E1A and a Nuclear Receptor Corepressor Splice Variant ( N- CoRI) Are Thyroid Hormone Receptor Coactivators That Bind in the Corepressor Mode

Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these e...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 102; no. 18; pp. 6267 - 6272
Main Authors: Meng, Xianwang, Webb, Paul, Yang, Yong-Fan, Shuen, Michael, Yousef, Ahmed F., Baxter, John D., Mymryk, Joe S., Walfish, Paul G.
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 03-05-2005
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae, which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant ( N- CoRI) and an artificial N-CoR truncation ( N- CoRC) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N- CoRIare naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals.
AbstractList Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae , which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant (N-CoR I ) and an artificial N-CoR truncation (N-CoR C ) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N-CoR I are naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals.
Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae, which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant (N-CoRI) and an artificial N-CoR truncation (N-CoRC) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N-CoRI are naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals. [PUBLICATION ABSTRACT]
Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae , which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant (N-CoR I ) and an artificial N-CoR truncation (N-CoR C ) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N-CoR I are naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals. nuclear receptor coregulators gene activation
Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae, which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant (N-CoR(I)) and an artificial N-CoR truncation (N-CoR(C)) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N-CoR(I) are naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals.
Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae, which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant (N-CoR sub(I)) and an artificial N-CoR truncation (N-CoR sub(C)) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N-CoR sub(I) are naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals.
Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae, which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant ( N- CoRI) and an artificial N-CoR truncation ( N- CoRC) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N- CoRIare naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals.
Author Webb, Paul
Yang, Yong-Fan
Meng, Xianwang
Mymryk, Joe S.
Yousef, Ahmed F.
Baxter, John D.
Shuen, Michael
Walfish, Paul G.
AuthorAffiliation Department of Medicine, Endocrine Division, Mount Sinai Hospital, University of Toronto Medical School, Toronto, ON, Canada M5G 1X5; ‡ Departments of Oncology, Microbiology, and Immunology, University of Western Ontario and London Regional Cancer Centre, London, ON, Canada N6A 4L6; and † Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143
AuthorAffiliation_xml – name: Department of Medicine, Endocrine Division, Mount Sinai Hospital, University of Toronto Medical School, Toronto, ON, Canada M5G 1X5; ‡ Departments of Oncology, Microbiology, and Immunology, University of Western Ontario and London Regional Cancer Centre, London, ON, Canada N6A 4L6; and † Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143
Author_xml – sequence: 1
  givenname: Xianwang
  surname: Meng
  fullname: Meng, Xianwang
– sequence: 2
  givenname: Paul
  surname: Webb
  fullname: Webb, Paul
– sequence: 3
  givenname: Yong-Fan
  surname: Yang
  fullname: Yang, Yong-Fan
– sequence: 4
  givenname: Michael
  surname: Shuen
  fullname: Shuen, Michael
– sequence: 5
  givenname: Ahmed F.
  surname: Yousef
  fullname: Yousef, Ahmed F.
– sequence: 6
  givenname: John D.
  surname: Baxter
  fullname: Baxter, John D.
– sequence: 7
  givenname: Joe S.
  surname: Mymryk
  fullname: Mymryk, Joe S.
– sequence: 8
  givenname: Paul G.
  surname: Walfish
  fullname: Walfish, Paul G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15849266$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCmQsCiwMqh239sf66IIWo0EqlSKVwtbybWbLRZr21vRX9D_xoHCVqWg5w8kjzzDvjmfcA7fW-B4ReUnJMieInQ-_iMRGEloZSwp6gCSWGFrI0ZA9NCGGq0CUr99FBjEtCiBGaPEP7VOjSMCkn6PcpnWLXz7HDl2PdgQv4CmoYkg945gMMAWLM8beha2vAP1xoXZ_wEb4scv7q_D2eBsDXi7vg2zk-82GVB3wo4erU3rocx0y5hD-2uVnb47SARw2--Dk8R08b10V4sX0P0fdPp9ezs-Li6-fz2fSiqAVTqWiqUkklGikdcFPTudaNgYpU1JSqEY7lHQiTR2hk4zQXhDFj6rKS4CQXjvJD9GGjO4zVCuY19Cm4zg6hXblwZ71r7eNM3y7sT39rKdGaK5UF3m0Fgr8ZISa7amMNXed68GO0UimjhCj_C1KlpaaSZfDtX-DSj6HPW7AsX5eIfLEMnWygOvgYAzT3I1Ni136waz_YnR9yxeuHP93xWwNk4GgLrCt3csxSbSWTyjZj1yX4lTL65t9oJl5tiGXMB79HOFeCU8b_AHkk1H8
CitedBy_id crossref_primary_10_1089_thy_2010_1661
crossref_primary_10_1002_pmic_201200534
crossref_primary_10_1016_j_virol_2018_08_012
crossref_primary_10_1186_1471_2199_11_3
crossref_primary_10_1073_pnas_0910134106
crossref_primary_10_2217_fmb_11_80
crossref_primary_10_1016_j_tibs_2010_10_002
crossref_primary_10_1093_nar_gkv642
crossref_primary_10_1038_cr_2009_55
crossref_primary_10_1590_S1415_47572008000300003
crossref_primary_10_1099_vir_0_056838_0
crossref_primary_10_1074_jbc_M610700200
crossref_primary_10_1128_JVI_00104_08
crossref_primary_10_1590_S0004_27302009000600003
crossref_primary_10_1371_journal_ppat_1005621
crossref_primary_10_1621_nrs_04022
crossref_primary_10_1002_pros_23689
crossref_primary_10_1621_nrs_03003
Cites_doi 10.1210/mend.14.5.0457
10.1128/MCB.17.5.2642
10.1210/mend.13.7.0316
10.1074/jbc.M207264200
10.1016/S0968-0004(00)88990-2
10.1016/0092-8674(95)90199-X
10.1038/nrm827
10.1101/gad.11.13.1640
10.1210/mend.14.7.0470
10.1101/gad.13.24.3209
10.1210/mend.16.2.0777
10.1210/mend.16.7.0860
10.1074/jbc.M011027200
10.1210/me.2002-0294
10.1093/genetics/147.2.451
10.1210/mend.14.6.0474
10.1210/mend.14.12.0566
10.1073/pnas.96.6.2639
10.1101/gad.14.2.121
10.1074/jbc.C000567200
10.1139/o97-029
10.1128/MCB.19.1.86
10.1152/physrev.2001.81.3.1097
10.1023/A:1010052101214
10.1074/jbc.M105161200
10.1210/mend.15.7.0669
10.1016/S0303-7207(99)00032-5
10.1074/jbc.271.45.28516
10.1101/gad.13.24.3198
10.1074/jbc.274.32.22345
10.1038/377454a0
10.1038/377397a0
10.1073/pnas.94.8.3697
10.1002/j.1460-2075.1995.tb00044.x
10.1038/47069
10.1126/science.280.5370.1747
10.1038/415813a
10.1074/jbc.M209546200
ContentType Journal Article
Copyright Copyright 1993/2005 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 3, 2005
Copyright © 2005, The National Academy of Sciences 2005
Copyright_xml – notice: Copyright 1993/2005 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 3, 2005
– notice: Copyright © 2005, The National Academy of Sciences 2005
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0501491102
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE
Nucleic Acids Abstracts

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6272
ExternalDocumentID 832200571
10_1073_pnas_0501491102
15849266
102_18_6267
3375312
Genre Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK051281
– fundername: NIDDK NIH HHS
  grantid: DK41482
– fundername: NIDDK NIH HHS
  grantid: DK51281
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c527t-fb47675f66ae39c1d88f9eb0b1947f5a210959ecef6fa83502299c4b6ea635a13
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:18:12 EDT 2024
Fri Oct 25 05:13:36 EDT 2024
Fri Oct 25 01:24:03 EDT 2024
Tue Nov 19 04:48:02 EST 2024
Thu Nov 21 21:19:44 EST 2024
Sat Sep 28 07:45:45 EDT 2024
Wed Nov 11 00:29:19 EST 2020
Thu May 30 08:53:07 EDT 2019
Fri Feb 02 07:04:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-fb47675f66ae39c1d88f9eb0b1947f5a210959ecef6fa83502299c4b6ea635a13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
J.D.B. has proprietary interests in, and serves as a consultant and Deputy Director to, Karo Bio AB, which has commercial interests in this area of research.
To whom correspondence should be addressed. E-mail: walfish@mshri.on.ca.
Abbreviations: TH, thyroid hormone; TR, TH receptor; NR, nuclear receptor; T3, triiodothyronine; TRE, TH response element; N-CoR, NR corepressor; SMRT, silencing mediator for retinoid receptors and TRs; ID, interacting domain; RD, repressor domain; CoRNR, CoR-NR interaction; CBM, CoRNR box motif; E1A, human adenovirus type 5 early region 1A; Triac, l-triiodothyroacetic acid; TSH, thyroid-stimulating hormone.
Author contributions: X.M., P.W., J.D.B., J.S.M., and P.G.W. designed research; X.M., P.W., Y.-F.Y., and M.S. performed research; P.W., J.S.M., and P.G.W. contributed new reagents/analytic tools; X.M., P.W., Y.-F.Y., M.S., J.D.B., J.S.M., and P.G.W. analyzed data; and X.M., P.W., J.D.B., J.S.M., and P.G.W. wrote the paper.
Contributed by John D. Baxter, February 28, 2005
OpenAccessLink https://doi.org/10.1073/pnas.0501491102
PMID 15849266
PQID 201405584
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201405584
pnas_primary_102_18_6267_fulltext
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1088377
crossref_primary_10_1073_pnas_0501491102
proquest_miscellaneous_17868162
jstor_primary_3375312
proquest_miscellaneous_67797554
pnas_primary_102_18_6267
pubmed_primary_15849266
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2005-05-03
PublicationDateYYYYMMDD 2005-05-03
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2005
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 9224714 - Genes Dev. 1997 Jul 1;11(13):1640-50
8521507 - Cell. 1995 Dec 15;83(6):835-9
9111334 - Mol Cell Biol. 1997 May;17(5):2642-8
10509808 - Mol Cell Endocrinol. 1999 Aug 20;154(1-2):137-49
11704997 - Rev Endocr Metab Disord. 2000 Jan;1(1-2):9-18
9624051 - Science. 1998 Jun 12;280(5370):1747-9
11435607 - Mol Endocrinol. 2001 Jul;15(7):1049-61
10617569 - Genes Dev. 1999 Dec 15;13(24):3198-208
10406463 - Mol Endocrinol. 1999 Jul;13(7):1119-29
10573424 - Nature. 1999 Nov 4;402(6757):93-6
12089344 - Mol Endocrinol. 2002 Jul;16(7):1482-91
9858534 - Mol Cell Biol. 1999 Jan;19(1):86-98
7770913 - Trends Biochem Sci. 1995 Apr;20(4):143-6
10652267 - Genes Dev. 2000 Jan 15;14(2):121-41
10809234 - Mol Endocrinol. 2000 May;14(5):718-32
11818500 - Mol Endocrinol. 2002 Feb;16(2):271-86
7566114 - Nature. 1995 Oct 5;377(6548):397-404
9335585 - Genetics. 1997 Oct;147(2):451-65
11053406 - J Biol Chem. 2000 Dec 22;275(51):39855-9
11117528 - Mol Endocrinol. 2000 Dec;14(12):1976-85
7566127 - Nature. 1995 Oct 5;377(6548):454-7
8813722 - Mol Endocrinol. 1996 Jul;10(7):813-25
10077563 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2639-44
12388540 - J Biol Chem. 2002 Dec 20;277(51):49517-22
11668176 - J Biol Chem. 2002 Jan 25;277(4):2463-7
10428804 - J Biol Chem. 1999 Aug 6;274(32):22345-53
10894146 - Mol Endocrinol. 2000 Jul;14(7):947-55
11845213 - Nature. 2002 Feb 14;415(6873):813-7
9108040 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3697-702
12637585 - Mol Endocrinol. 2003 Jun;17(6):1095-105
8910480 - J Biol Chem. 1996 Nov 8;271(45):28516-20
10617570 - Genes Dev. 1999 Dec 15;13(24):3209-16
12042766 - Nat Rev Mol Cell Biol. 2002 Jun;3(6):441-52
10847591 - Mol Endocrinol. 2000 Jun;14(6):900-14
11328825 - J Biol Chem. 2001 May 4;276(18):15066-72
11427693 - Physiol Rev. 2001 Jul;81(3):1097-142
7641693 - EMBO J. 1995 Aug 1;14(15):3741-51
12419821 - J Biol Chem. 2003 Jan 10;278(2):732-8
9250357 - Biochem Cell Biol. 1997;75(2):95-102
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
(e_1_3_2_6_2) 1996; 10
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_25_2
  doi: 10.1210/mend.14.5.0457
– volume: 10
  start-page: 813
  year: 1996
  ident: e_1_3_2_6_2
  publication-title: Mol. Endocrinol.
– ident: e_1_3_2_15_2
  doi: 10.1128/MCB.17.5.2642
– ident: e_1_3_2_34_2
  doi: 10.1210/mend.13.7.0316
– ident: e_1_3_2_18_2
  doi: 10.1074/jbc.M207264200
– ident: e_1_3_2_29_2
  doi: 10.1016/S0968-0004(00)88990-2
– ident: e_1_3_2_3_2
  doi: 10.1016/0092-8674(95)90199-X
– ident: e_1_3_2_28_2
  doi: 10.1038/nrm827
– ident: e_1_3_2_31_2
  doi: 10.1101/gad.11.13.1640
– ident: e_1_3_2_14_2
  doi: 10.1210/mend.14.7.0470
– ident: e_1_3_2_10_2
  doi: 10.1101/gad.13.24.3209
– ident: e_1_3_2_12_2
  doi: 10.1210/mend.16.2.0777
– ident: e_1_3_2_20_2
  doi: 10.1210/mend.16.7.0860
– ident: e_1_3_2_22_2
  doi: 10.1074/jbc.M011027200
– ident: e_1_3_2_26_2
  doi: 10.1210/me.2002-0294
– ident: e_1_3_2_32_2
  doi: 10.1093/genetics/147.2.451
– ident: e_1_3_2_35_2
  doi: 10.1210/mend.14.6.0474
– ident: e_1_3_2_11_2
  doi: 10.1210/mend.14.12.0566
– ident: e_1_3_2_23_2
  doi: 10.1073/pnas.96.6.2639
– ident: e_1_3_2_7_2
  doi: 10.1101/gad.14.2.121
– ident: e_1_3_2_39_2
  doi: 10.1074/jbc.C000567200
– ident: e_1_3_2_27_2
  doi: 10.1139/o97-029
– ident: e_1_3_2_30_2
  doi: 10.1128/MCB.19.1.86
– ident: e_1_3_2_2_2
  doi: 10.1152/physrev.2001.81.3.1097
– ident: e_1_3_2_1_2
  doi: 10.1023/A:1010052101214
– ident: e_1_3_2_38_2
  doi: 10.1074/jbc.M105161200
– ident: e_1_3_2_36_2
  doi: 10.1210/mend.15.7.0669
– ident: e_1_3_2_19_2
  doi: 10.1016/S0303-7207(99)00032-5
– ident: e_1_3_2_21_2
  doi: 10.1074/jbc.271.45.28516
– ident: e_1_3_2_9_2
  doi: 10.1101/gad.13.24.3198
– ident: e_1_3_2_16_2
  doi: 10.1074/jbc.274.32.22345
– ident: e_1_3_2_5_2
  doi: 10.1038/377454a0
– ident: e_1_3_2_4_2
  doi: 10.1038/377397a0
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.94.8.3697
– ident: e_1_3_2_37_2
  doi: 10.1002/j.1460-2075.1995.tb00044.x
– ident: e_1_3_2_8_2
  doi: 10.1038/47069
– ident: e_1_3_2_33_2
  doi: 10.1126/science.280.5370.1747
– ident: e_1_3_2_13_2
  doi: 10.1038/415813a
– ident: e_1_3_2_17_2
  doi: 10.1074/jbc.M209546200
SSID ssj0009580
Score 1.9319896
Snippet Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6267
SubjectTerms Adenovirus
Adenovirus E1A Proteins - metabolism
Amino Acid Motifs - genetics
Amino acids
Biological Sciences
Co repressor proteins
Gene expression
Genes
Genetic mutation
Glutathione Transferase
Hormones
Human adenovirus
Mammals
Nuclear Proteins - metabolism
Nuclear Receptor Co-Repressor 1
Proteins
Receptors
Receptors, Thyroid Hormone - metabolism
Repressor Proteins - metabolism
Saccharomyces cerevisiae
Thyroid gland
Transcriptional Activation
Truncation
Two-Hybrid System Techniques
Yeast
Yeasts
SummonAdditionalLinks – databaseName: JSTOR Life Sciences Collection
  dbid: JLS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnrgAhUJDeRiph-0hNI4TP46lbLVc9kAL4mY5G1tdqcquNrtI_If-6M7ksQ_ESkg5RPLEtjye-BvP-DPAWUl-huQ-DiEVMa4QPEZUXcToiZV54orSBdoaGN2o8S_9dUg0OWf9WRhKq2zyApsoPgKk4t5fCIGgmq4SPtCJbtP2toh1dXvMJMW_bZZmPX2PEhfzytWfEwqcoUV3-yb9ytMmHxKjKQr9C13-nSS5tepcP_-__r6AZx2qZJftNDiCJ756CUed3dZs0JFLn7-ChyG_ZK4qmWNjojJ2C4bI0c-xbnY1W7R5sfh-Q3Ftz36iK41jzwZsHGP592_n2Ihnt3d_FrNpyUaIeGeV366CDkr8Jk--Rim3ZF_Q6WfTiiHQ3GmALmE7hh_Xw9urUdzdyBBP8lQt41BkRP4SpHRemAkvtQ7GF0nBTaZC7tB_NLnBJoMMDrEdAgRjJlkhvUNg47h4DYcVdusEWGoyn8ssIITQWci49sIleiLxUxeCKCIY9Nqy85Z4wzYBcyUs6cxuFBvBcaOCtVw3_hGcNJKbz1PLtUUXTkXwaV-RDV3WTQSn_aywnWHXNiWPNEfUFsHHdSlaJIVZXOVnq9pypaXmMt0vIZUyCnFcBG_aObbpB9ZsEDNFoHZm31qA2MB3S6rpXcMKznG9EEq93TMYp_C0YZ2lR7yDw-Vi5d_DQV2uPjQG9Qh-ihve
  priority: 102
  providerName: JSTOR
Title E1A and a Nuclear Receptor Corepressor Splice Variant ( N- CoRI) Are Thyroid Hormone Receptor Coactivators That Bind in the Corepressor Mode
URI https://www.jstor.org/stable/3375312
http://www.pnas.org/content/102/18/6267.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15849266
https://www.proquest.com/docview/201405584
https://search.proquest.com/docview/17868162
https://search.proquest.com/docview/67797554
https://pubmed.ncbi.nlm.nih.gov/PMC1088377
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6iO3FBDAYLG8VIHLpD2jhO7Pg4lU6bEBPih8TNchJbq7S5VdPuj-Cv3rOTtCtiF6Qe2vjZsfr84u-Lnz8DfKo9z-DUxNamLMYZgsaIqssYmVidJ7qstfWvBi5_iOvfxeeZl8nJ-70wIWm_Kudjd3s3dvObkFu5vKsmfZ7Y5NvXKcXQYEJMBjBAbNhT9K3SbtHuO0nx8ZulWa_nI9hk6XQzTvxKGoZ4Eg6ywflXpkEicTcrtYmJXu0U7f-FPP9OoHw0I128hBcdlCTnbZcP4Zlxr-CwC9aGjDpF6bPX8GdGz4l2NdHEef1ivSL4oDNLvD_xMpYhGRa_N34x25B75M_4h5PRdTxdfL86I3plCDp0tZjX5AZB7sKZxw34vRH3nrw3aKXXBMl2TeYOf5i95v2pO0fw62L2c3oZd4cwxFWeinVsy8zrvVjOtWGyonVRWGnKpKQyEzbXSBllLvGWlluNcA4xgZRVVnKjEctoyt7AgcNuHQNJZWZynllEDUVmM1oYppOi4lhVW8vKCEa9E9Sy1dpQYY1cMOVdoXaui-AoOGlrxxjyLorXj4PlrnqqaKGQtYkIPj5VpGyXaBPBSe9s1cVyo1JPQnMcKBF82JZiEPqVFe3MYtMoKgpeUJ4-bcGFkAKhWwRv26Gz60c3BCMQe4Nqa-AFwPdLMC6CEHgXB-_-u-YJPA9StP7DTuFgvdqY9zBo6s0Q6cXVl2FIkR2GcziGIcweAKbwKX0
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOcClUCh0W0qN1EN6WBqvvX4cS5sqFSUHGhA3y5u11UhoE2WTSv0P_GjG-8gDEQlpDyt51rZsz843nvFngNM8-BmCutj7hMVoIWiMqDqL0RPL067NcuvD1kD_Tg5-qqteoMk5bc_ChLTKKi-wiuIjQMp-uXPGEFSHq4SfpQptdH0vwBq1rqoPmiT4v-UJbwl8JDufFrb81A2hM9TpZuektT11-mHgNEWhf-HLv9Mk1-zO9cv_6_Er2G1wJbmoF8IePHHFa9hrNLcknYZe-uwN_O7RC2KLnFgyCGTGdkYQO7op1k0uJ7M6Mxbf70Jk25Ef6Ezj6JMOGcRY_u3mDBtxZHj_OJuMc9JHzDsp3HoV4ajEQ_DlS5Syc_IZ3X4yLghCzY0GwjVs-_D9uje87MfNnQzxKE3kPPYZD_QvXgjrmB7RXCmvXdbNqObSpxY9SJ1qbNILbxHdIUTQesQz4SxCG0vZW9gpsFsHQBLNXSq4RxChuOdUOWa7aiTwU-s9yyLotLNlpjX1hqlC5pKZMGdmNbER7FdTsJRrxj-Cg0py9XliqDLoxMkIPm4rMr7Ju4ngqF0VplHt0iTBJ00Rt0VwsixFnQyBFlu4yaI0VCqhqEi2SwgptUQkF8G7eo2t-oE1a0RNEciN1bcUCHzgmyXF-L7iBadoMZiUh1sG4wSe94dfb83tzeDLEbyoOGjDw97Dzny2cMfwtMwXHyrl-gNo_h8k
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkBAvwGBsYcCMxEP3EBrbiT8ex9aqE6hCbCDeLKextUoorZoWif-BP5pzPvqBqISUh0i-2JbPF__Od_4Z4F0R_AxBXew94zGuEDRGVJ3H6IkVWWLzwvqwNTC6kePv6moQaHJ63VmYkFZZ5wXWUXwESPkP158Xvs85AutwnfCDTDGZNMl7W_S6qjlswvCfm7K0I_GRvD8vbfU-CeEztOt296Rbf5oUxMBrikL_wph_p0purT3DJ__f66fwuMWX5KKZEIdwz5XP4LC14Ir0Wprp8-fwe0AviC0LYsk4kBrbBUEM6eZYP7mcLZoMWXy_CRFuR76hU41aID0yjrH8y_U5NuLI7d2vxWxakBFi31nptqsIRyZ-Bp--Qim7JB_Q_SfTkiDk3GkgXMd2BF-Hg9vLUdzezRBPMiaXsc_TQAPjhbCO6wktlPLa5UlOdSp9ZtGT1JnGJr3wFlEeQgWtJ2kunEWIYyl_AQcldusECNOpy0TqEUyo1KdUOW4TNRH4qfWe5xH0Oo2ZeUPBYerQueQm6M1slBvBUa2GtVw7_hGc1JKbz5mhyqAzJyN4u6_I-Db_JoLTbmaY1sQrw4JvmiF-i-BsXYq2GQIutnSzVWWoVEJRwfZLCCm1REQXwXEzzzb9wJo1oqcI5M4MXAsEXvDdknJ6V_ODU1w5uJQv9wzGGTz8fDU0n67HH0_hUU1FGx7-Cg6Wi5V7DferYvWmtq8_qNYhrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E1A+and+a+Nuclear+Receptor+Corepressor+Splice+Variant+%28+N-+CoRI%29+Are+Thyroid+Hormone+Receptor+Coactivators+That+Bind+in+the+Corepressor+Mode&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Meng%2C+Xianwang&rft.au=Webb%2C+Paul&rft.au=Yang%2C+Yong-Fan&rft.au=Shuen%2C+Michael&rft.date=2005-05-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=102&rft.issue=18&rft.spage=6267&rft.epage=6272&rft_id=info:doi/10.1073%2Fpnas.0501491102&rft.externalDocID=3375312
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F18.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F18.cover.gif