Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model
This study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and compared their enhanced delivery with active targeted SWCNTs conjugated with a specific antibody for prospective applications as drug-delivery nanocar...
Saved in:
Published in: | Nanomedicine (London, England) Vol. 10; no. 6; pp. 931 - 948 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Future Medicine Ltd
01-03-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and compared their enhanced delivery with active targeted SWCNTs conjugated with a specific antibody for prospective applications as drug-delivery nanocarriers.
Polyvinylpyrrolidone SWCNTs, loaded with iron oxide nanoparticles to improve their magnetic resonance detection and magnet attraction using an optimized flexible magnet positioned over the tumor site were developed. They were equally conjugated with Endoglin/CD105 antibody for SWCNTs active targeting. A noninvasive MRI protocol was then optimized to allow
imaging of tumor site, sensitive detection of SWCNTs and apparent diffusion coefficient measurements. Special focus was devoted to evaluate the biocompatibility of the used SWCNTs.
Iron-tagged SWCNTs exhibited very high magnetic resonance r2* relaxivities allowing their sensitive detection using noninvasive MRI and enhanced targeting using the magnet. Biocompatibility evaluations confirmed their safety for animal administration. Both T2* and apparent diffusion coefficient measurements confirmed their enhanced magnetic targeting starting from 2 h postinjection while a lower, but statistically significant enhanced targeting of antibody-conjugated active targeting was observed starting from 24 h postinjection of iron-tagged SWCNT + CD105 samples.
These results demonstrate the efficiency of magnetic targeting to specifically deliver higher load of iron-tagged SWCNTs as novel nanocarriers for cancer theranostics and allow their sensitive detection using noninvasive MRI. |
---|---|
AbstractList | Aim: This study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and compared their enhanced delivery with active targeted SWCNTs conjugated with a specific antibody for prospective applications as drug-delivery nanocarriers. Materials & methods: Polyvinylpyrrolidone SWCNTs, loaded with iron oxide nanoparticles to improve their magnetic resonance detection and magnet attraction using an optimized flexible magnet positioned over the tumor site were developed. They were equally conjugated with Endoglin/CD105 antibody for SWCNTs active targeting. A noninvasive MRI protocol was then optimized to allow in vivo imaging of tumor site, sensitive detection of SWCNTs and apparent diffusion coefficient measurements. Special focus was devoted to evaluate the biocompatibility of the used SWCNTs. Results: Iron-tagged SWCNTs exhibited very high magnetic resonance r2* relaxivities allowing their sensitive detection using noninvasive MRI and enhanced targeting using the magnet. Biocompatibility evaluations confirmed their safety for animal administration. Both T2* and apparent diffusion coefficient measurements confirmed their enhanced magnetic targeting starting from 2 h postinjection while a lower, but statistically significant enhanced targeting of antibody-conjugated active targeting was observed starting from 24 h postinjection of iron-tagged SWCNT + CD105 samples. Conclusion: These results demonstrate the efficiency of magnetic targeting to specifically deliver higher load of iron-tagged SWCNTs as novel nanocarriers for cancer theranostics and allow their sensitive detection using noninvasive MRI. AIMThis study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and compared their enhanced delivery with active targeted SWCNTs conjugated with a specific antibody for prospective applications as drug-delivery nanocarriers.MATERIALS & METHODSPolyvinylpyrrolidone SWCNTs, loaded with iron oxide nanoparticles to improve their magnetic resonance detection and magnet attraction using an optimized flexible magnet positioned over the tumor site were developed. They were equally conjugated with Endoglin/CD105 antibody for SWCNTs active targeting. A noninvasive MRI protocol was then optimized to allow in vivo imaging of tumor site, sensitive detection of SWCNTs and apparent diffusion coefficient measurements. Special focus was devoted to evaluate the biocompatibility of the used SWCNTs.RESULTSIron-tagged SWCNTs exhibited very high magnetic resonance r2* relaxivities allowing their sensitive detection using noninvasive MRI and enhanced targeting using the magnet. Biocompatibility evaluations confirmed their safety for animal administration. Both T2* and apparent diffusion coefficient measurements confirmed their enhanced magnetic targeting starting from 2 h postinjection while a lower, but statistically significant enhanced targeting of antibody-conjugated active targeting was observed starting from 24 h postinjection of iron-tagged SWCNT + CD105 samples.CONCLUSIONThese results demonstrate the efficiency of magnetic targeting to specifically deliver higher load of iron-tagged SWCNTs as novel nanocarriers for cancer theranostics and allow their sensitive detection using noninvasive MRI. This study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and compared their enhanced delivery with active targeted SWCNTs conjugated with a specific antibody for prospective applications as drug-delivery nanocarriers. Polyvinylpyrrolidone SWCNTs, loaded with iron oxide nanoparticles to improve their magnetic resonance detection and magnet attraction using an optimized flexible magnet positioned over the tumor site were developed. They were equally conjugated with Endoglin/CD105 antibody for SWCNTs active targeting. A noninvasive MRI protocol was then optimized to allow in vivo imaging of tumor site, sensitive detection of SWCNTs and apparent diffusion coefficient measurements. Special focus was devoted to evaluate the biocompatibility of the used SWCNTs. Iron-tagged SWCNTs exhibited very high magnetic resonance r2* relaxivities allowing their sensitive detection using noninvasive MRI and enhanced targeting using the magnet. Biocompatibility evaluations confirmed their safety for animal administration. Both T2* and apparent diffusion coefficient measurements confirmed their enhanced magnetic targeting starting from 2 h postinjection while a lower, but statistically significant enhanced targeting of antibody-conjugated active targeting was observed starting from 24 h postinjection of iron-tagged SWCNT + CD105 samples. These results demonstrate the efficiency of magnetic targeting to specifically deliver higher load of iron-tagged SWCNTs as novel nanocarriers for cancer theranostics and allow their sensitive detection using noninvasive MRI. This study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and compared their enhanced delivery with active targeted SWCNTs conjugated with a specific antibody for prospective applications as drug-delivery nanocarriers. Polyvinylpyrrolidone SWCNTs, loaded with iron oxide nanoparticles to improve their magnetic resonance detection and magnet attraction using an optimized flexible magnet positioned over the tumor site were developed. They were equally conjugated with Endoglin/CD105 antibody for SWCNTs active targeting. A noninvasive MRI protocol was then optimized to allow imaging of tumor site, sensitive detection of SWCNTs and apparent diffusion coefficient measurements. Special focus was devoted to evaluate the biocompatibility of the used SWCNTs. Iron-tagged SWCNTs exhibited very high magnetic resonance r2* relaxivities allowing their sensitive detection using noninvasive MRI and enhanced targeting using the magnet. Biocompatibility evaluations confirmed their safety for animal administration. Both T2* and apparent diffusion coefficient measurements confirmed their enhanced magnetic targeting starting from 2 h postinjection while a lower, but statistically significant enhanced targeting of antibody-conjugated active targeting was observed starting from 24 h postinjection of iron-tagged SWCNT + CD105 samples. These results demonstrate the efficiency of magnetic targeting to specifically deliver higher load of iron-tagged SWCNTs as novel nanocarriers for cancer theranostics and allow their sensitive detection using noninvasive MRI. |
Audience | Academic |
Author | Al Faraj, Achraf Shaik, Asma Sultana Al Sayed, Baraa |
AuthorAffiliation | 2Prince Naif Center for Immunology Research, College of Medicine, Riyadh, King Saud University, Saudi Arabia 1Department of Radiological Sciences, Molecular & Cellular Imaging Lab, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia |
AuthorAffiliation_xml | – name: 2Prince Naif Center for Immunology Research, College of Medicine, Riyadh, King Saud University, Saudi Arabia – name: 1Department of Radiological Sciences, Molecular & Cellular Imaging Lab, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia |
Author_xml | – sequence: 1 givenname: Achraf surname: Al Faraj fullname: Al Faraj, Achraf – sequence: 2 givenname: Asma Sultana surname: Shaik fullname: Shaik, Asma Sultana – sequence: 3 givenname: Baraa surname: Al Sayed fullname: Al Sayed, Baraa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25867858$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFTEQx4NU7EVf_AAS8KUI55hsLpv4VoqXQkURfV6y2dlD6m5Sk2zBZ7-4s55WUfogGZJJ-P2Hycwck4OYIhDylLNt0_D2ZYzzlks09YAc8VaajbZaHPzyxUYZYw_JcSlXjCnTcPaIHDbK6NYoc0R-fMwwQoZYg5vo7HYRavC0urxDJ-5oGql3uU-RRhdTXXootCZ8ix4yLaFCeUUxoRBvXAk3QGt2_uuqXMq6v_90QUOkjs5LDhFon8GVeqef0wDTY_JwdFOBJ7fnCfny5vXn83ebyw9vL87PLjdeNaZuRuZtb53Tfd-MXvR8sG1rhRx5D0yM3ghr5cBAW9UMnLfceS7wc9o3bcM9EyfkdB_3OqdvC5TazaF4mCYXIS2l49owqZiS5j_QVgisrljR5_-gV2nJET-ClDVSaaz5H2rnJuhCHNNapzVodyaZlUIrppHa3kPhGmAOHrs-Bnz_S_BiL_A5lYKt7K5zmF3-3nHWrcPR4XB0XKIphJ_dZrr0Mwy_0btpQEDvgXGpS4biA2CXuv0NFcFjB--L_BMVrskX |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_6b00197 crossref_primary_10_4137_BCBCR_S29420 crossref_primary_10_1016_j_heliyon_2022_e09163 crossref_primary_10_2217_nnm_15_182 crossref_primary_10_3390_nano11123346 crossref_primary_10_3390_molecules27196493 crossref_primary_10_1080_15376516_2018_1540674 crossref_primary_10_1016_j_biomaterials_2016_05_045 crossref_primary_10_2139_ssrn_3912605 crossref_primary_10_1088_1748_605X_ad3311 crossref_primary_10_1016_j_bios_2019_01_034 crossref_primary_10_3390_pharmaceutics14050917 crossref_primary_10_1186_s43094_020_00176_1 crossref_primary_10_3390_pharmaceutics14040781 crossref_primary_10_1016_j_cbi_2019_04_036 crossref_primary_10_1021_acsomega_8b01071 crossref_primary_10_3390_ijms22094804 crossref_primary_10_1016_j_jddst_2022_103586 crossref_primary_10_1515_ntrev_2021_0099 crossref_primary_10_3390_bios7010009 crossref_primary_10_1080_17425247_2018_1424825 crossref_primary_10_1016_j_msec_2016_09_082 crossref_primary_10_1016_j_msec_2017_02_132 crossref_primary_10_2217_nnm_2016_0065 crossref_primary_10_3390_pharmaceutics13070948 crossref_primary_10_3389_fonc_2021_693814 crossref_primary_10_2174_1381612826666200318170716 crossref_primary_10_3390_molecules25153437 crossref_primary_10_1016_j_jconrel_2016_01_053 crossref_primary_10_3390_jfb9010016 crossref_primary_10_1111_cea_12771 crossref_primary_10_3390_pharmaceutics14112382 crossref_primary_10_3390_jfb14090441 crossref_primary_10_1016_j_ijpharm_2016_01_064 crossref_primary_10_1007_s11307_015_0902_0 crossref_primary_10_1186_s43094_020_00145_8 |
Cites_doi | 10.7150/thno.8698 10.5714/CL.2012.13.3.157 10.1002/jat.2748 10.1007/s12274-010-0045-1 10.1002/jbm.b.32914 10.1021/cr100018g 10.1016/j.mri.2013.10.013 10.1021/nl801362a 10.7150/thno.3463 10.1038/nnano.2009.241 10.1021/bm201020h 10.1517/17425247.2012.668522 10.1038/nnano.2007.387 10.1039/C0JM02020F 10.1016/S0009-2614(01)00851-X 10.2147/IJN.S16923 10.1039/c0ja00012d 10.1038/nmat2766 10.1166/jnn.2013.6086 10.3402/nano.v4i0.21521 10.1073/pnas.78.1.579 10.1016/j.copbio.2013.10.012 10.2147/IJN.S35832 10.2147/IJN.S59394 10.1016/j.carbon.2005.11.010 10.1158/0008-5472.CAN-08-1468 10.1021/nl8032608 10.1039/c3nr00636k 10.1039/B911099M 10.1093/cvr/cvp332 10.1038/nnano.2008.231 10.1186/1556-276X-7-452 10.2174/138945011794815257 10.1002/smll.200700351 10.1039/c2cc17995d 10.1126/science.1060928 10.1021/bc034158v 10.1073/pnas.1208312109 10.1038/nbt0708-774 10.1016/j.addr.2013.08.005 10.1016/j.nantod.2009.04.002 10.1038/nnano.2006.170 10.18632/oncotarget.490 10.3390/ijms141224619 10.1016/j.addr.2013.10.002 10.2147/IJN.S17626 10.2174/092986710789957742 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Future Medicine Ltd. 2015 Future Medicine Ltd |
Copyright_xml | – notice: COPYRIGHT 2015 Future Medicine Ltd. – notice: 2015 Future Medicine Ltd |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU EHMNL FYUFA GHDGH K9. M0S M1P PQEST PQQKQ PQUKI PRINS 7X8 7QO 8FD FR3 P64 |
DOI | 10.2217/nnm.14.145 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central ProQuest One Community College UK & Ireland Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Pharma Collection ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library UK & Ireland Database ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE ProQuest One Academic Eastern Edition |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-6963 |
EndPage | 948 |
ExternalDocumentID | 3754660871 A409436506 10_2217_nnm_14_145 25867858 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 0R 123 29M 34G 39C 3V. 4.4 53G 70G 7X7 88E 8AO 8FI 8FJ ABUWG ACGFS ADBBV AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS BBAFP BENPR BPHCQ BVXVI CS3 DU5 EBS EHMNL F5P FYUFA H13 HZ IAO IEA IHR INH INR ITC M1P MV1 NTCAX O9- P2P PQEST PQQKQ PQUKI PRINS PROAC PSQYO RFM --- 0R~ ABJNI ACGFO ACWKX AFFYO ALIPV CCPQU CGR CUY CVF ECM EIF EJD FD6 HMCUK HZ~ M4Z NPM OVD RPM TDBHL TEORI TFL TFMDE TMEDX UKHRP ~ZZ AAYXX CITATION 7XB 8FK K9. 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c528t-f0c9b9aa6bb2fc3b1d977934f1be03fc83994d0e6952d1171ac13efe6c2721c03 |
ISSN | 1743-5889 |
IngestDate | Fri Oct 25 21:36:00 EDT 2024 Thu Oct 24 23:22:00 EDT 2024 Thu Oct 10 20:00:59 EDT 2024 Tue Nov 19 21:12:34 EST 2024 Tue Nov 12 23:28:43 EST 2024 Thu Sep 12 18:03:36 EDT 2024 Sat Sep 28 07:56:37 EDT 2024 Tue Jan 05 21:38:13 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | active and passive targeting drug delivery systems DDS magnetic targeting noninvasive imaging MRI SWCNTs single-walled carbon nanotubes breast cancer |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c528t-f0c9b9aa6bb2fc3b1d977934f1be03fc83994d0e6952d1171ac13efe6c2721c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25867858 |
PQID | 1698456210 |
PQPubID | 54598 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1680450548 proquest_miscellaneous_1673374338 proquest_journals_1698456210 gale_infotracmisc_A409436506 gale_infotracacademiconefile_A409436506 crossref_primary_10_2217_nnm_14_145 pubmed_primary_25867858 futurescience_futuremedicine_10_2217_nnm_14_145 |
ProviderPackageCode | RFM NTCAX 70G |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Nanomedicine (London, England) |
PublicationTitleAlternate | Nanomedicine (Lond) |
PublicationYear | 2015 |
Publisher | Future Medicine Ltd |
Publisher_xml | – name: Future Medicine Ltd |
References | e_1_3_4_3_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_27_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 Mundra RV (e_1_3_4_40_1) 2013; 28 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_19_1 e_1_3_4_4_1 e_1_3_4_8_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_26_1 e_1_3_4_47_1 Zhang Y (e_1_3_4_49_1) 2011; 4 e_1_3_4_31_1 e_1_3_4_50_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_18_1 |
References_xml | – ident: e_1_3_4_8_1 doi: 10.7150/thno.8698 – ident: e_1_3_4_36_1 doi: 10.5714/CL.2012.13.3.157 – ident: e_1_3_4_43_1 doi: 10.1002/jat.2748 – ident: e_1_3_4_18_1 doi: 10.1007/s12274-010-0045-1 – ident: e_1_3_4_25_1 doi: 10.1002/jbm.b.32914 – ident: e_1_3_4_27_1 doi: 10.1021/cr100018g – ident: e_1_3_4_26_1 doi: 10.1016/j.mri.2013.10.013 – ident: e_1_3_4_17_1 doi: 10.1021/nl801362a – ident: e_1_3_4_4_1 doi: 10.7150/thno.3463 – ident: e_1_3_4_15_1 doi: 10.1038/nnano.2009.241 – ident: e_1_3_4_45_1 doi: 10.1021/bm201020h – ident: e_1_3_4_9_1 doi: 10.1517/17425247.2012.668522 – ident: e_1_3_4_6_1 doi: 10.1038/nnano.2007.387 – ident: e_1_3_4_31_1 doi: 10.1039/C0JM02020F – ident: e_1_3_4_35_1 doi: 10.1016/S0009-2614(01)00851-X – ident: e_1_3_4_12_1 doi: 10.2147/IJN.S16923 – ident: e_1_3_4_38_1 doi: 10.1039/c0ja00012d – ident: e_1_3_4_22_1 doi: 10.1038/nmat2766 – ident: e_1_3_4_13_1 doi: 10.1166/jnn.2013.6086 – ident: e_1_3_4_41_1 doi: 10.3402/nano.v4i0.21521 – ident: e_1_3_4_50_1 doi: 10.1073/pnas.78.1.579 – volume: 28 start-page: 25 year: 2013 ident: e_1_3_4_40_1 article-title: Nanotubes in biological applications publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2013.10.012 contributor: fullname: Mundra RV – ident: e_1_3_4_11_1 doi: 10.2147/IJN.S35832 – ident: e_1_3_4_39_1 doi: 10.2147/IJN.S59394 – ident: e_1_3_4_34_1 doi: 10.1016/j.carbon.2005.11.010 – ident: e_1_3_4_33_1 doi: 10.1158/0008-5472.CAN-08-1468 – ident: e_1_3_4_47_1 doi: 10.1021/nl8032608 – ident: e_1_3_4_24_1 doi: 10.1039/c3nr00636k – ident: e_1_3_4_23_1 doi: 10.1021/nl8032608 – ident: e_1_3_4_28_1 doi: 10.1039/B911099M – ident: e_1_3_4_48_1 doi: 10.1093/cvr/cvp332 – ident: e_1_3_4_19_1 doi: 10.1038/nnano.2008.231 – ident: e_1_3_4_5_1 doi: 10.1186/1556-276X-7-452 – ident: e_1_3_4_7_1 doi: 10.2174/138945011794815257 – ident: e_1_3_4_3_1 doi: 10.1002/smll.200700351 – ident: e_1_3_4_29_1 doi: 10.1039/c2cc17995d – ident: e_1_3_4_14_1 doi: 10.1126/science.1060928 – ident: e_1_3_4_37_1 doi: 10.1021/bc034158v – ident: e_1_3_4_20_1 doi: 10.1073/pnas.1208312109 – ident: e_1_3_4_42_1 doi: 10.1038/nbt0708-774 – ident: e_1_3_4_32_1 doi: 10.1016/j.addr.2013.08.005 – ident: e_1_3_4_30_1 doi: 10.1016/j.nantod.2009.04.002 – ident: e_1_3_4_21_1 doi: 10.1038/nnano.2006.170 – ident: e_1_3_4_51_1 doi: 10.18632/oncotarget.490 – ident: e_1_3_4_46_1 doi: 10.3390/ijms141224619 – ident: e_1_3_4_10_1 doi: 10.1016/j.addr.2013.10.002 – ident: e_1_3_4_44_1 doi: 10.2147/IJN.S17626 – ident: e_1_3_4_16_1 doi: 10.2174/092986710789957742 – volume: 4 start-page: 32 issue: 1 year: 2011 ident: e_1_3_4_49_1 article-title: Multimodality molecular imaging of CD105 (Endoglin) expression publication-title: Int. J. Clin. Exp. Med. contributor: fullname: Zhang Y |
SSID | ssj0058210 |
Score | 2.3272247 |
Snippet | This study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and compared... Aim: This study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and... AIMThis study evaluated the improvement in magnetic targeting of single-walled carbon nanotubes (SWCNTs) in a 4T1-induced breast cancer murine model and... |
SourceID | proquest gale crossref pubmed futurescience |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 931 |
SubjectTerms | active and passive targeting Animals Biocompatible Materials - chemistry Breast cancer Cell Line, Tumor Cell Survival DDS Diffusion Drug Carriers - chemistry drug delivery systems Drug targeting Drug therapy Endoglin Female Humans Intracellular Signaling Peptides and Proteins - metabolism Iron - chemistry Light Magnetic Resonance Imaging magnetic targeting noninvasive imaging Magnetics Mammary Neoplasms, Animal - pathology Mammary Neoplasms, Animal - therapy Metal Nanoparticles - chemistry Methods Mice Mice, Inbred BALB C MRI Nanomedicine - methods Nanotubes Nanotubes, Carbon - chemistry Neoplasms - pathology Neoplasms - therapy Pyrrolidinones - chemistry Scattering, Radiation single-walled carbon nanotubes Spectrophotometry, Ultraviolet SWCNTs |
Title | Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model |
URI | http://dx.doi.org/10.2217/nnm.14.145 https://www.ncbi.nlm.nih.gov/pubmed/25867858 https://www.proquest.com/docview/1698456210 https://search.proquest.com/docview/1673374338 https://search.proquest.com/docview/1680450548 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa68QJCiJ-jMJARSDxEYXHcpDFvBToNaQzEOmlv0cVJ2KQ1RWmKxDP_OHd2nKZjQuMBKYpax7ac3Jfz3ZfzmbFXEKNqjOPQl_lY-aNYg59Ajs5KpEtRlqUamQSmB8fjo9Pkw3Q0HQzc_gnrsv8qaSxDWdPK2X-QdtcpFuBvlDmeUep4vpbcv7QbhzREhc_hW0WrFD0b8N1GOGuoMxR6BdWiWWU2x4Mm6dcefUs2QXIV0bQ_wAS3NzVoYtS9lSEWPn39SCwJeHNi6gsvo7j2xvVgttbpm7yovxfuC_6VG4j0yYgLbx9qMF-UJvqshrJjgM7g3CjuyXIOqO4u0KiFXrNj-Glp23fYHvpchojWwVyt-qWEqVFiNxV6U7iyxI9Vqwadzg562OwrYNXOKXYuVzaL5-VpIgxNbqmqmuNEgUe0ngxdAMDR53T_5PAwnU1PZ1vsRohqTDouyM7ztMK4XW5rx2yT31Lfe-ueN8yd2zZPTGvb_GkEXHJtjIkzu8vutL4Jn1hQ3WODorrPbvUyVj5gv_rw4g5evIMXX5Tcwot38OLNgltwcAOvt7wHLu7AxQ24OIKLn1ccuAUXt-By7Q24HrKT_ens_YHf7uPh6yhMGr8MtMoUQJxlYallJnJ0OpQclSIrAllqtNHVKA-KWEVhLsRYgBYSbybW4TgUOpCP2DYOrHjMuFKJKMkmFXJMVIQiYhjCCLK8QGUUDNlL97jT7zZdS4puLgklRaGgo4tHNGR7G5JI7T_3LlzZ4jXJKiUU0XOBdvEKjoryp6UTokkkejvxkO1u1ERtrTcvO2mnrdZYpiJWCTERAsf_ortMLSkCsioWK6ozlnjPUiZ_q5Ogh4ZOGNbZsUjqnkIYJWiXRsmTa7R-ym6u385dtt3Uq-IZ21rmq-fmFfgNIPjeKw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preferential+magnetic+targeting+of+carbon+nanotubes+to+cancer+sites%3A+noninvasive+tracking+using+MRI+in+a+murine+breast+cancer+model&rft.jtitle=Nanomedicine+%28London%2C+England%29&rft.au=Al+Faraj%2C+Achraf&rft.au=Shaik%2C+Asma+Sultana&rft.au=Al+Sayed%2C+Baraa&rft.date=2015-03-01&rft.issn=1743-5889&rft.eissn=1748-6963&rft.volume=10&rft.issue=6&rft.spage=931&rft.epage=948&rft_id=info:doi/10.2217%2Fnnm.14.145&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-5889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-5889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-5889&client=summon |