3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration

Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science Vol. 10; no. 12; pp. e2205744 - n/a
Main Authors: Fang, Yongcong, Wang, Chengjin, Liu, Zibo, Ko, Jeonghoon, Chen, Li, Zhang, Ting, Xiong, Zhuo, Zhang, Lei, Sun, Wei
Format: Journal Article
Language:English
Published: Germany John Wiley & Sons, Inc 01-04-2023
John Wiley and Sons Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC (MF‐NGC) consisting of electrospun poly(lactide‐co‐caprolactone) (PCL)/collagen nanofibers as the sheath, reduced graphene oxide /PCL microfibers as the backbone, and PCL microfibers as the internal structure for peripheral nerve regeneration is developed. The printed MF‐NGCs presented good permeability, mechanical stability, and electrical conductivity, which further promoted the elongation and growth of Schwann cells and neurite outgrowth of PC12 neuronal cells. Animal studies using a rat sciatic nerve injury model reveal that the MF‐NGCs promote neovascularization and M2 transition through the rapid recruitment of vascular cells and macrophages. Histological and functional assessments of the regenerated nerves confirm that the conductive MF‐NGCs significantly enhance peripheral nerve regeneration, as indicated by improved axon myelination, muscle weight increase, and sciatic nerve function index. This study demonstrates the feasibility of using 3D‐printed conductive MF‐NGCs with hierarchically oriented fibers as functional conduits that can significantly enhance peripheral nerve regeneration. A conductive multiscale nerve guidance conduit is employed in treating peripheral nerve injuries by integrating multiscale and multifunctional biomaterials with advanced 3D printing. The printed nerve guidance conduit promotes the growth of neuronal cells, facilitates neovascularization and M2 transition of macrophages, ultimately enhancing peripheral nerve regeneration and providing an innovative clinical treatment strategy from the tissue‐engineering perspective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202205744