Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam
This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam,...
Saved in:
Published in: | Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering Vol. 51; no. 3; pp. 267 - 275 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Taylor & Francis
23-02-2016
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1093-4529 1532-4117 |
DOI: | 10.1080/10934529.2015.1094351 |