Monitoring the Remodeling of Biohybrid Tissue‐Engineered Vascular Grafts by Multimodal Molecular Imaging
Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imagin...
Saved in:
Published in: | Advanced science Vol. 9; no. 10; pp. e2105783 - n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
John Wiley & Sons, Inc
01-04-2022
John Wiley and Sons Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Noninvasive imaging modalities are fundamental to control the remodeling and function of biohybrid tissue‐engineered vascular grafts, which is particularly true for the critical transition time between late in vitro maturation and early in vivo engraftment. Here, a noninvasive multimodal, molecular imaging concept is presented to longitudinally monitor textile scaffold resorption, extracellular matrix remodeling, and endothelial inflammation. |
---|---|
AbstractList | Abstract Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of α β integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐ co ‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of α v β 3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐ α . In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Noninvasive imaging modalities are fundamental to control the remodeling and function of biohybrid tissue‐engineered vascular grafts, which is particularly true for the critical transition time between late in vitro maturation and early in vivo engraftment. Here, a noninvasive multimodal, molecular imaging concept is presented to longitudinally monitor textile scaffold resorption, extracellular matrix remodeling, and endothelial inflammation. Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of αv β3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of αv β3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐co‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of αvβ3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. Noninvasive imaging modalities are fundamental to control the remodeling and function of biohybrid tissue‐engineered vascular grafts, which is particularly true for the critical transition time between late in vitro maturation and early in vivo engraftment. Here, a noninvasive multimodal, molecular imaging concept is presented to longitudinally monitor textile scaffold resorption, extracellular matrix remodeling, and endothelial inflammation. Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts’ structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron‐oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic‐ co ‐glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin‐ and collagen‐targeted probes. Finally, molecular US of α v β 3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF‐ α . In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment. |
Author | Jockenhoevel, Stefan Mohapatra, Saurav Ranjan Dadfar, Seyed Mohammadali Brueck, Ramona Nolte, Teresa Rama, Elena Apel, Christian Kiessling, Fabian Rix, Anne Gries, Thomas Lammers, Twan Schulz, Volkmar Melcher, Christoph Pathak, Vertika |
AuthorAffiliation | 2 Department of Biohybrid & Medical Textiles Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany 3 Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany 1 Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany |
AuthorAffiliation_xml | – name: 2 Department of Biohybrid & Medical Textiles Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany – name: 1 Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany – name: 3 Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55 52074 Aachen Germany |
Author_xml | – sequence: 1 givenname: Elena orcidid: 0000-0002-4445-3541 surname: Rama fullname: Rama, Elena organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 2 givenname: Saurav Ranjan surname: Mohapatra fullname: Mohapatra, Saurav Ranjan organization: Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 3 givenname: Christoph surname: Melcher fullname: Melcher, Christoph organization: Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 4 givenname: Teresa surname: Nolte fullname: Nolte, Teresa organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 5 givenname: Seyed Mohammadali surname: Dadfar fullname: Dadfar, Seyed Mohammadali organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 6 givenname: Ramona surname: Brueck fullname: Brueck, Ramona organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 7 givenname: Vertika surname: Pathak fullname: Pathak, Vertika organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 8 givenname: Anne surname: Rix fullname: Rix, Anne organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 9 givenname: Thomas surname: Gries fullname: Gries, Thomas organization: Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 10 givenname: Volkmar surname: Schulz fullname: Schulz, Volkmar organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 11 givenname: Twan surname: Lammers fullname: Lammers, Twan organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 12 givenname: Christian surname: Apel fullname: Apel, Christian organization: Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 13 givenname: Stefan surname: Jockenhoevel fullname: Jockenhoevel, Stefan organization: Institute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 55 – sequence: 14 givenname: Fabian orcidid: 0000-0002-7341-0399 surname: Kiessling fullname: Kiessling, Fabian email: fkiessling@ukaachen.de organization: Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 55 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35119216$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNUREvpliWKxIbNDL7Esb1BKqWUkTpCgtKtZTsnMx45cWsnRbPjEXhGngQPKaOWDStfznc-HVv_8-KgDz0UxUuM5hgh8lY3d2lOEMGIcUGfFEcESzGjoqoOHuwPi5OUNgghzCivsHhWHFKGsSS4Pio2y9C7IUTXr8phDeUX6EIDfncMbfnehfXWRNeUVy6lEX79-Hner1wPEKEpr3Wyo9exvIi6HVJptuVy9IPLBu3LZfAwlRedzj2rF8XTVvsEJ_frcfHt4_nV2afZ5eeLxdnp5cwykke2xOqWNRVnvGoBGga1ZgSalkpLK8OFkRUS1HCtQQrGG24MazEiSGKuDdDjYjF5m6A36ia6TsetCtqpPxchrpSOg7MeVC1Ya4jGpM5SUVtJGLeGI6EFaqXm2fVuct2MpoPGQj9E7R9JH1d6t1arcKeEFFhImgVv7gUx3I6QBtW5ZMF73UMYkyI1qREWpJYZff0Puglj7PNXZaqqJeKZzdR8omwMKUVo98NgpHapULtUqH0qcsOrh0_Y438zkIFqAr47D9v_6NTph-uvlNWC_gYCWMcq |
CitedBy_id | crossref_primary_10_3390_molecules27092757 crossref_primary_10_1002_smll_202205630 crossref_primary_10_1002_wnan_1800 crossref_primary_10_1007_s13770_022_00482_0 crossref_primary_10_1016_j_giant_2024_100259 crossref_primary_10_1002_adhm_202300991 crossref_primary_10_1007_s12274_023_6158_0 crossref_primary_10_1021_acsnano_2c07300 crossref_primary_10_1016_j_eng_2024_01_030 crossref_primary_10_1002_wnan_1919 crossref_primary_10_1002_adhm_202302687 crossref_primary_10_1021_acsanm_4c01546 crossref_primary_10_1016_j_biomaterials_2024_122669 |
Cites_doi | 10.1155/2013/390518 10.1016/j.actbio.2014.10.029 10.3109/15419069409014198 10.1097/RLI.0b013e31815a251b 10.1089/ten.tec.2013.0041 10.3109/02656736.2014.997809 10.1016/j.crad.2010.04.006 10.1088/1748-6041/6/5/055001 10.1016/S0945-053X(00)00080-9 10.1016/j.jacc.2019.10.009 10.1016/j.cub.2020.06.027 10.1016/j.biomaterials.2010.02.006 10.1016/j.biomaterials.2007.07.017 10.1016/j.cellsig.2019.109364 10.1002/anie.200700700 10.1016/S0741-5214(94)70127-X 10.1007/s10439-006-9099-3 10.1165/rcmb.2013-0039OC 10.3390/ijms21207541 10.1002/mabi.201700002 10.1039/C5NR01651G 10.1161/ATVBAHA.109.193185 10.1039/C5RA27791D 10.1021/acs.chemmater.6b04649 10.1172/JCI117718 10.1515/CCLM.2004.082 10.1016/j.biomaterials.2004.07.034 10.1007/s12221-012-0685-8 10.1016/j.ceb.2006.12.013 10.1096/fsb2fasebj.12.1.47 10.1161/CIR.0b013e3182009701 10.1006/excr.1994.1282 10.1002/jbm.a.10599 10.2741/1313 10.1016/j.cardiores.2007.04.018 10.1161/ATVBAHA.117.309503 10.1016/j.biomaterials.2021.120896 10.3390/nano10101935 10.2967/jnumed.113.128173 10.1242/dev.145672 10.1016/S0945-053X(03)00052-0 10.1089/ten.2006.12.2765 10.1097/RLI.0000000000000282 10.1016/j.biomaterials.2010.02.051 10.1055/s-0037-1615250 10.1016/j.jcmg.2011.06.019 10.1038/nrm2820 10.1177/1535370212473700 10.1161/ATVBAHA.114.304857 10.1016/j.jacc.2020.11.010 10.1016/j.biomaterials.2012.06.018 10.1093/eurheartj/ehq413 10.1016/j.biomaterials.2019.119228 10.1007/s00403-006-0713-x 10.1172/JCI13005 10.1152/ajpcell.00064.2002 10.1021/acsomega.9b01544 10.1182/blood-2014-06-528406 10.1016/j.ijcard.2013.07.165 10.1016/j.biomaterials.2005.06.024 10.1007/978-3-030-05336-9_13 10.1039/C8NR00703A 10.3390/polym3031377 10.1016/j.biomaterials.2014.10.076 10.3389/fbioe.2019.00340 10.1038/nm.2310 10.1038/s41598-021-90092-y 10.1016/j.biomaterials.2004.04.036 10.1016/j.coph.2014.08.002 10.1263/jbb.106.515 10.1593/neo.09540 10.1002/adfm.201301275 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202105783 |
DatabaseName | Wiley Online Library Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_685fb2a126b9486c9257cb708a80f9a7 10_1002_advs_202105783 35119216 ADVS3568 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft – fundername: German Research Foundation in the Package Proposals PAK 961 funderid: 403039938 – fundername: German Research Foundation in the Package Proposals PAK 961 grantid: 403039938 – fundername: ; |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN CGR CUY CVF ECM EIF EJD ITC NPM AAYXX CITATION 3V. 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c5298-c2caf5d47574feed5e6a52edf39c34b78b94083b7aae9857d7bb5f1020917abe3 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Oct 22 15:15:31 EDT 2024 Tue Sep 17 21:12:56 EDT 2024 Sat Oct 26 04:12:59 EDT 2024 Thu Oct 10 18:28:24 EDT 2024 Thu Nov 21 23:06:11 EST 2024 Sat Nov 02 11:57:22 EDT 2024 Sat Aug 24 00:55:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | poly(lactic-co-glycolic acid) superparamagnetic iron-oxide nanoparticles tissue-engineering molecular imaging αvβ3 integrins |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5298-c2caf5d47574feed5e6a52edf39c34b78b94083b7aae9857d7bb5f1020917abe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7341-0399 0000-0002-4445-3541 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981893/ |
PMID | 35119216 |
PQID | 2646907626 |
PQPubID | 4365299 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_685fb2a126b9486c9257cb708a80f9a7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8981893 proquest_miscellaneous_2626018269 proquest_journals_2646907626 crossref_primary_10_1002_advs_202105783 pubmed_primary_35119216 wiley_primary_10_1002_advs_202105783_ADVS3568 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2015; 35 2010; 11 1990; 10 2015; 39 1994; 214 2019; 11 2015; 31 2004; 26 2013; 168 2014; 24 2008; 106 1998; 80 2020; 10 2005; 26 2011; 17 2007; 75 2012; 13 2001; 107 2007; 35 2014; 20 2007; 28 2009; 11 2010; 65 2013; 2013 2019; 63 2006; 27 2007; 298 2013; 238 2014; 18 2021; 275 2011; 123 1998; 12 2018; 38 2014; 55 2019; 7 2015; 12 1995; 95 2007; 19 2010; 31 2004; 42 2019; 4 2013; 49 2006; 12 2019; 74 2015; 125 2000; 22 2016; 51 2011; 32 2017; 29 2020; 76 2011; 4 2011; 3 2011; 6 2012; 33 2015; 7 2009; 29 2016; 6 2021; 11 1994; 19 2020; 30 2002; 283 2017; 17 2020 2019; 138 2016 2008; 43 2019; 216 2020; 21 2017; 144 2018; 10 1994; 2 2007; 46 2003; 22 2003; 67 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Appold L. (e_1_2_8_62_1) 2017; 17 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Sutcliffe M. C. (e_1_2_8_48_1) 1990; 10 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Talacua H. (e_1_2_8_58_1) 2016 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Mohammadali S. (e_1_2_8_72_1) 2019; 138 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Sun Q. (e_1_2_8_55_1) 2019; 11 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 3 start-page: 1377 year: 2011 publication-title: Polymers – volume: 10 start-page: 148 year: 1990 publication-title: Matrix Collagen Relat. Res. – volume: 20 start-page: 177 year: 2014 publication-title: Tissue Eng., Part C Methods – volume: 55 start-page: 392 year: 2014 publication-title: J. Nucl. Med. – volume: 31 start-page: 4672 year: 2010 publication-title: Biomaterials – volume: 10 start-page: 8226 year: 2018 publication-title: Nanoscale – volume: 4 start-page: 1171 year: 2011 publication-title: JACC Cardiovasc. Imaging – volume: 10 start-page: 1935 year: 2020 publication-title: Nanomaterials – volume: 65 start-page: 557 year: 2010 publication-title: Clin. Radiol. – volume: 63 year: 2019 publication-title: Cell. Signalling – volume: 29 start-page: 2125 year: 2009 publication-title: Arterioscler., Thromb., Vasc. Biol. – volume: 42 start-page: 475 year: 2004 publication-title: Clin. Chem. Lab. Med. – volume: 38 start-page: 40 year: 2018 publication-title: Arterioscler., Thromb., Vasc. Biol. – volume: 22 start-page: 339 year: 2003 publication-title: Matrix Biol. – volume: 12 start-page: 47 year: 1998 publication-title: FASEB J. – volume: 125 start-page: 2019 year: 2015 publication-title: Blood – volume: 238 start-page: 176 year: 2013 publication-title: Exp. Biol. Med. – volume: 7 start-page: 340 year: 2019 publication-title: Front. Bioeng. Biotechnol. – volume: 138 start-page: 302 year: 2019 publication-title: J., Nanobiotechnol. – volume: 17 start-page: 1 year: 2017 publication-title: Macromol. Biosci. – volume: 106 start-page: 515 year: 2008 publication-title: J. Biosci. Bioeng. – volume: 49 start-page: 1120 year: 2013 publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 67 start-page: 295 year: 2003 publication-title: J. Biomed. Mater. Res., Part A – volume: 80 start-page: 726 year: 1998 publication-title: Thromb. Haemostasis – volume: 21 start-page: 7541 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 29 start-page: 2669 year: 2017 publication-title: Chem. Mater. – volume: 31 start-page: 90 year: 2015 publication-title: Int. J. Hyperthermia – volume: 26 start-page: 1422 year: 2004 publication-title: Front. Biosci. – volume: 26 start-page: 2559 year: 2005 publication-title: Biomaterials – volume: 2 start-page: 7 year: 1994 publication-title: Cell Commun. Adhes. – volume: 11 start-page: 856 year: 2009 publication-title: Neoplasia – volume: 19 start-page: 125 year: 1994 publication-title: J. Vasc. Surg. – volume: 75 start-page: 618 year: 2007 publication-title: Cardiovasc. Res. – volume: 11 start-page: 1 year: 2019 publication-title: Sci. Transl. Med. – volume: 74 start-page: 2529 year: 2019 publication-title: J. Am. Coll. Cardiol. – volume: 31 start-page: 4731 year: 2010 publication-title: Biomaterials – volume: 19 start-page: 43 year: 2007 publication-title: Curr. Opin. Cell Biol. – volume: 12 start-page: 2765 year: 2006 publication-title: Tissue Eng. – volume: 51 start-page: 767 year: 2016 publication-title: Invest. Radiol. – volume: 11 year: 2021 publication-title: Sci. Rep. – volume: 35 start-page: 190 year: 2007 publication-title: Ann. Biomed. Eng. – volume: 24 start-page: 754 year: 2014 publication-title: Adv. Funct. Mater. – volume: 144 start-page: 869 year: 2017 publication-title: Development – volume: 283 start-page: C1196 year: 2002 publication-title: Am. J. Physiol. ‐ Cell Physiol. – volume: 95 start-page: 713 year: 1995 publication-title: J. Clin. Invest. – volume: 6 year: 2011 publication-title: Biomed. Mater. – volume: 168 start-page: 5028 year: 2013 publication-title: Int. J. Cardiol. – year: 2016 – volume: 43 start-page: 162 year: 2008 publication-title: Invest. Radiol. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 11 start-page: 50 year: 2010 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 22 start-page: 353 year: 2000 publication-title: Matrix Biol. – volume: 2013 start-page: 1 year: 2013 publication-title: Biomed Res. Int. – volume: 17 start-page: 383 year: 2011 publication-title: Nat. Med. – volume: 4 year: 2019 publication-title: ACS Omega – volume: 32 start-page: 1561 year: 2011 publication-title: Eur. Heart J. – volume: 216 year: 2019 publication-title: Biomaterials – volume: 33 start-page: 6604 year: 2012 publication-title: Biomaterials – volume: 39 start-page: 155 year: 2015 publication-title: Biomaterials – volume: 28 start-page: 5009 year: 2007 publication-title: Biomaterials – volume: 18 start-page: 18 year: 2014 publication-title: Curr. Opin. Pharmacol. – volume: 107 start-page: 1209 year: 2001 publication-title: J. Clin. Invest. – volume: 27 start-page: 724 year: 2006 publication-title: Biomaterials – volume: 275 year: 2021 publication-title: Biomaterials – volume: 46 start-page: 8171 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 146 year: 2015 publication-title: Acta Biomater. – volume: 30 start-page: 3316 year: 2020 publication-title: Curr. Biol. – year: 2020 – volume: 26 start-page: 1405 year: 2005 publication-title: Biomaterials – volume: 13 start-page: 685 year: 2012 publication-title: Fibers Polym. – volume: 298 start-page: 413 year: 2007 publication-title: Arch. Dermatol. Res. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 35 start-page: 1366 year: 2015 publication-title: Arterioscler., Thromb., Vasc. Biol. – volume: 76 start-page: 2982 year: 2020 publication-title: J. Am. Coll. Cardiol. – volume: 214 start-page: 459 year: 1994 publication-title: Exp. Cell Res. – volume: 123 start-page: 18 year: 2011 publication-title: Circulation – ident: e_1_2_8_8_1 doi: 10.1155/2013/390518 – ident: e_1_2_8_34_1 doi: 10.1016/j.actbio.2014.10.029 – ident: e_1_2_8_65_1 doi: 10.3109/15419069409014198 – ident: e_1_2_8_74_1 doi: 10.1097/RLI.0b013e31815a251b – ident: e_1_2_8_57_1 doi: 10.1089/ten.tec.2013.0041 – ident: e_1_2_8_13_1 doi: 10.3109/02656736.2014.997809 – ident: e_1_2_8_12_1 doi: 10.1016/j.crad.2010.04.006 – ident: e_1_2_8_9_1 doi: 10.1088/1748-6041/6/5/055001 – volume-title: In Situ Cardiovascular Tissue Engineering year: 2016 ident: e_1_2_8_58_1 contributor: fullname: Talacua H. – ident: e_1_2_8_24_1 doi: 10.1016/S0945-053X(00)00080-9 – ident: e_1_2_8_2_1 doi: 10.1016/j.jacc.2019.10.009 – ident: e_1_2_8_47_1 doi: 10.1016/j.cub.2020.06.027 – ident: e_1_2_8_59_1 doi: 10.1016/j.biomaterials.2010.02.006 – ident: e_1_2_8_7_1 doi: 10.1016/j.biomaterials.2007.07.017 – ident: e_1_2_8_46_1 doi: 10.1016/j.cellsig.2019.109364 – ident: e_1_2_8_26_1 doi: 10.1002/anie.200700700 – ident: e_1_2_8_39_1 doi: 10.1016/S0741-5214(94)70127-X – ident: e_1_2_8_37_1 doi: 10.1007/s10439-006-9099-3 – ident: e_1_2_8_56_1 doi: 10.1165/rcmb.2013-0039OC – ident: e_1_2_8_22_1 doi: 10.3390/ijms21207541 – volume: 17 start-page: 1 year: 2017 ident: e_1_2_8_62_1 publication-title: Macromol. Biosci. doi: 10.1002/mabi.201700002 contributor: fullname: Appold L. – ident: e_1_2_8_73_1 doi: 10.1039/C5NR01651G – ident: e_1_2_8_67_1 doi: 10.1161/ATVBAHA.109.193185 – ident: e_1_2_8_18_1 doi: 10.1039/C5RA27791D – ident: e_1_2_8_51_1 doi: 10.1021/acs.chemmater.6b04649 – volume: 11 start-page: 1 year: 2019 ident: e_1_2_8_55_1 publication-title: Sci. Transl. Med. contributor: fullname: Sun Q. – ident: e_1_2_8_41_1 doi: 10.1172/JCI117718 – ident: e_1_2_8_64_1 doi: 10.1515/CCLM.2004.082 – ident: e_1_2_8_21_1 doi: 10.1016/j.biomaterials.2004.07.034 – ident: e_1_2_8_17_1 doi: 10.1007/s12221-012-0685-8 – ident: e_1_2_8_45_1 doi: 10.1016/j.ceb.2006.12.013 – ident: e_1_2_8_31_1 doi: 10.1096/fsb2fasebj.12.1.47 – ident: e_1_2_8_3_1 doi: 10.1161/CIR.0b013e3182009701 – ident: e_1_2_8_40_1 doi: 10.1006/excr.1994.1282 – ident: e_1_2_8_29_1 doi: 10.1002/jbm.a.10599 – ident: e_1_2_8_35_1 doi: 10.2741/1313 – ident: e_1_2_8_32_1 doi: 10.1016/j.cardiores.2007.04.018 – ident: e_1_2_8_71_1 doi: 10.1161/ATVBAHA.117.309503 – ident: e_1_2_8_76_1 doi: 10.1016/j.biomaterials.2021.120896 – ident: e_1_2_8_14_1 doi: 10.3390/nano10101935 – ident: e_1_2_8_6_1 doi: 10.2967/jnumed.113.128173 – ident: e_1_2_8_68_1 doi: 10.1242/dev.145672 – ident: e_1_2_8_23_1 doi: 10.1016/S0945-053X(03)00052-0 – ident: e_1_2_8_53_1 doi: 10.1089/ten.2006.12.2765 – ident: e_1_2_8_42_1 doi: 10.1097/RLI.0000000000000282 – ident: e_1_2_8_30_1 doi: 10.1016/j.biomaterials.2010.02.051 – ident: e_1_2_8_44_1 doi: 10.1055/s-0037-1615250 – ident: e_1_2_8_52_1 doi: 10.1016/j.jcmg.2011.06.019 – ident: e_1_2_8_20_1 doi: 10.1038/nrm2820 – ident: e_1_2_8_70_1 doi: 10.1177/1535370212473700 – ident: e_1_2_8_61_1 doi: 10.1161/ATVBAHA.114.304857 – volume: 10 start-page: 148 year: 1990 ident: e_1_2_8_48_1 publication-title: Matrix Collagen Relat. Res. contributor: fullname: Sutcliffe M. C. – ident: e_1_2_8_1_1 doi: 10.1016/j.jacc.2020.11.010 – ident: e_1_2_8_11_1 doi: 10.1016/j.biomaterials.2012.06.018 – ident: e_1_2_8_54_1 doi: 10.1093/eurheartj/ehq413 – ident: e_1_2_8_4_1 doi: 10.1016/j.biomaterials.2019.119228 – ident: e_1_2_8_19_1 doi: 10.1007/s00403-006-0713-x – ident: e_1_2_8_66_1 doi: 10.1172/JCI13005 – ident: e_1_2_8_43_1 doi: 10.1152/ajpcell.00064.2002 – ident: e_1_2_8_63_1 doi: 10.1021/acsomega.9b01544 – ident: e_1_2_8_69_1 doi: 10.1182/blood-2014-06-528406 – ident: e_1_2_8_5_1 doi: 10.1016/j.ijcard.2013.07.165 – ident: e_1_2_8_25_1 doi: 10.1016/j.biomaterials.2005.06.024 – ident: e_1_2_8_36_1 doi: 10.1007/978-3-030-05336-9_13 – ident: e_1_2_8_50_1 doi: 10.1039/C8NR00703A – volume: 138 start-page: 302 year: 2019 ident: e_1_2_8_72_1 publication-title: J., Nanobiotechnol. contributor: fullname: Mohammadali S. – ident: e_1_2_8_10_1 doi: 10.3390/polym3031377 – ident: e_1_2_8_15_1 doi: 10.1016/j.biomaterials.2014.10.076 – ident: e_1_2_8_33_1 doi: 10.3389/fbioe.2019.00340 – ident: e_1_2_8_27_1 doi: 10.1038/nm.2310 – ident: e_1_2_8_28_1 doi: 10.1038/s41598-021-90092-y – ident: e_1_2_8_38_1 doi: 10.1016/j.biomaterials.2004.04.036 – ident: e_1_2_8_49_1 doi: 10.1016/j.coph.2014.08.002 – ident: e_1_2_8_60_1 doi: 10.1263/jbb.106.515 – ident: e_1_2_8_75_1 doi: 10.1593/neo.09540 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201301275 |
SSID | ssj0001537418 |
Score | 2.3690212 |
Snippet | Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic... Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic... Abstract Tissue‐engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2105783 |
SubjectTerms | Biocompatibility Biodegradation Blood Vessel Prosthesis Collagen Extracellular Matrix Magnetic resonance imaging Molecular Imaging Nanoparticles poly(lactic‐co‐glycolic acid) Prostheses superparamagnetic iron‐oxide nanoparticles Synthetic products Tissue Engineering - methods tissue‐engineering Transplants & implants Ultrasonic imaging αvβ3 integrins |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BT1wQ5RkoyEhIwCFq1m8fKbTAAQ60IG6Rn2orkUXdLlJv_AR-I7-EsZ1EXYHUC8fEduzMQ56xZ74BeKasE0YkdFMTcy1n0rdOS94ugtKBcS-5K0cXh-rjV_1mP8PkzKW-ckxYhQeuhNuVWiRH7YJKZ7iW3qCMeac6bXWXjK155J285EzV_GCWYVkmlMaO7trwI6Nz01zXVrONXaiA9f_Lwvw7UPKyAVt2oINbcHM0HcmruuRtuBaH27A9KueKvBgRpF_egdOqqfnIjqCBRz7FUvAmPy4T2TtZHl_kRC1yVKj---evCZUwBvJlDE0lb89sOl8Rd0FKki5-ASf_MFXTJe-_lfpGd-Hzwf7R63ftWFSh9YIa3XrqbRKBK6F4wg1SRGkFjSEx4xl3SiOZ0SxzytpotFBBOYe8RKsSHTvrIrsHW8NyiA-AcBdwEBWOLyxXEcWBSRMjlyEl7zvXwPOJyP33ip3RV5Rk2md29DM7GtjLPJh7Zczr8gIloR8lob9KEhrYmTjYj4qIU8ji_6Pb1sDTuRlVKN-L2CEu17lPxlVDP8s0cL8yfF5JuWelCxytNkRhY6mbLcPJcYHp1gaNIYP_1hahuYIEPZohh0xI_fB_0OIR3KA5T6OEGO3A1vnZOj6G66uwflIU5Q_1YBkK priority: 102 providerName: Directory of Open Access Journals |
Title | Monitoring the Remodeling of Biohybrid Tissue‐Engineered Vascular Grafts by Multimodal Molecular Imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202105783 https://www.ncbi.nlm.nih.gov/pubmed/35119216 https://www.proquest.com/docview/2646907626 https://www.proquest.com/docview/2626018269 https://pubmed.ncbi.nlm.nih.gov/PMC8981893 https://doaj.org/article/685fb2a126b9486c9257cb708a80f9a7 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6RnrggytPQVouEBBzcJOt9HmlpgUMRogVxs_bZBhGnSppKvfET-I38EmbXdpQIJCSOttfe0c6Md2Z25huA59JYrnlENzVWtmSVcKVVgpVjL5WvmBPM5tDFqfzwVb05SjA5vK-FyUn7zk72m-_T_WZykXMrL6du2OeJDT-eHCqN24yuhgMYoG245qK3pcFVQmTpARpHdGj8dQLmpqmlrUqNc_LhGU0tztf2ogzZ_zc78890yXUzNu9Dx3fhTmdAktctodtwKzT3YLtT0QV52eFIv7oP31p9TYE7gmYe-RRy25t0OYvkYDK7uEnlWuQsr_2vHz97bMLgyZcuQZW8nZt4tSD2huRSXfwCTn7S99Ql76e5y9ED-Hx8dHb4ruxaK5SOU61KR52J3DPJJYu4TfIgDKfBx0q7ilmprGZonFlpTNCKSy-tRY6ibYnunbGheghbzawJj4Ew6_Elyi0bGyYDCkUldAhM-BidG9kCXvSLXF-2CBp1i5VM68SZesWZAg4SD1ajEvJ1vjGbn9cd_2uheLTUjKlAEpVwGv85zsqRMmoUtZEF7PQcrDt1xClEjgKg81bAs9VjVKR0OmKaMFumMQldDb0tXcCjluErSnqBKUBuiMIGqZtPUHYzWHcnqwWUWWj-sQQ1GiOnFRfqyX_P9BRu01SikbOLdmDrar4MuzBY-OVeDjjsZXX5DV6zGxs |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZoOcClUH5KoICRkIBDuln_-0hLSyu6FaIL4hbZjk23YrPVbhepNx6BZ-RJGDvJalcgIfWY2Ikdz0xmxp75BqGX0liueQA3NVCbMypcbpVgeb-SqqLMCWbT1sWpPPmq3u1HmBze5cKkoH1nRzv19_FOPTpLsZUXY9fr4sR6Hwd7SoOa0bS3hm6CvBbFkpPeJAfTiMnSQTQWpGeqHxGam8SitiqWzknHZyQWOV_SRgm0_1-W5t8Bk8uGbNJEB3eu-Q130UZreuK3TfMmuuHre2izFe4Zft0iUL-5j84bSY9bfhgMRPzJp4I58XIS8O5ocnYVE73wMFHt989fHaqhr_CXNrQVv5-acDnD9gqnJF94Aww-6Krx4qNxqo_0AH0-2B_uHeZtUYbccaJV7ogzgVdMcskCKFjuheHEV4FqR5mVymoGZp2VxnituKyktcALYJWCY2ispw_Rej2p_SOEma3gIcIt6xsmPbATFdp7JqoQnCtshl51xCkvGuyNskFZJmWkaLmgaIZ2I-0WvSJmdroxmX4r21UvheLBEtMnAqaohNPwt3JWFsqoImgjM7TdUb5sBRmGEGn_ANy-DL1YNIMIxnMVU_vJPPaJuGzgp-kMbTWMsphJx2gZkisstDLV1RbgmATz3XJIhvLEbP9ZghLMmFPKhXp87ZGeo1uHw8FxeXx08uEJuk1iokeKUdpG65fTuX-K1mbV_FkStj8Fky-8 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuhfIogQJGQgIOaXYdP4_0sVBBq4oWxC3yk27FZle7XaTe-An8Rn4JtpOsdgUSEhwTO7HjmcnM2DPfADznSlNJfXBTfalzUjKTa8FI3rdc2JIYRnTaujjlx5_F_kGEyVmU-kpB-0YPd-qvo516eJ5iKycjU3RxYsXJ0Z6QQc3IsphYX6zB9SCzPbzkqDcJwmXEZelgGnu4UPZbhOfGsbCtiOVz0hEajoXOlzRSAu7_k7X5e9DksjGbtNHg1n98x23YaE1Q9LrpsgnXXH0HNlshn6GXLRL1q7tw0Uh83PpDwVBEH1wqnBMvxx7tDsfnVzHhC50l6v38_qNDN3QWfWpDXNGbqfKXM6SvUEr2DW8Igx91VXnR4SjVSboHHwcHZ3tv87Y4Q24oliI32ChPLeGUEx8ULXVMUeysL6UpieZCSxLMO82VclJQbrnWgSeCdRocRKVdeR_W63HtHgAi2oaHMNWkrwh3ga1KJp0jzHpvTE9n8KIjUDVpMDiqBm0ZV5Gq1YKqGexG-i16RezsdGM8_VK1K18xQb3Gqo9ZmKJgRoa_ltG8J5Toeal4Btsd9atWoMMQLO0jBPcvg2eL5iCK8XxF1W48j30iPlvw12QGWw2zLGbSMVsGfIWNVqa62hK4JsF9t1ySQZ4Y7i9LUAVz5rSkTDz855Gewo2T_UH1_vD43SO4iWO-RwpV2ob1y-ncPYa1mZ0_SfL2C3bZMjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+the+Remodeling+of+Biohybrid+Tissue%E2%80%90Engineered+Vascular+Grafts+by+Multimodal+Molecular+Imaging&rft.jtitle=Advanced+science&rft.au=Rama%2C+Elena&rft.au=Mohapatra%2C+Saurav+Ranjan&rft.au=Melcher%2C+Christoph&rft.au=Nolte%2C+Teresa&rft.date=2022-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202105783&rft.externalDBID=10.1002%252Fadvs.202105783&rft.externalDocID=ADVS3568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |