Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells

The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs....

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology Vol. 224; no. 2; pp. 509 - 515
Main Authors: Hamidouche, Zahia, Fromigué, Olivia, Nuber, Ulrike, Vaudin, Pascal, Pages, Jean-Christophe, Ebert, Regina, Jakob, Franz, Miraoui, Hichem, Marie, Pierre J.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01-08-2010
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV‐FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV‐FGF18 is mediated by activation of ERK1/2‐MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2‐mediated ERK1/2‐MAPKs and PI3K signaling. J. Cell. Physiol. 224: 509–515, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling. J. Cell. Physiol. 224: 509-515, 2010. (C) 2010 Wiley-Liss, Inc.
The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV‐FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV‐FGF18 is mediated by activation of ERK1/2‐MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2‐mediated ERK1/2‐MAPKs and PI3K signaling. J. Cell. Physiol. 224: 509–515, 2010. © 2010 Wiley‐Liss, Inc.
The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling.
Author Miraoui, Hichem
Marie, Pierre J.
Fromigué, Olivia
Jakob, Franz
Pages, Jean-Christophe
Ebert, Regina
Hamidouche, Zahia
Nuber, Ulrike
Vaudin, Pascal
Author_xml – sequence: 1
  givenname: Zahia
  surname: Hamidouche
  fullname: Hamidouche, Zahia
  organization: Inserm U606, Hopital Lariboisiere, Paris, France
– sequence: 2
  givenname: Olivia
  surname: Fromigué
  fullname: Fromigué, Olivia
  organization: Inserm U606, Hopital Lariboisiere, Paris, France
– sequence: 3
  givenname: Ulrike
  surname: Nuber
  fullname: Nuber, Ulrike
  organization: Lund Strategic Research Center for Stem Cell Biology, Lund University, Lund, Sweden
– sequence: 4
  givenname: Pascal
  surname: Vaudin
  fullname: Vaudin, Pascal
  organization: Inserm U966, Tours, France
– sequence: 5
  givenname: Jean-Christophe
  surname: Pages
  fullname: Pages, Jean-Christophe
  organization: Inserm U966, Tours, France
– sequence: 6
  givenname: Regina
  surname: Ebert
  fullname: Ebert, Regina
  organization: Orthopedic Center for Musculoskeletal Research, Experimental and Clinical Osteology, University of Würzburg, Germany
– sequence: 7
  givenname: Franz
  surname: Jakob
  fullname: Jakob, Franz
  organization: Orthopedic Center for Musculoskeletal Research, Experimental and Clinical Osteology, University of Würzburg, Germany
– sequence: 8
  givenname: Hichem
  surname: Miraoui
  fullname: Miraoui, Hichem
  organization: Inserm U606, Hopital Lariboisiere, Paris, France
– sequence: 9
  givenname: Pierre J.
  surname: Marie
  fullname: Marie, Pierre J.
  email: pierre.marie@inserm.fr
  organization: Inserm U606, Hopital Lariboisiere, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20432451$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01129484$$DView record in HAL
https://lup.lub.lu.se/record/1629063$$DView record from Swedish Publication Index
BookMark eNp1kcFu1DAQhi1URLeFAy-AfOWQ1nbiOD4uq9JSLQWkIhAXy3bGXZckXtlZtnvj0es2dBEHDiNLnm8-jeY_QgdDGACh15ScUELY6a1dnzBGOXuGZpRIUVQ1Zwdolnu0kLyih-gopVtCiJRl-QIdMlKVrOJ0hn7PN2Ow0Q-AnTcxmE6nEd_EsB1X2Gk7hohpg3tovR4h4RbudA_jSqe8QuGHdmOhxSGNEG5g8Ba33jmIMIyZ92HAweF-8-jvIcFgV7tedzjzPbbQdekleu50l-DVn_cYfX1_dr24KJafzj8s5svC8pKywlLHJWFMtlBzJ7ipjZAAWhDCaVk5zqwjYKnQombSMDCcCy4Y07J10tjyGC0nb9rCemPUOvpex50K2qtus85lcqkEihLBG101inPiVOUsV6akjRKOZrdrKunqrHs76Va6-8d1MV-qhz9CKZNVU_2if1kbQ0oR3H6AEvUQoMoBqscAM_tmYvOO-eh78imxDJxOwNZ3sPu_SV0uPj8pi2nC56vf7Sd0_KlqUQquvl2dq4_X777wK_5d_SjvAS5EtwI
CitedBy_id crossref_primary_10_1089_ten_teb_2019_0349
crossref_primary_10_3109_08977194_2012_656761
crossref_primary_10_1007_s12038_020_00122_6
crossref_primary_10_1039_C7RA12234A
crossref_primary_10_1002_jcp_26838
crossref_primary_10_3389_fbioe_2018_00036
crossref_primary_10_1089_ten_tea_2010_0719
crossref_primary_10_3892_br_2015_450
crossref_primary_10_1016_j_biomaterials_2014_10_015
crossref_primary_10_1186_s13287_018_1085_9
crossref_primary_10_1080_13697137_2024_2302967
crossref_primary_10_1152_physiol_00061_2014
crossref_primary_10_1177_20417314231187960
crossref_primary_10_1186_s13287_021_02278_w
crossref_primary_10_1016_j_biomaterials_2012_06_003
crossref_primary_10_1016_j_abb_2014_05_003
crossref_primary_10_1101_gad_266551_115
crossref_primary_10_1371_journal_pone_0279584
crossref_primary_10_1089_ten_tea_2012_0233
crossref_primary_10_3892_mmr_2017_6178
crossref_primary_10_1177_0885328218763318
crossref_primary_10_1016_j_gene_2012_01_086
crossref_primary_10_1016_j_ejcb_2016_11_003
crossref_primary_10_1038_s41421_024_00689_6
crossref_primary_10_1002_jcp_30682
crossref_primary_10_1039_D0BM01496F
crossref_primary_10_1038_s41598_017_18753_5
crossref_primary_10_1515_hsz_2021_0290
crossref_primary_10_1089_ten_teb_2012_0672
crossref_primary_10_1016_j_mtbio_2022_100360
crossref_primary_10_3390_jfb14010036
crossref_primary_10_1002_jcb_24369
crossref_primary_10_3390_biom13050809
crossref_primary_10_1089_dna_2021_0206
crossref_primary_10_1016_S1286_935X_19_42130_8
crossref_primary_10_1038_s41598_019_53884_x
crossref_primary_10_1155_2015_421746
crossref_primary_10_1186_s12967_020_02504_8
crossref_primary_10_3233_BME_221406
crossref_primary_10_1126_scitranslmed_abl8146
crossref_primary_10_1016_S1762_827X_19_42712_0
crossref_primary_10_1021_acsami_7b15845
crossref_primary_10_1111_cbdd_13588
crossref_primary_10_1038_srep42841
crossref_primary_10_1016_j_mce_2013_05_017
crossref_primary_10_1016_j_aquaculture_2024_740865
crossref_primary_10_1186_s41232_017_0043_8
crossref_primary_10_1016_j_msec_2018_04_008
crossref_primary_10_1038_srep26298
Cites_doi 10.1210/endo.134.1.8275945
10.1083/jcb.200401138
10.1359/jbmr.1999.14.9.1522
10.1016/j.cytogfr.2005.01.001
10.1016/j.abb.2008.02.030
10.1074/jbc.275.13.9645
10.1002/jcb.21648
10.1210/endo.138.10.5425
10.1006/dbio.1994.1022
10.1038/ng0797-307
10.1074/jbc.M410148200
10.1002/jor.1100090504
10.1002/jcp.21080
10.1016/j.cytogfr.2005.01.007
10.1074/jbc.M500608200
10.1196/annals.1354.062
10.1101/gad.965702
10.1096/fj.08-106302
10.1074/jbc.M203250200
10.1634/stemcells.19-3-180
10.1074/jbc.M608995200
10.1101/gad.965602
10.1523/JNEUROSCI.0809-04.2004
10.1615/CritRevEukaryotGeneExpr.v14.i12.10
10.1101/gad.990702
10.2217/17460751.1.4.549
10.1006/cyto.1997.0209
10.1634/stemcells.22-5-849
10.1083/jcb.200610046
10.1083/jcb.127.6.1755
10.1073/pnas.0408742102
10.1101/gad.1482906
10.1359/jbmr.1999.14.5.700
10.1016/S8756-3282(98)00087-8
10.2217/17460751.1.4.539
10.1634/stemcells.2007-0637
10.1359/jbmr.070503
10.1074/jbc.M314323200
10.1016/S0378-1119(03)00748-0
10.1074/jbc.M805432200
10.1196/annals.1334.010
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
1XC
ADTPV
AOWAS
D95
DOI 10.1002/jcp.22152
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 515
ExternalDocumentID oai_lup_lub_lu_se_10758a48_550f_4fc5_b318_7f1762f849f6
oai_HAL_hal_01129484v1
10_1002_jcp_22152
20432451
JCP22152
ark_67375_WNG_MTBQ5N5X_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Etablissement Français du Sang (EFS, France)
  funderid: 2004‐08; 2005.11
– fundername: Integrated Project of the European Commission
  funderid: FP6 LSHB‐CT‐2003‐503161
– fundername: Association Rhumatisme et Travail (Hôpital Lariboisière, Paris, France)
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AETEA
G8K
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
1XC
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c5312-c1f590229de65f75b6b79eea7005134f52cf0ec17a7629b2eb5575722a9df9bc3
IEDL.DBID 33P
ISSN 0021-9541
1097-4652
IngestDate Tue Oct 01 22:50:35 EDT 2024
Tue Oct 15 15:50:46 EDT 2024
Thu Nov 21 22:29:51 EST 2024
Sat Sep 28 08:18:21 EDT 2024
Sat Aug 24 01:01:20 EDT 2024
Wed Oct 30 09:52:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords MESENCHYME
REGENERATION OSSEUSE
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5312-c1f590229de65f75b6b79eea7005134f52cf0ec17a7629b2eb5575722a9df9bc3
Notes istex:6610A36EED16FB689740C9744E62C5A993CAD693
Integrated Project of the European Commission - No. FP6 LSHB-CT-2003-503161
ark:/67375/WNG-MTBQ5N5X-Z
Zahia Hamidouche and Olivia Fromigué contributed equally to this work.
ArticleID:JCP22152
Etablissement Français du Sang (EFS, France) - No. 2004-08; No. 2005.11
Association Rhumatisme et Travail (Hôpital Lariboisière, Paris, France)
ORCID 0000-0003-4875-3434
PMID 20432451
PageCount 7
ParticipantIDs swepub_primary_oai_lup_lub_lu_se_10758a48_550f_4fc5_b318_7f1762f849f6
hal_primary_oai_HAL_hal_01129484v1
crossref_primary_10_1002_jcp_22152
pubmed_primary_20432451
wiley_primary_10_1002_jcp_22152_JCP22152
istex_primary_ark_67375_WNG_MTBQ5N5X_Z
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J. Cell. Physiol
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Marie PJ, Fromigue O. 2006. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1: 539-548.
Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. 2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275: 9645-9652.
Ge C, Xiao G, Jiang D, Franceschi RT. 2007. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176: 709-718.
Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I. 1994. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol 161: 218-228.
Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL. 1999. Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522-1535.
Ornitz DM, Marie PJ. 2002. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16: 1446-1465.
Marie PJ. 2008. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473: 98-105.
Marie PJ. 2003. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 316: 23-32.
Hamidouche Z, Hay E, Vaudin P, Charbord P, Schule R, Marie PJ, Fromigue O. 2008. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/{beta}-catenin signaling-dependent Runx2 expression. FASEB J 22: 3813-3822.
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI. 1999. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14: 700-709.
Etheridge SL, Spencer GJ, Heath DJ, Genever PG. 2004. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22: 849-860.
Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV. 1994. Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone. Endocrinology 134: 277-286.
Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. 2002. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16: 870-879.
Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA. 2005. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 102: 3324-3329.
Reinhold MI, Naski MC. 2007. Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J Biol Chem 282: 3653-3663.
Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE. 2005. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280: 20509-20515.
Eswarakumar VP, Lax I, Schlessinger J. 2005. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16: 139-149.
Liu Z, Xu J, Colvin JS, Ornitz DM. 2002. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16: 859-869.
Beak JY, Kang HS, Kim YS, Jetten AM. 2007. Kruppel-like zinc finger protein Glis3 promotes osteoblast differentiation by regulating FGF18 expression. J Bone Miner Res 22: 1234-1244.
Fromigue O, Marie PJ, Lomri A. 1997. Differential effects of transforming growth factor beta2, dexamethasone and 1,25-dihydroxyvitamin D on human bone marrow stromal cells. Cytokine 9: 613-623.
Gurok U, Steinhoff C, Lipkowitz B, Ropers HH, Scharff C, Nuber UA. 2004. Gene expression changes in the course of neural progenitor cell differentiation. J Neurosci 24: 5982-6002.
Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB. 2005. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280: 33132-33140.
Kassem M. 2006. Stem cells: Potential therapy for age-related diseases. Ann NY Acad Sci 1067: 436-442.
Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. 1997. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138: 4456-4462.
Hinoi E, Bialek P, Chen YT, Rached MT, Groner Y, Behringer RR, Ornitz DM, Karsenty G. 2006. Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev 20: 2937-2942.
Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL, Stein GS. 2004. Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 14: 1-41.
Pri-Chen S, Pitaru S, Lokiec F, Savion N. 1998. Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone-treated human bone marrow-derived bone-like cells in culture. Bone 23: 111-117.
Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ. 2009. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem 284: 4897-4904.
Gregory CA, Gunn WG, Reyes E, Smolarz AJ, Munoz J, Spees JL, Prockop DJ. 2005. How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann NY Acad Sci 1049: 97-106.
Baksh D, Tuan RS. 2007. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 212: 817-826.
Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127: 1755-1766.
Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G. 1997. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16: 307-310.
Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T. 2004. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166: 85-95.
Phinney DG, Prockop DJ. 2007. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25: 2896-2902.
Xiao L, Naganawa T, Obugunde E, Gronowicz G, Ornitz DM, Coffin JD, Hurley MM. 2004. Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem 279: 27743-27752.
Bianco P, Riminucci M, Gronthos S, Robey PG. 2001. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19: 180-192.
Kimelman N, Pelled G, Gazit Z, Gazit D. 2006. Applications of gene therapy and adult stem cells in bone bioengineering. Regen Med 1: 549-561.
Dailey L, Ambrosetti D, Mansukhani A, Basilico C. 2005. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16: 233-247.
Fromigue O, Hamidouche Z, Chateauvieux S, Charbord P, Marie PJ. 2008. Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma-derived mesenchymal stem cells. J Cell Biochem 104: 620-628.
Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA. 2003. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278: 1998-2007.
1994; 134
2002; 16
2004; 22
2004; 166
1997; 138
2003; 316
2007; 282
2004; 24
1999; 284
2006; 1067
2008; 104
2000; 275
2006; 1
2003; 278
1997; 9
1998; 23
2005; 280
2007; 212
1994; 127
2006; 20
2004; 279
2005; 102
2007; 176
2004; 14
1994; 161
1999; 14
2001; 19
1997; 16
2008; 22
2009; 284
2005; 16
2007; 22
2008; 473
2005; 1049
2007; 25
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 166
  start-page: 85
  year: 2004
  end-page: 95
  article-title: Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K‐Akt signaling
  publication-title: J Cell Biol
– volume: 1049
  start-page: 97
  year: 2005
  end-page: 106
  article-title: How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow
  publication-title: Ann NY Acad Sci
– volume: 22
  start-page: 3813
  year: 2008
  end-page: 3822
  article-title: FHL2 mediates dexamethasone‐induced mesenchymal cell differentiation into osteoblasts by activating Wnt/{beta}‐catenin signaling‐dependent Runx2 expression
  publication-title: FASEB J
– volume: 473
  start-page: 98
  year: 2008
  end-page: 105
  article-title: Transcription factors controlling osteoblastogenesis
  publication-title: Arch Biochem Biophys
– volume: 104
  start-page: 620
  year: 2008
  end-page: 628
  article-title: Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma‐derived mesenchymal stem cells
  publication-title: J Cell Biochem
– volume: 280
  start-page: 20509
  year: 2005
  end-page: 20515
  article-title: Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis
  publication-title: J Biol Chem
– volume: 176
  start-page: 709
  year: 2007
  end-page: 718
  article-title: Critical role of the extracellular signal‐regulated kinase‐MAPK pathway in osteoblast differentiation and skeletal development
  publication-title: J Cell Biol
– volume: 20
  start-page: 2937
  year: 2006
  end-page: 2942
  article-title: Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium
  publication-title: Genes Dev
– volume: 22
  start-page: 849
  year: 2004
  end-page: 860
  article-title: Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells
  publication-title: Stem Cells
– volume: 24
  start-page: 5982
  year: 2004
  end-page: 6002
  article-title: Gene expression changes in the course of neural progenitor cell differentiation
  publication-title: J Neurosci
– volume: 16
  start-page: 1446
  year: 2002
  end-page: 1465
  article-title: FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease
  publication-title: Genes Dev
– volume: 14
  start-page: 1
  year: 2004
  end-page: 41
  article-title: Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors
  publication-title: Crit Rev Eukaryot Gene Expr
– volume: 161
  start-page: 218
  year: 1994
  end-page: 228
  article-title: Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP‐2
  publication-title: Dev Biol
– volume: 19
  start-page: 180
  year: 2001
  end-page: 192
  article-title: Bone marrow stromal stem cells: Nature, biology, and potential applications
  publication-title: Stem Cells
– volume: 284
  start-page: 4897
  year: 2009
  end-page: 4904
  article-title: Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling
  publication-title: J Biol Chem
– volume: 25
  start-page: 2896
  year: 2007
  end-page: 2902
  article-title: Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair–current views
  publication-title: Stem Cells
– volume: 14
  start-page: 700
  year: 1999
  end-page: 709
  article-title: A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse
  publication-title: J Bone Miner Res
– volume: 23
  start-page: 111
  year: 1998
  end-page: 117
  article-title: Basic fibroblast growth factor enhances the growth and expression of the osteogenic phenotype of dexamethasone‐treated human bone marrow‐derived bone‐like cells in culture
  publication-title: Bone
– volume: 1
  start-page: 539
  year: 2006
  end-page: 548
  article-title: Osteogenic differentiation of human marrow‐derived mesenchymal stem cells
  publication-title: Regen Med
– volume: 1
  start-page: 549
  year: 2006
  end-page: 561
  article-title: Applications of gene therapy and adult stem cells in bone bioengineering
  publication-title: Regen Med
– volume: 16
  start-page: 307
  year: 1997
  end-page: 310
  article-title: Missense mutations abolishing DNA binding of the osteoblast‐specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia
  publication-title: Nat Genet
– volume: 279
  start-page: 27743
  year: 2004
  end-page: 27752
  article-title: Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts
  publication-title: J Biol Chem
– volume: 9
  start-page: 613
  year: 1997
  end-page: 623
  article-title: Differential effects of transforming growth factor beta2, dexamethasone and 1,25‐dihydroxyvitamin D on human bone marrow stromal cells
  publication-title: Cytokine
– volume: 1067
  start-page: 436
  year: 2006
  end-page: 442
  article-title: Stem cells: Potential therapy for age‐related diseases
  publication-title: Ann NY Acad Sci
– volume: 278
  start-page: 1998
  year: 2003
  end-page: 2007
  article-title: Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass
  publication-title: J Biol Chem
– volume: 275
  start-page: 9645
  year: 2000
  end-page: 9652
  article-title: Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen‐activated protein kinase
  publication-title: J Biol Chem
– volume: 134
  start-page: 277
  year: 1994
  end-page: 286
  article-title: Differentiation of human bone marrow osteogenic stromal cells in vitro: Induction of the osteoblast phenotype by dexamethasone
  publication-title: Endocrinology
– volume: 212
  start-page: 817
  year: 2007
  end-page: 826
  article-title: Canonical and non‐canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells
  publication-title: J Cell Physiol
– volume: 127
  start-page: 1755
  year: 1994
  end-page: 1766
  article-title: Bone morphogenetic protein‐2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage
  publication-title: J Cell Biol
– volume: 280
  start-page: 33132
  year: 2005
  end-page: 33140
  article-title: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression
  publication-title: J Biol Chem
– volume: 138
  start-page: 4456
  year: 1997
  end-page: 4462
  article-title: Fibroblast growth factor‐2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow
  publication-title: Endocrinology
– volume: 316
  start-page: 23
  year: 2003
  end-page: 32
  article-title: Fibroblast growth factor signaling controlling osteoblast differentiation
  publication-title: Gene
– volume: 16
  start-page: 139
  year: 2005
  end-page: 149
  article-title: Cellular signaling by fibroblast growth factor receptors
  publication-title: Cytokine Growth Factor Rev
– volume: 102
  start-page: 3324
  year: 2005
  end-page: 3329
  article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 233
  year: 2005
  end-page: 247
  article-title: Mechanisms underlying differential responses to FGF signaling
  publication-title: Cytokine Growth Factor Rev
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 14
  start-page: 1522
  year: 1999
  end-page: 1535
  article-title: Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein‐2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation
  publication-title: J Bone Miner Res
– volume: 22
  start-page: 1234
  year: 2007
  end-page: 1244
  article-title: Kruppel‐like zinc finger protein Glis3 promotes osteoblast differentiation by regulating FGF18 expression
  publication-title: J Bone Miner Res
– volume: 16
  start-page: 870
  year: 2002
  end-page: 879
  article-title: FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis
  publication-title: Genes Dev
– volume: 282
  start-page: 3653
  year: 2007
  end-page: 3663
  article-title: Direct interactions of Runx2 and canonical Wnt signaling induce FGF18
  publication-title: J Biol Chem
– volume: 16
  start-page: 859
  year: 2002
  end-page: 869
  article-title: Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18
  publication-title: Genes Dev
– ident: e_1_2_6_6_1
  doi: 10.1210/endo.134.1.8275945
– ident: e_1_2_6_14_1
  doi: 10.1083/jcb.200401138
– ident: e_1_2_6_17_1
  doi: 10.1359/jbmr.1999.14.9.1522
– ident: e_1_2_6_10_1
  doi: 10.1016/j.cytogfr.2005.01.001
– ident: e_1_2_6_31_1
  doi: 10.1016/j.abb.2008.02.030
– ident: e_1_2_6_23_1
  doi: 10.1074/jbc.275.13.9645
– ident: e_1_2_6_13_1
  doi: 10.1002/jcb.21648
– ident: e_1_2_6_33_1
  doi: 10.1210/endo.138.10.5425
– ident: e_1_2_6_41_1
  doi: 10.1006/dbio.1994.1022
– ident: e_1_2_6_27_1
  doi: 10.1038/ng0797-307
– ident: e_1_2_6_8_1
  doi: 10.1074/jbc.M410148200
– ident: e_1_2_6_38_1
  doi: 10.1002/jor.1100090504
– ident: e_1_2_6_2_1
  doi: 10.1002/jcp.21080
– ident: e_1_2_6_7_1
  doi: 10.1016/j.cytogfr.2005.01.007
– ident: e_1_2_6_15_1
  doi: 10.1074/jbc.M500608200
– ident: e_1_2_6_24_1
  doi: 10.1196/annals.1354.062
– ident: e_1_2_6_35_1
  doi: 10.1101/gad.965702
– ident: e_1_2_6_21_1
  doi: 10.1096/fj.08-106302
– ident: e_1_2_6_18_1
  doi: 10.1074/jbc.M203250200
– ident: e_1_2_6_5_1
  doi: 10.1634/stemcells.19-3-180
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.M608995200
– ident: e_1_2_6_29_1
  doi: 10.1101/gad.965602
– ident: e_1_2_6_20_1
  doi: 10.1523/JNEUROSCI.0809-04.2004
– ident: e_1_2_6_28_1
  doi: 10.1615/CritRevEukaryotGeneExpr.v14.i12.10
– ident: e_1_2_6_36_1
  doi: 10.1101/gad.990702
– ident: e_1_2_6_26_1
  doi: 10.2217/17460751.1.4.549
– ident: e_1_2_6_12_1
  doi: 10.1006/cyto.1997.0209
– ident: e_1_2_6_11_1
  doi: 10.1634/stemcells.22-5-849
– ident: e_1_2_6_16_1
  doi: 10.1083/jcb.200610046
– ident: e_1_2_6_25_1
  doi: 10.1083/jcb.127.6.1755
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.0408742102
– ident: e_1_2_6_22_1
  doi: 10.1101/gad.1482906
– ident: e_1_2_6_9_1
  doi: 10.1359/jbmr.1999.14.5.700
– ident: e_1_2_6_39_1
  doi: 10.1016/S8756-3282(98)00087-8
– ident: e_1_2_6_32_1
  doi: 10.2217/17460751.1.4.539
– ident: e_1_2_6_37_1
  doi: 10.1634/stemcells.2007-0637
– ident: e_1_2_6_3_1
  doi: 10.1359/jbmr.070503
– ident: e_1_2_6_42_1
  doi: 10.1074/jbc.M314323200
– ident: e_1_2_6_30_1
  doi: 10.1016/S0378-1119(03)00748-0
– ident: e_1_2_6_34_1
  doi: 10.1074/jbc.M805432200
– ident: e_1_2_6_19_1
  doi: 10.1196/annals.1334.010
SSID ssj0009933
Score 2.290548
Snippet The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The...
SourceID swepub
hal
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 509
SubjectTerms Animals
Autocrine Communication - drug effects
Basic Medicine
Cell and Molecular Biology
Cell Differentiation - drug effects
Cell Differentiation - genetics
Cell Line
Cell- och molekylärbiologi
Dexamethasone - pharmacology
Extracellular Signal-Regulated MAP Kinases - metabolism
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
Gene Expression Regulation, Developmental - drug effects
Gene Silencing - drug effects
Life Sciences
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - enzymology
Mesenchymal Stromal Cells - metabolism
Mice
Models, Biological
Osteogenesis - drug effects
Phosphatidylinositol 3-Kinases - metabolism
Receptor, Fibroblast Growth Factor, Type 1 - metabolism
Receptor, Fibroblast Growth Factor, Type 2 - metabolism
Signal Transduction - drug effects
Up-Regulation - drug effects
Title Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells
URI https://api.istex.fr/ark:/67375/WNG-MTBQ5N5X-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.22152
https://www.ncbi.nlm.nih.gov/pubmed/20432451
https://hal.science/hal-01129484
https://lup.lub.lu.se/record/1629063
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUhceOzyKC9ZCK24hG0cO67FqSxdKgTVIhax4mLZjk159KFtgrY3xC_gN_JLmLHbLD0gIXGIFCVO7IxnxjPOzDeEPKrAj7WF95lixma8CHlmgnGZdc5zhsF_BeY7D9_K0Unv-QBhcp6uc2ESPkS74YaSEfU1Crixi_1z0NDPbv6EYVVW0L_gJcT0jeLoHHB3VUY-hiAInq9Rhbpsv31yYy3aGmMk5EUk7tkfy9EKQHTTdo2Lz-HV_xr2NXJlZXPSfmKS6-SCn-6Q3f4U_O3Jku7RGAUat9d3yKVUnHK5S370m3rmMDmQBuhxZsHOrulHcNvrMU1lemjeozH1BOxVWvkzg_WoDVjw_tf3n-DsA9tUFLNIZsCmnxxdV2OpEz_QWaCTJvYwwSQoN15OYJwILU3xh8LiBnl3ODg-GGarig2ZA1lmmcsDwsEwVflSBClsaaXy3kiU_YIHwVzoepdLAzpYWeatAHNRMmZUFZR1xU2yPYVB3ibUBa5MIQrjrOLSKQPMVDjlbQkWjyx5hzxcz52eJ2AOnSCYmQYa60hjaASz2t5HKO1h_5XGa100NHmPf8s7ZC9OetvMnH7BcDcp9PvRC_36-NkbMRIn-kOH3Epc0bZkEdBQwCsGiU02uvrazOGwcOiFh5GBa2Z4T4NPGDQPTmgLClXLkAMxQo-rUHbI48g7f_8i_fLgKJ7c-femd8nlFPOAYYv3yHZ92vj7ZGtRNQ-izPwGcWwZQQ
link.rule.ids 230,315,782,786,887,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLboJsReuGxcytVCaOIlrHHsJJZ4KaOjQFcNUbSJF8t27JVLL1oTtL4hfgG_kV_COU7b0QckJB4iRYkTO_Z37HOcc75DyJMC7FiTOBdJpk3EEx9H2msbGWsdZ-j8l2C8c_d91j_JX3aQJuf5Mham5odYbbihZIT5GgUcN6T3LlhDP9vpM4ZpWRtkk6c8R0wnydEF5e4ikXxwQhA8XvIKtdje6tG11agxRF_ITeze8z8WpAWF6Lr2Gpafg2v_1_Dr5OpC7aTtGic3yCU33iY77TGY3KM53aXBETTssG-Ty3V-yvkO-dGuyonF-EDqocqJAVW7pKdguZdDWmfqoXFOQ_QJqKy0cOcaU1JrUOLdr-8_wd4H5BQUA0kmgNRPli4TspQ1JOjE01EVahhhHJQdzkfQTmSXpvhPYXaTfDjoDPa70SJpQ2RBnFlkY4-MMEwWLhU-EyY1mXROZyj-CfeCWd9yNs40TMPSMGcEaIwZY1oWXhqb3CIbY2jkHUKt51InItHWSJ5ZqQFPiZXOpKD0ZClvksfLwVPTmptD1SzMTEEfq9DHUAiGdXUf2bS77Z7Cay3UNXnOv8VNshtGfVVMn31Bj7dMqOP-K3U4ePFO9MWJ-tgkt2tYrEqywGko4BWdGidrVX2tpnAYONTMQcvAOtM8V2AWesW9FcrAnKoyH0Nn-JxLnzbJ0wCev3-RerN_FE7u_nvRR-RKd3DYU73X_bf3yFbtAoFejPfJRnlWuQekMSuqh0GAfgMifR1q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLboJtBeuGxcytVCaOIlrHHsJhZPZWspMKoihjbxYtmOvXLpRWuC1jfEL-A38ks4x2kz-oCExEOkKHFixz7H_o5zzncIeZKDHWsS5yLJtIl44uNIe20jY63jDJ3_Eox37r9PByfZQRdpcp6vYmEqfoh6ww01I8zXqOCz3O9dkIZ-trNnDLOyNsgmBxiO_nxJMrxg3F3mkQ8-CILHK1qhFturH11bjBojdIXcxN49_2M9WjKIroPXsPr0rv1Xu6-Tq0vQSTuVlNwgl9xkm-x0JmBwjxd0lwY30LC_vk0uV9kpFzvkR6csphajA6mHGqcGgHZBT8FuL0a0ytND44yG2BMArDR35xoTUmuA8O7X959g7YPc5BTDSKYgp58sXaVjKSqBoFNPx2WoYYxRUHa0GEM7kVua4h-F-U3yodc92u9Hy5QNkQVlZpGNPfLBMJm7tvCpMG2TSud0isqfcC-Y9S1n41TDJCwNc0YAXkwZ0zL30tjkFtmYQCPvEGo9lzoRibZG8tRKDdKUWOlMGyBP2uZN8ng1dmpWMXOoioOZKehjFfoYCsGo1veRS7vfOVR4rYVIk2f8W9wku2HQ62L67Av6u6VCHQ9eqrdHL96JgThRH5vkdiUVdUkWGA0FvKJbiclaVV_LGRwGDjV30DKwzTTPFBiFXnFvhTIwo6rUx9AZPuPSt5vkaZCdv3-Rer0_DCd3_73oI3JleNBTh68Gb-6Rrcr_AV0Y75ON4qx0D0hjnpcPg_r8BpYjHBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autocrine+fibroblast+growth+factor+18+mediates+dexamethasone%E2%80%90induced+osteogenic+differentiation+of+murine+mesenchymal+stem+cells&rft.jtitle=Journal+of+cellular+physiology&rft.au=Hamidouche%2C+Zahia&rft.au=Fromigu%C3%A9%2C+Olivia&rft.au=Nuber%2C+Ulrike&rft.au=Vaudin%2C+Pascal&rft.date=2010-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=224&rft.issue=2&rft.spage=509&rft.epage=515&rft_id=info:doi/10.1002%2Fjcp.22152&rft.externalDBID=10.1002%252Fjcp.22152&rft.externalDocID=JCP22152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon