Monitoring the Remodeling of Biohybrid Tissue‐Engineered Vascular Grafts by Multimodal Molecular Imaging

Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imagin...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science Vol. 9; no. 10; pp. e2105783 - n/a
Main Authors: Rama, Elena, Mohapatra, Saurav Ranjan, Melcher, Christoph, Nolte, Teresa, Dadfar, Seyed Mohammadali, Brueck, Ramona, Pathak, Vertika, Rix, Anne, Gries, Thomas, Schulz, Volkmar, Lammers, Twan, Apel, Christian, Jockenhoevel, Stefan, Kiessling, Fabian
Format: Journal Article
Language:English
Published: Germany John Wiley & Sons, Inc 01-04-2022
John Wiley and Sons Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Noninvasive imaging modalities are fundamental to control the remodeling and function of biohybrid tissue‐engineered vascular grafts, which is particularly true for the critical transition time between late in vitro maturation and early in vivo engraftment. Here, a noninvasive multimodal, molecular imaging concept is presented to longitudinally monitor textile scaffold resorption, extracellular matrix remodeling, and endothelial inflammation.
AbstractList Abstract Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of α β integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐ co ‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of α v β 3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐ α . In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Noninvasive imaging modalities are fundamental to control the remodeling and function of biohybrid tissue‐engineered vascular grafts, which is particularly true for the critical transition time between late in vitro maturation and early in vivo engraftment. Here, a noninvasive multimodal, molecular imaging concept is presented to longitudinally monitor textile scaffold resorption, extracellular matrix remodeling, and endothelial inflammation.
Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of αv β3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of αv β3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Noninvasive imaging modalities are fundamental to control the remodeling and function of biohybrid tissue‐engineered vascular grafts, which is particularly true for the critical transition time between late in vitro maturation and early in vivo engraftment. Here, a noninvasive multimodal, molecular imaging concept is presented to longitudinally monitor textile scaffold resorption, extracellular matrix remodeling, and endothelial inflammation.
Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐ co ‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of α v β 3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐ α . In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Author Jockenhoevel, Stefan
Mohapatra, Saurav Ranjan
Dadfar, Seyed Mohammadali
Brueck, Ramona
Nolte, Teresa
Rama, Elena
Apel, Christian
Kiessling, Fabian
Rix, Anne
Gries, Thomas
Lammers, Twan
Schulz, Volkmar
Melcher, Christoph
Pathak, Vertika
AuthorAffiliation 2 Department of Biohybrid & Medical Textiles Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany
3 Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany
1 Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany
AuthorAffiliation_xml – name: 2 Department of Biohybrid & Medical Textiles Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany
– name: 1 Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany
– name: 3 Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany
Author_xml – sequence: 1
  givenname: Elena
  orcidid: 0000-0002-4445-3541
  surname: Rama
  fullname: Rama, Elena
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 2
  givenname: Saurav Ranjan
  surname: Mohapatra
  fullname: Mohapatra, Saurav Ranjan
  organization: Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 3
  givenname: Christoph
  surname: Melcher
  fullname: Melcher, Christoph
  organization: Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 4
  givenname: Teresa
  surname: Nolte
  fullname: Nolte, Teresa
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 5
  givenname: Seyed Mohammadali
  surname: Dadfar
  fullname: Dadfar, Seyed Mohammadali
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 6
  givenname: Ramona
  surname: Brueck
  fullname: Brueck, Ramona
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 7
  givenname: Vertika
  surname: Pathak
  fullname: Pathak, Vertika
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 8
  givenname: Anne
  surname: Rix
  fullname: Rix, Anne
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 9
  givenname: Thomas
  surname: Gries
  fullname: Gries, Thomas
  organization: Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 10
  givenname: Volkmar
  surname: Schulz
  fullname: Schulz, Volkmar
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 11
  givenname: Twan
  surname: Lammers
  fullname: Lammers, Twan
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 12
  givenname: Christian
  surname: Apel
  fullname: Apel, Christian
  organization: Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 13
  givenname: Stefan
  surname: Jockenhoevel
  fullname: Jockenhoevel, Stefan
  organization: Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55
– sequence: 14
  givenname: Fabian
  orcidid: 0000-0002-7341-0399
  surname: Kiessling
  fullname: Kiessling, Fabian
  email: fkiessling@ukaachen.de
  organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35119216$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNUREvpliWKxIbNDL7Esb1BKqWUkTpCgtKtZTsnMx45cWsnRbPjEXhGngQPKaOWDStfznc-HVv_8-KgDz0UxUuM5hgh8lY3d2lOEMGIcUGfFEcESzGjoqoOHuwPi5OUNgghzCivsHhWHFKGsSS4Pio2y9C7IUTXr8phDeUX6EIDfncMbfnehfXWRNeUVy6lEX79-Hner1wPEKEpr3Wyo9exvIi6HVJptuVy9IPLBu3LZfAwlRedzj2rF8XTVvsEJ_frcfHt4_nV2afZ5eeLxdnp5cwykke2xOqWNRVnvGoBGga1ZgSalkpLK8OFkRUS1HCtQQrGG24MazEiSGKuDdDjYjF5m6A36ia6TsetCtqpPxchrpSOg7MeVC1Ya4jGpM5SUVtJGLeGI6EFaqXm2fVuct2MpoPGQj9E7R9JH1d6t1arcKeEFFhImgVv7gUx3I6QBtW5ZMF73UMYkyI1qREWpJYZff0Puglj7PNXZaqqJeKZzdR8omwMKUVo98NgpHapULtUqH0qcsOrh0_Y438zkIFqAr47D9v_6NTph-uvlNWC_gYCWMcq
CitedBy_id crossref_primary_10_3390_molecules27092757
crossref_primary_10_1002_smll_202205630
crossref_primary_10_1002_wnan_1800
crossref_primary_10_1007_s13770_022_00482_0
crossref_primary_10_1016_j_giant_2024_100259
crossref_primary_10_1002_adhm_202300991
crossref_primary_10_1007_s12274_023_6158_0
crossref_primary_10_1021_acsnano_2c07300
crossref_primary_10_1016_j_eng_2024_01_030
crossref_primary_10_1002_wnan_1919
crossref_primary_10_1002_adhm_202302687
crossref_primary_10_1021_acsanm_4c01546
crossref_primary_10_1016_j_biomaterials_2024_122669
Cites_doi 10.1155/2013/390518
10.1016/j.actbio.2014.10.029
10.3109/15419069409014198
10.1097/RLI.0b013e31815a251b
10.1089/ten.tec.2013.0041
10.3109/02656736.2014.997809
10.1016/j.crad.2010.04.006
10.1088/1748-6041/6/5/055001
10.1016/S0945-053X(00)00080-9
10.1016/j.jacc.2019.10.009
10.1016/j.cub.2020.06.027
10.1016/j.biomaterials.2010.02.006
10.1016/j.biomaterials.2007.07.017
10.1016/j.cellsig.2019.109364
10.1002/anie.200700700
10.1016/S0741-5214(94)70127-X
10.1007/s10439-006-9099-3
10.1165/rcmb.2013-0039OC
10.3390/ijms21207541
10.1002/mabi.201700002
10.1039/C5NR01651G
10.1161/ATVBAHA.109.193185
10.1039/C5RA27791D
10.1021/acs.chemmater.6b04649
10.1172/JCI117718
10.1515/CCLM.2004.082
10.1016/j.biomaterials.2004.07.034
10.1007/s12221-012-0685-8
10.1016/j.ceb.2006.12.013
10.1096/fsb2fasebj.12.1.47
10.1161/CIR.0b013e3182009701
10.1006/excr.1994.1282
10.1002/jbm.a.10599
10.2741/1313
10.1016/j.cardiores.2007.04.018
10.1161/ATVBAHA.117.309503
10.1016/j.biomaterials.2021.120896
10.3390/nano10101935
10.2967/jnumed.113.128173
10.1242/dev.145672
10.1016/S0945-053X(03)00052-0
10.1089/ten.2006.12.2765
10.1097/RLI.0000000000000282
10.1016/j.biomaterials.2010.02.051
10.1055/s-0037-1615250
10.1016/j.jcmg.2011.06.019
10.1038/nrm2820
10.1177/1535370212473700
10.1161/ATVBAHA.114.304857
10.1016/j.jacc.2020.11.010
10.1016/j.biomaterials.2012.06.018
10.1093/eurheartj/ehq413
10.1016/j.biomaterials.2019.119228
10.1007/s00403-006-0713-x
10.1172/JCI13005
10.1152/ajpcell.00064.2002
10.1021/acsomega.9b01544
10.1182/blood-2014-06-528406
10.1016/j.ijcard.2013.07.165
10.1016/j.biomaterials.2005.06.024
10.1007/978-3-030-05336-9_13
10.1039/C8NR00703A
10.3390/polym3031377
10.1016/j.biomaterials.2014.10.076
10.3389/fbioe.2019.00340
10.1038/nm.2310
10.1038/s41598-021-90092-y
10.1016/j.biomaterials.2004.04.036
10.1016/j.coph.2014.08.002
10.1263/jbb.106.515
10.1593/neo.09540
10.1002/adfm.201301275
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202105783
DatabaseName Wiley Online Library
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_685fb2a126b9486c9257cb708a80f9a7
10_1002_advs_202105783
35119216
ADVS3568
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
– fundername: German Research Foundation in the Package Proposals PAK 961
  funderid: 403039938
– fundername: German Research Foundation in the Package Proposals PAK 961
  grantid: 403039938
– fundername: ;
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
CGR
CUY
CVF
ECM
EIF
EJD
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5298-c2caf5d47574feed5e6a52edf39c34b78b94083b7aae9857d7bb5f1020917abe3
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Oct 22 15:15:31 EDT 2024
Tue Sep 17 21:12:56 EDT 2024
Sat Oct 26 04:12:59 EDT 2024
Thu Oct 10 18:28:24 EDT 2024
Thu Nov 21 23:06:11 EST 2024
Sat Nov 02 11:57:22 EDT 2024
Sat Aug 24 00:55:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords poly(lactic-co-glycolic acid)
superparamagnetic iron-oxide nanoparticles
tissue-engineering
molecular imaging
αvβ3 integrins
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5298-c2caf5d47574feed5e6a52edf39c34b78b94083b7aae9857d7bb5f1020917abe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7341-0399
0000-0002-4445-3541
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981893/
PMID 35119216
PQID 2646907626
PQPubID 4365299
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_685fb2a126b9486c9257cb708a80f9a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8981893
proquest_miscellaneous_2626018269
proquest_journals_2646907626
crossref_primary_10_1002_advs_202105783
pubmed_primary_35119216
wiley_primary_10_1002_advs_202105783_ADVS3568
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 35
2010; 11
1990; 10
2015; 39
1994; 214
2019; 11
2015; 31
2004; 26
2013; 168
2014; 24
2008; 106
1998; 80
2020; 10
2005; 26
2011; 17
2007; 75
2012; 13
2001; 107
2007; 35
2014; 20
2007; 28
2009; 11
2010; 65
2013; 2013
2019; 63
2006; 27
2007; 298
2013; 238
2014; 18
2021; 275
2011; 123
1998; 12
2018; 38
2014; 55
2019; 7
2015; 12
1995; 95
2007; 19
2010; 31
2004; 42
2019; 4
2013; 49
2006; 12
2019; 74
2015; 125
2000; 22
2016; 51
2011; 32
2017; 29
2020; 76
2011; 4
2011; 3
2011; 6
2012; 33
2015; 7
2009; 29
2016; 6
2021; 11
1994; 19
2020; 30
2002; 283
2017; 17
2020
2019; 138
2016
2008; 43
2019; 216
2020; 21
2017; 144
2018; 10
1994; 2
2007; 46
2003; 22
2003; 67
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Appold L. (e_1_2_8_62_1) 2017; 17
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Sutcliffe M. C. (e_1_2_8_48_1) 1990; 10
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Talacua H. (e_1_2_8_58_1) 2016
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Mohammadali S. (e_1_2_8_72_1) 2019; 138
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Sun Q. (e_1_2_8_55_1) 2019; 11
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 3
  start-page: 1377
  year: 2011
  publication-title: Polymers
– volume: 10
  start-page: 148
  year: 1990
  publication-title: Matrix Collagen Relat. Res.
– volume: 20
  start-page: 177
  year: 2014
  publication-title: Tissue Eng., Part C Methods
– volume: 55
  start-page: 392
  year: 2014
  publication-title: J. Nucl. Med.
– volume: 31
  start-page: 4672
  year: 2010
  publication-title: Biomaterials
– volume: 10
  start-page: 8226
  year: 2018
  publication-title: Nanoscale
– volume: 4
  start-page: 1171
  year: 2011
  publication-title: JACC Cardiovasc. Imaging
– volume: 10
  start-page: 1935
  year: 2020
  publication-title: Nanomaterials
– volume: 65
  start-page: 557
  year: 2010
  publication-title: Clin. Radiol.
– volume: 63
  year: 2019
  publication-title: Cell. Signalling
– volume: 29
  start-page: 2125
  year: 2009
  publication-title: Arterioscler., Thromb., Vasc. Biol.
– volume: 42
  start-page: 475
  year: 2004
  publication-title: Clin. Chem. Lab. Med.
– volume: 38
  start-page: 40
  year: 2018
  publication-title: Arterioscler., Thromb., Vasc. Biol.
– volume: 22
  start-page: 339
  year: 2003
  publication-title: Matrix Biol.
– volume: 12
  start-page: 47
  year: 1998
  publication-title: FASEB J.
– volume: 125
  start-page: 2019
  year: 2015
  publication-title: Blood
– volume: 238
  start-page: 176
  year: 2013
  publication-title: Exp. Biol. Med.
– volume: 7
  start-page: 340
  year: 2019
  publication-title: Front. Bioeng. Biotechnol.
– volume: 138
  start-page: 302
  year: 2019
  publication-title: J., Nanobiotechnol.
– volume: 17
  start-page: 1
  year: 2017
  publication-title: Macromol. Biosci.
– volume: 106
  start-page: 515
  year: 2008
  publication-title: J. Biosci. Bioeng.
– volume: 49
  start-page: 1120
  year: 2013
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 67
  start-page: 295
  year: 2003
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 80
  start-page: 726
  year: 1998
  publication-title: Thromb. Haemostasis
– volume: 21
  start-page: 7541
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 29
  start-page: 2669
  year: 2017
  publication-title: Chem. Mater.
– volume: 31
  start-page: 90
  year: 2015
  publication-title: Int. J. Hyperthermia
– volume: 26
  start-page: 1422
  year: 2004
  publication-title: Front. Biosci.
– volume: 26
  start-page: 2559
  year: 2005
  publication-title: Biomaterials
– volume: 2
  start-page: 7
  year: 1994
  publication-title: Cell Commun. Adhes.
– volume: 11
  start-page: 856
  year: 2009
  publication-title: Neoplasia
– volume: 19
  start-page: 125
  year: 1994
  publication-title: J. Vasc. Surg.
– volume: 75
  start-page: 618
  year: 2007
  publication-title: Cardiovasc. Res.
– volume: 11
  start-page: 1
  year: 2019
  publication-title: Sci. Transl. Med.
– volume: 74
  start-page: 2529
  year: 2019
  publication-title: J. Am. Coll. Cardiol.
– volume: 31
  start-page: 4731
  year: 2010
  publication-title: Biomaterials
– volume: 19
  start-page: 43
  year: 2007
  publication-title: Curr. Opin. Cell Biol.
– volume: 12
  start-page: 2765
  year: 2006
  publication-title: Tissue Eng.
– volume: 51
  start-page: 767
  year: 2016
  publication-title: Invest. Radiol.
– volume: 11
  year: 2021
  publication-title: Sci. Rep.
– volume: 35
  start-page: 190
  year: 2007
  publication-title: Ann. Biomed. Eng.
– volume: 24
  start-page: 754
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 144
  start-page: 869
  year: 2017
  publication-title: Development
– volume: 283
  start-page: C1196
  year: 2002
  publication-title: Am. J. Physiol. ‐ Cell Physiol.
– volume: 95
  start-page: 713
  year: 1995
  publication-title: J. Clin. Invest.
– volume: 6
  year: 2011
  publication-title: Biomed. Mater.
– volume: 168
  start-page: 5028
  year: 2013
  publication-title: Int. J. Cardiol.
– year: 2016
– volume: 43
  start-page: 162
  year: 2008
  publication-title: Invest. Radiol.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 11
  start-page: 50
  year: 2010
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 22
  start-page: 353
  year: 2000
  publication-title: Matrix Biol.
– volume: 2013
  start-page: 1
  year: 2013
  publication-title: Biomed Res. Int.
– volume: 17
  start-page: 383
  year: 2011
  publication-title: Nat. Med.
– volume: 4
  year: 2019
  publication-title: ACS Omega
– volume: 32
  start-page: 1561
  year: 2011
  publication-title: Eur. Heart J.
– volume: 216
  year: 2019
  publication-title: Biomaterials
– volume: 33
  start-page: 6604
  year: 2012
  publication-title: Biomaterials
– volume: 39
  start-page: 155
  year: 2015
  publication-title: Biomaterials
– volume: 28
  start-page: 5009
  year: 2007
  publication-title: Biomaterials
– volume: 18
  start-page: 18
  year: 2014
  publication-title: Curr. Opin. Pharmacol.
– volume: 107
  start-page: 1209
  year: 2001
  publication-title: J. Clin. Invest.
– volume: 27
  start-page: 724
  year: 2006
  publication-title: Biomaterials
– volume: 275
  year: 2021
  publication-title: Biomaterials
– volume: 46
  start-page: 8171
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 146
  year: 2015
  publication-title: Acta Biomater.
– volume: 30
  start-page: 3316
  year: 2020
  publication-title: Curr. Biol.
– year: 2020
– volume: 26
  start-page: 1405
  year: 2005
  publication-title: Biomaterials
– volume: 13
  start-page: 685
  year: 2012
  publication-title: Fibers Polym.
– volume: 298
  start-page: 413
  year: 2007
  publication-title: Arch. Dermatol. Res.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 35
  start-page: 1366
  year: 2015
  publication-title: Arterioscler., Thromb., Vasc. Biol.
– volume: 76
  start-page: 2982
  year: 2020
  publication-title: J. Am. Coll. Cardiol.
– volume: 214
  start-page: 459
  year: 1994
  publication-title: Exp. Cell Res.
– volume: 123
  start-page: 18
  year: 2011
  publication-title: Circulation
– ident: e_1_2_8_8_1
  doi: 10.1155/2013/390518
– ident: e_1_2_8_34_1
  doi: 10.1016/j.actbio.2014.10.029
– ident: e_1_2_8_65_1
  doi: 10.3109/15419069409014198
– ident: e_1_2_8_74_1
  doi: 10.1097/RLI.0b013e31815a251b
– ident: e_1_2_8_57_1
  doi: 10.1089/ten.tec.2013.0041
– ident: e_1_2_8_13_1
  doi: 10.3109/02656736.2014.997809
– ident: e_1_2_8_12_1
  doi: 10.1016/j.crad.2010.04.006
– ident: e_1_2_8_9_1
  doi: 10.1088/1748-6041/6/5/055001
– volume-title: In Situ Cardiovascular Tissue Engineering
  year: 2016
  ident: e_1_2_8_58_1
  contributor:
    fullname: Talacua H.
– ident: e_1_2_8_24_1
  doi: 10.1016/S0945-053X(00)00080-9
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jacc.2019.10.009
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cub.2020.06.027
– ident: e_1_2_8_59_1
  doi: 10.1016/j.biomaterials.2010.02.006
– ident: e_1_2_8_7_1
  doi: 10.1016/j.biomaterials.2007.07.017
– ident: e_1_2_8_46_1
  doi: 10.1016/j.cellsig.2019.109364
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.200700700
– ident: e_1_2_8_39_1
  doi: 10.1016/S0741-5214(94)70127-X
– ident: e_1_2_8_37_1
  doi: 10.1007/s10439-006-9099-3
– ident: e_1_2_8_56_1
  doi: 10.1165/rcmb.2013-0039OC
– ident: e_1_2_8_22_1
  doi: 10.3390/ijms21207541
– volume: 17
  start-page: 1
  year: 2017
  ident: e_1_2_8_62_1
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201700002
  contributor:
    fullname: Appold L.
– ident: e_1_2_8_73_1
  doi: 10.1039/C5NR01651G
– ident: e_1_2_8_67_1
  doi: 10.1161/ATVBAHA.109.193185
– ident: e_1_2_8_18_1
  doi: 10.1039/C5RA27791D
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.chemmater.6b04649
– volume: 11
  start-page: 1
  year: 2019
  ident: e_1_2_8_55_1
  publication-title: Sci. Transl. Med.
  contributor:
    fullname: Sun Q.
– ident: e_1_2_8_41_1
  doi: 10.1172/JCI117718
– ident: e_1_2_8_64_1
  doi: 10.1515/CCLM.2004.082
– ident: e_1_2_8_21_1
  doi: 10.1016/j.biomaterials.2004.07.034
– ident: e_1_2_8_17_1
  doi: 10.1007/s12221-012-0685-8
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ceb.2006.12.013
– ident: e_1_2_8_31_1
  doi: 10.1096/fsb2fasebj.12.1.47
– ident: e_1_2_8_3_1
  doi: 10.1161/CIR.0b013e3182009701
– ident: e_1_2_8_40_1
  doi: 10.1006/excr.1994.1282
– ident: e_1_2_8_29_1
  doi: 10.1002/jbm.a.10599
– ident: e_1_2_8_35_1
  doi: 10.2741/1313
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cardiores.2007.04.018
– ident: e_1_2_8_71_1
  doi: 10.1161/ATVBAHA.117.309503
– ident: e_1_2_8_76_1
  doi: 10.1016/j.biomaterials.2021.120896
– ident: e_1_2_8_14_1
  doi: 10.3390/nano10101935
– ident: e_1_2_8_6_1
  doi: 10.2967/jnumed.113.128173
– ident: e_1_2_8_68_1
  doi: 10.1242/dev.145672
– ident: e_1_2_8_23_1
  doi: 10.1016/S0945-053X(03)00052-0
– ident: e_1_2_8_53_1
  doi: 10.1089/ten.2006.12.2765
– ident: e_1_2_8_42_1
  doi: 10.1097/RLI.0000000000000282
– ident: e_1_2_8_30_1
  doi: 10.1016/j.biomaterials.2010.02.051
– ident: e_1_2_8_44_1
  doi: 10.1055/s-0037-1615250
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jcmg.2011.06.019
– ident: e_1_2_8_20_1
  doi: 10.1038/nrm2820
– ident: e_1_2_8_70_1
  doi: 10.1177/1535370212473700
– ident: e_1_2_8_61_1
  doi: 10.1161/ATVBAHA.114.304857
– volume: 10
  start-page: 148
  year: 1990
  ident: e_1_2_8_48_1
  publication-title: Matrix Collagen Relat. Res.
  contributor:
    fullname: Sutcliffe M. C.
– ident: e_1_2_8_1_1
  doi: 10.1016/j.jacc.2020.11.010
– ident: e_1_2_8_11_1
  doi: 10.1016/j.biomaterials.2012.06.018
– ident: e_1_2_8_54_1
  doi: 10.1093/eurheartj/ehq413
– ident: e_1_2_8_4_1
  doi: 10.1016/j.biomaterials.2019.119228
– ident: e_1_2_8_19_1
  doi: 10.1007/s00403-006-0713-x
– ident: e_1_2_8_66_1
  doi: 10.1172/JCI13005
– ident: e_1_2_8_43_1
  doi: 10.1152/ajpcell.00064.2002
– ident: e_1_2_8_63_1
  doi: 10.1021/acsomega.9b01544
– ident: e_1_2_8_69_1
  doi: 10.1182/blood-2014-06-528406
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ijcard.2013.07.165
– ident: e_1_2_8_25_1
  doi: 10.1016/j.biomaterials.2005.06.024
– ident: e_1_2_8_36_1
  doi: 10.1007/978-3-030-05336-9_13
– ident: e_1_2_8_50_1
  doi: 10.1039/C8NR00703A
– volume: 138
  start-page: 302
  year: 2019
  ident: e_1_2_8_72_1
  publication-title: J., Nanobiotechnol.
  contributor:
    fullname: Mohammadali S.
– ident: e_1_2_8_10_1
  doi: 10.3390/polym3031377
– ident: e_1_2_8_15_1
  doi: 10.1016/j.biomaterials.2014.10.076
– ident: e_1_2_8_33_1
  doi: 10.3389/fbioe.2019.00340
– ident: e_1_2_8_27_1
  doi: 10.1038/nm.2310
– ident: e_1_2_8_28_1
  doi: 10.1038/s41598-021-90092-y
– ident: e_1_2_8_38_1
  doi: 10.1016/j.biomaterials.2004.04.036
– ident: e_1_2_8_49_1
  doi: 10.1016/j.coph.2014.08.002
– ident: e_1_2_8_60_1
  doi: 10.1263/jbb.106.515
– ident: e_1_2_8_75_1
  doi: 10.1593/neo.09540
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201301275
SSID ssj0001537418
Score 2.3690212
Snippet Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic...
Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic...
Abstract Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2105783
SubjectTerms Biocompatibility
Biodegradation
Blood Vessel Prosthesis
Collagen
Extracellular Matrix
Magnetic resonance imaging
Molecular Imaging
Nanoparticles
poly(lactic‐co‐glycolic acid)
Prostheses
superparamagnetic iron‐oxide nanoparticles
Synthetic products
Tissue Engineering - methods
tissue‐engineering
Transplants & implants
Ultrasonic imaging
αvβ3 integrins
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BT1wQ5RkoyEhIwCFq1m8fKbTAAQ60IG6Rn2orkUXdLlJv_AR-I7-EsZ1EXYHUC8fEduzMQ56xZ74BeKasE0YkdFMTcy1n0rdOS94ugtKBcS-5K0cXh-rjV_1mP8PkzKW-ckxYhQeuhNuVWiRH7YJKZ7iW3qCMeac6bXWXjK155J285EzV_GCWYVkmlMaO7trwI6Nz01zXVrONXaiA9f_Lwvw7UPKyAVt2oINbcHM0HcmruuRtuBaH27A9KueKvBgRpF_egdOqqfnIjqCBRz7FUvAmPy4T2TtZHl_kRC1yVKj---evCZUwBvJlDE0lb89sOl8Rd0FKki5-ASf_MFXTJe-_lfpGd-Hzwf7R63ftWFSh9YIa3XrqbRKBK6F4wg1SRGkFjSEx4xl3SiOZ0SxzytpotFBBOYe8RKsSHTvrIrsHW8NyiA-AcBdwEBWOLyxXEcWBSRMjlyEl7zvXwPOJyP33ip3RV5Rk2md29DM7GtjLPJh7Zczr8gIloR8lob9KEhrYmTjYj4qIU8ji_6Pb1sDTuRlVKN-L2CEu17lPxlVDP8s0cL8yfF5JuWelCxytNkRhY6mbLcPJcYHp1gaNIYP_1hahuYIEPZohh0xI_fB_0OIR3KA5T6OEGO3A1vnZOj6G66uwflIU5Q_1YBkK
  priority: 102
  providerName: Directory of Open Access Journals
Title Monitoring the Remodeling of Biohybrid Tissue‐Engineered Vascular Grafts by Multimodal Molecular Imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202105783
https://www.ncbi.nlm.nih.gov/pubmed/35119216
https://www.proquest.com/docview/2646907626
https://www.proquest.com/docview/2626018269
https://pubmed.ncbi.nlm.nih.gov/PMC8981893
https://doaj.org/article/685fb2a126b9486c9257cb708a80f9a7
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6RnrggytPQVouEBBzcJOt9HmlpgUMRogVxs_bZBhGnSppKvfET-I38EmbXdpQIJCSOttfe0c6Md2Z25huA59JYrnlENzVWtmSVcKVVgpVjL5WvmBPM5tDFqfzwVb05SjA5vK-FyUn7zk72m-_T_WZykXMrL6du2OeJDT-eHCqN24yuhgMYoG245qK3pcFVQmTpARpHdGj8dQLmpqmlrUqNc_LhGU0tztf2ogzZ_zc78890yXUzNu9Dx3fhTmdAktctodtwKzT3YLtT0QV52eFIv7oP31p9TYE7gmYe-RRy25t0OYvkYDK7uEnlWuQsr_2vHz97bMLgyZcuQZW8nZt4tSD2huRSXfwCTn7S99Ql76e5y9ED-Hx8dHb4ruxaK5SOU61KR52J3DPJJYu4TfIgDKfBx0q7ilmprGZonFlpTNCKSy-tRY6ibYnunbGheghbzawJj4Ew6_Elyi0bGyYDCkUldAhM-BidG9kCXvSLXF-2CBp1i5VM68SZesWZAg4SD1ajEvJ1vjGbn9cd_2uheLTUjKlAEpVwGv85zsqRMmoUtZEF7PQcrDt1xClEjgKg81bAs9VjVKR0OmKaMFumMQldDb0tXcCjluErSnqBKUBuiMIGqZtPUHYzWHcnqwWUWWj-sQQ1GiOnFRfqyX_P9BRu01SikbOLdmDrar4MuzBY-OVeDjjsZXX5DV6zGxs
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZoOcClUH5KoICRkIBDuln_-0hLSyu6FaIL4hbZjk23YrPVbhepNx6BZ-RJGDvJalcgIfWY2Ikdz0xmxp75BqGX0liueQA3NVCbMypcbpVgeb-SqqLMCWbT1sWpPPmq3u1HmBze5cKkoH1nRzv19_FOPTpLsZUXY9fr4sR6Hwd7SoOa0bS3hm6CvBbFkpPeJAfTiMnSQTQWpGeqHxGam8SitiqWzknHZyQWOV_SRgm0_1-W5t8Bk8uGbNJEB3eu-Q130UZreuK3TfMmuuHre2izFe4Zft0iUL-5j84bSY9bfhgMRPzJp4I58XIS8O5ocnYVE73wMFHt989fHaqhr_CXNrQVv5-acDnD9gqnJF94Aww-6Krx4qNxqo_0AH0-2B_uHeZtUYbccaJV7ogzgVdMcskCKFjuheHEV4FqR5mVymoGZp2VxnituKyktcALYJWCY2ispw_Rej2p_SOEma3gIcIt6xsmPbATFdp7JqoQnCtshl51xCkvGuyNskFZJmWkaLmgaIZ2I-0WvSJmdroxmX4r21UvheLBEtMnAqaohNPwt3JWFsqoImgjM7TdUb5sBRmGEGn_ANy-DL1YNIMIxnMVU_vJPPaJuGzgp-kMbTWMsphJx2gZkisstDLV1RbgmATz3XJIhvLEbP9ZghLMmFPKhXp87ZGeo1uHw8FxeXx08uEJuk1iokeKUdpG65fTuX-K1mbV_FkStj8Fky-8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuhfIogQJGQgIOaXYdP4_0sVBBq4oWxC3yk27FZle7XaTe-An8Rn4JtpOsdgUSEhwTO7HjmcnM2DPfADznSlNJfXBTfalzUjKTa8FI3rdc2JIYRnTaujjlx5_F_kGEyVmU-kpB-0YPd-qvo516eJ5iKycjU3RxYsXJ0Z6QQc3IsphYX6zB9SCzPbzkqDcJwmXEZelgGnu4UPZbhOfGsbCtiOVz0hEajoXOlzRSAu7_k7X5e9DksjGbtNHg1n98x23YaE1Q9LrpsgnXXH0HNlshn6GXLRL1q7tw0Uh83PpDwVBEH1wqnBMvxx7tDsfnVzHhC50l6v38_qNDN3QWfWpDXNGbqfKXM6SvUEr2DW8Igx91VXnR4SjVSboHHwcHZ3tv87Y4Q24oliI32ChPLeGUEx8ULXVMUeysL6UpieZCSxLMO82VclJQbrnWgSeCdRocRKVdeR_W63HtHgAi2oaHMNWkrwh3ga1KJp0jzHpvTE9n8KIjUDVpMDiqBm0ZV5Gq1YKqGexG-i16RezsdGM8_VK1K18xQb3Gqo9ZmKJgRoa_ltG8J5Toeal4Btsd9atWoMMQLO0jBPcvg2eL5iCK8XxF1W48j30iPlvw12QGWw2zLGbSMVsGfIWNVqa62hK4JsF9t1ySQZ4Y7i9LUAVz5rSkTDz855Gewo2T_UH1_vD43SO4iWO-RwpV2ob1y-ncPYa1mZ0_SfL2C3bZMjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+the+Remodeling+of+Biohybrid+Tissue%E2%80%90Engineered+Vascular+Grafts+by+Multimodal+Molecular+Imaging&rft.jtitle=Advanced+science&rft.au=Rama%2C+Elena&rft.au=Mohapatra%2C+Saurav+Ranjan&rft.au=Melcher%2C+Christoph&rft.au=Nolte%2C+Teresa&rft.date=2022-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202105783&rft.externalDBID=10.1002%252Fadvs.202105783&rft.externalDocID=ADVS3568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon