmnxxdV2OpEz_QWaCTJvYwwSQoN15OYJwILU3xh8LiBnl3ODg-GGarig2ZA1lmmcsDwsEwVflSBClsaaXy3kiU_YIHwVzoepdLAzpYWeatAHNRMmZUFZR1xU2yPYVB3ibUBa5MIQrjrOLSKQPMVDjlbQkWjyx5hzxcz52eJ2AOnSCYmQYa60hjaASz2t5HKO1h_5XGa100NHmPf8s7ZC9OetvMnH7BcDcp9PvRC_36-NkbMRIn-kOH3Epc0bZkEdBQwCsGiU02uvrazOGwcOiFh5GBa2Z4T4NPGDQPTmgLClXLkAMxQo-rUHbI48g7f_8i_fLgKJ7c-femd8nlFPOAYYv3yHZ92vj7ZGtRNQ-izPwGcWwZQQ |
link.rule.ids | 230,315,782,786,887,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLboJsReuGxcytVCaOIlrHHsJJZ4KaOjQFcNUbSJF8t27JVLL1oTtL4hfgG_kV_COU7b0QckJB4iRYkTO_Z37HOcc75DyJMC7FiTOBdJpk3EEx9H2msbGWsdZ-j8l2C8c_d91j_JX3aQJuf5Mham5odYbbihZIT5GgUcN6T3LlhDP9vpM4ZpWRtkk6c8R0wnydEF5e4ikXxwQhA8XvIKtdje6tG11agxRF_ITeze8z8WpAWF6Lr2Gpafg2v_1_Dr5OpC7aTtGic3yCU33iY77TGY3KM53aXBETTssG-Ty3V-yvkO-dGuyonF-EDqocqJAVW7pKdguZdDWmfqoXFOQ_QJqKy0cOcaU1JrUOLdr-8_wd4H5BQUA0kmgNRPli4TspQ1JOjE01EVahhhHJQdzkfQTmSXpvhPYXaTfDjoDPa70SJpQ2RBnFlkY4-MMEwWLhU-EyY1mXROZyj-CfeCWd9yNs40TMPSMGcEaIwZY1oWXhqb3CIbY2jkHUKt51InItHWSJ5ZqQFPiZXOpKD0ZClvksfLwVPTmptD1SzMTEEfq9DHUAiGdXUf2bS77Z7Cay3UNXnOv8VNshtGfVVMn31Bj7dMqOP-K3U4ePFO9MWJ-tgkt2tYrEqywGko4BWdGidrVX2tpnAYONTMQcvAOtM8V2AWesW9FcrAnKoyH0Nn-JxLnzbJ0wCev3-RerN_FE7u_nvRR-RKd3DYU73X_bf3yFbtAoFejPfJRnlWuQekMSuqh0GAfgMifR1q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLboJtBeuGxcytVCaOIlrHHsJhZPZWspMKoihjbxYtmOvXLpRWuC1jfEL-A38ks4x2kz-oCExEOkKHFixz7H_o5zzncIeZKDHWsS5yLJtIl44uNIe20jY63jDJ3_Eox37r9PByfZQRdpcp6vYmEqfoh6ww01I8zXqOCz3O9dkIZ-trNnDLOyNsgmBxiO_nxJMrxg3F3mkQ8-CILHK1qhFturH11bjBojdIXcxN49_2M9WjKIroPXsPr0rv1Xu6-Tq0vQSTuVlNwgl9xkm-x0JmBwjxd0lwY30LC_vk0uV9kpFzvkR6csphajA6mHGqcGgHZBT8FuL0a0ytND44yG2BMArDR35xoTUmuA8O7X959g7YPc5BTDSKYgp58sXaVjKSqBoFNPx2WoYYxRUHa0GEM7kVua4h-F-U3yodc92u9Hy5QNkQVlZpGNPfLBMJm7tvCpMG2TSud0isqfcC-Y9S1n41TDJCwNc0YAXkwZ0zL30tjkFtmYQCPvEGo9lzoRibZG8tRKDdKUWOlMGyBP2uZN8ng1dmpWMXOoioOZKehjFfoYCsGo1veRS7vfOVR4rYVIk2f8W9wku2HQ62L67Av6u6VCHQ9eqrdHL96JgThRH5vkdiUVdUkWGA0FvKJbiclaVV_LGRwGDjV30DKwzTTPFBiFXnFvhTIwo6rUx9AZPuPSt5vkaZCdv3-Rer0_DCd3_73oI3JleNBTh68Gb-6Rrcr_AV0Y75ON4qx0D0hjnpcPg_r8BpYjHBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autocrine+fibroblast+growth+factor+18+mediates+dexamethasone%E2%80%90induced+osteogenic+differentiation+of+murine+mesenchymal+stem+cells&rft.jtitle=Journal+of+cellular+physiology&rft.au=Hamidouche%2C+Zahia&rft.au=Fromigu%C3%A9%2C+Olivia&rft.au=Nuber%2C+Ulrike&rft.au=Vaudin%2C+Pascal&rft.date=2010-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=224&rft.issue=2&rft.spage=509&rft.epage=515&rft_id=info:doi/10.1002%2Fjcp.22152&rft.externalDBID=10.1002%252Fjcp.22152&rft.externalDocID=JCP22152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |