Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs administered new generation lipid emulsions

We aimed to characterize the lipidomic, metabolomic, and transcriptomic profiles in preterm piglets administered enteral (ENT) formula or three parenteral lipid emulsions [parenteral nutrition (PN)], Intralipid (IL), Omegaven (OV), or SMOFlipid (SL), for 14 days. Piglets in all parenteral lipid grou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research Vol. 57; no. 9; pp. 1696 - 1711
Main Authors: Guthrie, Gregory, Kulkarni, Madhulika, Vlaardingerbroek, Hester, Stoll, Barbara, Ng, Kenneth, Martin, Camilia, Belmont, John, Hadsell, Darryl, Heird, William, Newgard, Christopher B., Olutoye, Oluyinka, van Goudoever, Johannes, Lauridsen, Charlotte, He, Xingxuan, Schuchman, Edward H., Burrin, Douglas
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-09-2016
The American Society for Biochemistry and Molecular Biology
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We aimed to characterize the lipidomic, metabolomic, and transcriptomic profiles in preterm piglets administered enteral (ENT) formula or three parenteral lipid emulsions [parenteral nutrition (PN)], Intralipid (IL), Omegaven (OV), or SMOFlipid (SL), for 14 days. Piglets in all parenteral lipid groups showed differential organ growth versus ENT piglets; whole body growth rate was lowest in IL piglets, yet there were no differences in either energy expenditure or 13C-palmitate oxidation. Plasma homeostatic model assessment of insulin resistance demonstrated insulin resistance in IL, but not OV or SL, compared with ENT. The fatty acid and acyl-CoA content of the liver, muscle, brain, and plasma fatty acids reflected the composition of the dietary lipids administered. Free carnitine and acylcarnitine (ACT) levels were markedly reduced in the PN groups compared with ENT piglets. Genes associated with oxidative stress and inflammation were increased, whereas those associated with alternative pathways of fatty acid oxidation were decreased in all PN groups. Our results show that new generation lipid emulsions directly enrich tissue fatty acids, especially in the brain, and lead to improved growth and insulin sensitivity compared with a soybean lipid emulsion. In all total PN groups, carnitine levels are limiting to the formation of ACTs and gene expression reflects the stress of excess lipid on liver function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M069526