Switch-peptides as folding precursors in self-assembling peptides and amyloid fibrillogenesis

The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide selfassembly into β‐sheets and amyloid β (Aβ) fibrils is strongly hampered by the...

Full description

Saved in:
Bibliographic Details
Published in:Biopolymers Vol. 88; no. 2; pp. 239 - 252
Main Authors: Tuchscherer, Gabriele, Chandravarkar, Arunan, Camus, Marie-Stéphanie, Bérard, Jérémy, Murat, Karine, Schmid, Adrian, Mimna, Richard, Lashuel, Hilal A., Mutter, Manfred
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide selfassembly into β‐sheets and amyloid β (Aβ) fibrils is strongly hampered by their difficult synthetic access and low solubility. We have recently developed a new concept termed “switch‐peptides” that allows the controlled onset of polypeptide folding and misfolding at physiologic conditions. As a major feature, the folding process is initiated by chemically or enzyme triggered O,N‐acyl migration in flexible and soluble folding precursors containing Ser‐ or Thr‐derived switch (S)‐elements. The elaborated methodologies are exemplified for the in situ conversion of NPY‐ and Cyclosporine A‐derived prodrugs, as well as for the onset and reversal of α and β conformational transitions in Aβ peptides. In combining orthogonally addressable switch‐elements, the consecutive switching on of S‐elements gives new insights into the role of individual peptide segments (“hot spots”) in early processes of polypeptide self‐assembly and fibrillogenesis. Finally, the well‐known secondary structure disrupting effect of pseudoprolines (ΨPro) is explored for its use as a building block (S‐element) in switch‐peptides. To this end, synthetic strategies are described, allowing for the preparation of Ψ Pro‐containing folding precursors, exhibiting flexible random‐coil conformations devoid of fibril forming propensity. The onset of β‐sheet and fibril formation by restoring the native peptide chain in a single step classify Ψ Pro‐units as the most powerful tool for inhibiting peptide self‐assembly, and complement the present methodologies of the switch‐concept for the study of fibrillogenesis. © 2007 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 88: 239–252, 2007. This article was originally published online as an accepted preprint. The ‘Published Online’ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
AbstractList The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide selfassembly into β‐sheets and amyloid β (Aβ) fibrils is strongly hampered by their difficult synthetic access and low solubility. We have recently developed a new concept termed “switch‐peptides” that allows the controlled onset of polypeptide folding and misfolding at physiologic conditions. As a major feature, the folding process is initiated by chemically or enzyme triggered O,N ‐acyl migration in flexible and soluble folding precursors containing Ser‐ or Thr‐derived switch (S)‐elements. The elaborated methodologies are exemplified for the in situ conversion of NPY‐ and Cyclosporine A‐derived prodrugs, as well as for the onset and reversal of α and β conformational transitions in Aβ peptides. In combining orthogonally addressable switch‐elements, the consecutive switching on of S‐elements gives new insights into the role of individual peptide segments (“hot spots”) in early processes of polypeptide self‐assembly and fibrillogenesis. Finally, the well‐known secondary structure disrupting effect of pseudoprolines (ΨPro) is explored for its use as a building block (S‐element) in switch‐peptides. To this end, synthetic strategies are described, allowing for the preparation of Ψ Pro‐containing folding precursors, exhibiting flexible random‐coil conformations devoid of fibril forming propensity. The onset of β‐sheet and fibril formation by restoring the native peptide chain in a single step classify Ψ Pro‐units as the most powerful tool for inhibiting peptide self‐assembly, and complement the present methodologies of the switch‐concept for the study of fibrillogenesis. © 2007 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 88: 239–252, 2007. This article was originally published online as an accepted preprint. The ‘Published Online’ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide self-assembly into beta-sheets and amyloid beta (Abeta) fibrils is strongly hampered by their difficult synthetic access and low solubility. We have recently developed a new concept termed switch-peptides that allows the controlled onset of polypeptide folding and misfolding at physiologic conditions. As a major feature, the folding process is initiated by chemically or enzyme triggered O,N-acyl migration in flexible and soluble folding precursors containing Ser- or Thr-derived switch (S)-elements. The elaborated methodologies are exemplified for the in situ conversion of NPY- and Cyclosporine A-derived prodrugs, as well as for the onset and reversal of alpha and beta conformational transitions in Abeta peptides. In combining orthogonally addressable switch-elements, the consecutive switching on of S-elements gives new insights into the role of individual peptide segments (hot spots) in early processes of polypeptide self-assembly and fibrillogenesis. Finally, the well-known secondary structure disrupting effect of pseudoprolines (PsiPro) is explored for its use as a building block (S-element) in switch-peptides. To this end, synthetic strategies are described, allowing for the preparation of PsiPro-containing folding precursors, exhibiting flexible random-coil conformations devoid of fibril forming propensity. The onset of beta-sheet and fibril formation by restoring the native peptide chain in a single step classify PsiPro-units as the most powerful tool for inhibiting peptide self-assembly, and complement the present methodologies of the switch-concept for the study of fibrillogenesis.
The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide selfassembly into -sheets and amyloid (A) fibrils is strongly hampered by their difficult synthetic access and low solubility. We have recently developed a new concept termed switch-peptides that allows the controlled onset of polypeptide folding and misfolding at physiologic conditions. As a major feature, the folding process is initiated by chemically or enzyme triggered O,N-acyl migration in flexible and soluble folding precursors containing Ser- or Thr-derived switch (S)-elements. The elaborated methodologies are exemplified for the in situ conversion of NPY- and Cyclosporine A-derived prodrugs, as well as for the onset and reversal of and conformational transitions in A peptides. In combining orthogonally addressable switch-elements, the consecutive switching on of S-elements gives new insights into the role of individual peptide segments (hot spots) in early processes of polypeptide self-assembly and fibrillogenesis. Finally, the well-known secondary structure disrupting effect of pseudoprolines (Pro) is explored for its use as a building block (S-element) in switch-peptides. To this end, synthetic strategies are described, allowing for the preparation of Pro-containing folding precursors, exhibiting flexible random-coil conformations devoid of fibril forming propensity. The onset of -sheet and fibril formation by restoring the native peptide chain in a single step classify Pro-units as the most powerful tool for inhibiting peptide self-assembly, and complement the present methodologies of the switch-concept for the study of fibrillogenesis.
The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide selfassembly into β‐sheets and amyloid β (Aβ) fibrils is strongly hampered by their difficult synthetic access and low solubility. We have recently developed a new concept termed “switch‐peptides” that allows the controlled onset of polypeptide folding and misfolding at physiologic conditions. As a major feature, the folding process is initiated by chemically or enzyme triggered O,N‐acyl migration in flexible and soluble folding precursors containing Ser‐ or Thr‐derived switch (S)‐elements. The elaborated methodologies are exemplified for the in situ conversion of NPY‐ and Cyclosporine A‐derived prodrugs, as well as for the onset and reversal of α and β conformational transitions in Aβ peptides. In combining orthogonally addressable switch‐elements, the consecutive switching on of S‐elements gives new insights into the role of individual peptide segments (“hot spots”) in early processes of polypeptide self‐assembly and fibrillogenesis. Finally, the well‐known secondary structure disrupting effect of pseudoprolines (ΨPro) is explored for its use as a building block (S‐element) in switch‐peptides. To this end, synthetic strategies are described, allowing for the preparation of Ψ Pro‐containing folding precursors, exhibiting flexible random‐coil conformations devoid of fibril forming propensity. The onset of β‐sheet and fibril formation by restoring the native peptide chain in a single step classify Ψ Pro‐units as the most powerful tool for inhibiting peptide self‐assembly, and complement the present methodologies of the switch‐concept for the study of fibrillogenesis. © 2007 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 88: 239–252, 2007. This article was originally published online as an accepted preprint. The ‘Published Online’ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
Author Bérard, Jérémy
Mimna, Richard
Lashuel, Hilal A.
Mutter, Manfred
Chandravarkar, Arunan
Camus, Marie-Stéphanie
Schmid, Adrian
Tuchscherer, Gabriele
Murat, Karine
Author_xml – sequence: 1
  givenname: Gabriele
  surname: Tuchscherer
  fullname: Tuchscherer, Gabriele
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 2
  givenname: Arunan
  surname: Chandravarkar
  fullname: Chandravarkar, Arunan
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 3
  givenname: Marie-Stéphanie
  surname: Camus
  fullname: Camus, Marie-Stéphanie
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 4
  givenname: Jérémy
  surname: Bérard
  fullname: Bérard, Jérémy
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 5
  givenname: Karine
  surname: Murat
  fullname: Murat, Karine
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 6
  givenname: Adrian
  surname: Schmid
  fullname: Schmid, Adrian
  organization: Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 7
  givenname: Richard
  surname: Mimna
  fullname: Mimna, Richard
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 8
  givenname: Hilal A.
  surname: Lashuel
  fullname: Lashuel, Hilal A.
  organization: Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
– sequence: 9
  givenname: Manfred
  surname: Mutter
  fullname: Mutter, Manfred
  email: manfred.mutter@epfl.ch
  organization: Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17206626$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9PFEEQxTsGIwt68AuYOUk8DFR3z3TvHAUUMRsRhODFdHp6arCl549du8H99vayK57QU72kfu-lUm-HbfVDj4y95LDPAcRB7cd9AUrJJ2zCodI5iKnYYhMAULksRbnNdoh-ABSF5PCMbXO9woWasG9f7vzcfc9HHOe-QcosZe0QGt_fZGNEt4g0RMp8nxGGNrdE2NXhfvvg6JvMdssw-CZrfR19CMMN9kienrOnrQ2ELzZzl129f3d59CGfnZ2cHr2d5S4dJ_OyEY11qCQvtKvEFDQmYbkSYsob0VZWqJUoda2hcmm4QtdJO26lEq3cZXvr3DEOPxdIc9N5chiC7XFYkNGFSn_iME3k63-TUMiqUtV_QQmgAUqRwDdr0MWBKGJrxug7G5eGg1nVY1I95r6exL7ahC7qDpu_5KaPBBysgTsfcPl4kjk8_fwnMl87PM3x14PDxlujtNSluf50YmYfi_PDi-NL81X-BhScqnI
CitedBy_id crossref_primary_10_1002_psc_905
crossref_primary_10_1021_ol802268e
crossref_primary_10_1002_psc_1053
crossref_primary_10_1016_j_jmb_2012_01_051
crossref_primary_10_1021_jf103312t
crossref_primary_10_1039_b914342b
crossref_primary_10_1002_anie_201302242
crossref_primary_10_1002_cbic_201100033
crossref_primary_10_1016_j_jsb_2010_02_017
crossref_primary_10_1002_cbic_201600474
crossref_primary_10_1039_b903624e
crossref_primary_10_1002_psc_969
crossref_primary_10_1002_ange_200802502
crossref_primary_10_1002_ange_200904781
crossref_primary_10_1002_ange_201302242
crossref_primary_10_1002_anie_201406097
crossref_primary_10_1021_acs_orglett_6b01442
crossref_primary_10_1016_j_bmc_2009_06_017
crossref_primary_10_1002_cbic_201000412
crossref_primary_10_1002_cbic_201900260
crossref_primary_10_1002_cbic_200800245
crossref_primary_10_1002_psc_1224
crossref_primary_10_1016_j_bpc_2011_12_005
crossref_primary_10_4155_fmc_09_97
crossref_primary_10_1016_j_bmc_2011_04_056
crossref_primary_10_1002_ange_201406097
crossref_primary_10_1002_cbic_200800503
crossref_primary_10_1016_j_ymthe_2016_11_002
crossref_primary_10_1002_cbic_200800765
crossref_primary_10_1002_anie_200802502
crossref_primary_10_1002_anie_200904781
crossref_primary_10_1002_bip_20858
crossref_primary_10_1016_j_bpj_2013_05_047
Cites_doi 10.1073/pnas.91.25.12243
10.1016/j.tetlet.2004.06.059
10.1146/annurev.bi.57.070188.004521
10.1002/anie.200454045
10.1002/bip.360370207
10.1021/ja034736i
10.1021/ar00064a005
10.1021/ja052083v
10.1016/S0968-0896(02)00322-X
10.2533/000942906777674921
10.1016/0960-894X(95)00454-2
10.1016/S0960-894X(03)00463-3
10.1002/anie.198506391
10.1021/ja054718w
10.1021/ja057450h
10.1002/bip.1980.360190112
10.1002/anie.199001851
10.1038/nature05290
10.1016/j.tibs.2006.01.002
10.1002/anie.198905353
10.1073/pnas.95.12.6705
10.1006/jmbi.2001.4873
10.1016/S0040-4020(00)00147-2
10.1038/sj.bjp.0702388
10.1016/j.tetlet.2004.07.162
10.1038/nrn1007
10.1126/science.1067122
10.1021/ja961509q
10.1371/journal.pbio.0040100
10.1002/macp.1981.021820713
10.1038/nature03986
10.1002/anie.200352659
10.1073/pnas.0506723102
10.1002/(SICI)1097-0282(1996)40:6<627::AID-BIP4>3.0.CO;2-Y
10.1007/BF02443422
10.1038/35065514
10.1146/annurev.biochem.69.1.923
10.1002/1097-0282(2001)60:3<194::AID-BIP10031>3.0.CO;2-8
10.1021/jo060914p
10.1111/j.1399-3011.1997.tb01185.x
10.1021/ja00496a030
10.1039/b510098d
10.1002/anie.200351774
10.1002/anie.199115141
10.1021/jo0525579
10.1021/ja00897a025
10.1021/jm00062a024
10.1039/B312129A
10.1002/cbic.200600112
10.1016/j.bmc.2003.10.026
10.1002/psc.475
10.1002/macp.1981.021820712
10.1016/S0040-4039(00)91681-2
10.1126/science.1079469
ContentType Journal Article
Copyright Copyright © 2007 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
7QO
7TK
FR3
P64
DOI 10.1002/bip.20663
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef
MEDLINE
Technology Research Database
Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-0282
EndPage 252
ExternalDocumentID 10_1002_bip_20663
17206626
BIP20663
ark_67375_WNG_LJ4QBRDT_X
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Debiopharm S.A., Lausanne
– fundername: Swiss National Science Foundation
GroupedDBID .GA
.Y3
05W
10A
1OB
1OC
31~
4.4
4ZD
51W
51X
52N
52O
52P
52T
52W
52X
7PT
930
A03
AANLZ
AASGY
AAXRX
ABJNI
ACAHQ
ACCZN
ACXBN
ADOZA
AEUYR
AFBPY
AFZJQ
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATUGU
BRXPI
BSCLL
BY8
DCZOG
DRFUL
DRSTM
G-S
GNP
GODZA
HF~
HHZ
LATKE
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
P2W
P4D
QB0
RWI
SUPJJ
UB1
WIH
WIK
WJL
WQJ
WRC
XG1
XV2
ZZTAW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
7QO
7TK
FR3
P64
ID FETCH-LOGICAL-c5253-5d2dace63147c92807e47ca162281d2f9a2681d257b709c57bc47bb70c1a362f3
IEDL.DBID 33P
ISSN 0006-3525
IngestDate Fri Aug 16 04:30:29 EDT 2024
Fri Aug 16 04:37:11 EDT 2024
Thu Apr 11 17:52:02 EDT 2024
Thu Nov 21 23:17:16 EST 2024
Sat Sep 28 07:56:37 EDT 2024
Sat Aug 24 00:54:14 EDT 2024
Wed Oct 30 09:48:42 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5253-5d2dace63147c92807e47ca162281d2f9a2681d257b709c57bc47bb70c1a362f3
Notes Debiopharm S.A., Lausanne
Swiss National Science Foundation
ArticleID:BIP20663
ark:/67375/WNG-LJ4QBRDT-X
istex:BA347ADCBE741A9A9B1E2C6631412D9F04086F78
SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bip.20663
PMID 17206626
PQID 30070052
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_746002108
proquest_miscellaneous_70439969
proquest_miscellaneous_30070052
crossref_primary_10_1002_bip_20663
pubmed_primary_17206626
wiley_primary_10_1002_bip_20663_BIP20663
istex_primary_ark_67375_WNG_LJ4QBRDT_X
PublicationCentury 2000
PublicationDate 2007
2007-00-00
2007-01-00
20070101
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Biopolymers
PublicationTitleAlternate Biopolymers
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Wöhr, T.; Wahl, F.; Nefzi, A.; Rohwedder, B.; Sato, T.; Sun, X.; Mutter, M. J Am Chem Soc 1996, 118, 9218-9227.
Giriat, I.; Muir, T. W. J Am Chem Soc 2003, 125, 7180-7181.
Beck-Sickinger, A.; Jung, G. Biopolymers (Pept Sci) 1995, 37, 123-142.
Soto, C.; Estrada, L.; Castilla, J. Trends Biochem Sci 2006, 31, 150-155.
Skwarczynski, M.; Sohma, Y.; Moguchi, M.; Kimura, T.; Hayashi, Y.; Kiso, Y. J Org Chem 2006, 71, 2542-2545.
Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. Proc Natl Acad Sci USA 2005, 102, 17342-17347.
Creighton, T. E. Proteins, 2nd ed.; W. H. Freeman: New York, 1993.
Pagel, K.; Vagt, T.; Koksch, B. Org Biomol Chem 2005, 3, 3843-3850.
Fandrich, M.; Fletcher, M. A.; Dobson, C. M. Nature 2001, 410, 165-166.
Mimna, R.; Mutter, M. Int J Pept Res Ther, in press.
Pagel, K.; Wagner, S. C.; Samedow, K.; von Berlepsch, H.; Böttcher, C.; Koksch, B. J Am Chem Soc 2006, 128, 2196-2197.
Lansbury, P. T.; Lashuel, H. A. Nature, 2006, 443, 774-779.
Jager, M.; Nguyen, H.; Crane, J. C.; Kelly, J. W.; Gruebele, M. J Mol Biol 2001, 311, 373-393.
Aggeli, A.; Boden, N.; Zhang, S., Eds. Self-Assembling Peptide-Systems in Biology, Medicine and Engineering; Kluwer: Dordrecht, 2001; and references therein.
Soto, C. Nat Rev Neurosci 2003, 4, 49-60.
Kent, S. B. H. Annu Rev Biochem 1988, 57, 957-989.
Mimna, R.; Camus, M.-S.; Schmid, A.; Tuchscherer, G.; Lashuel, H. A.; Mutter, M. Angew Chem Int Engl, in press.
Toniolo, C.; Bonora, G. M.; Mutter, M. J Am Chem Soc 1979, 101, 450-454.
Pillai, V. N. R.; Mutter M. Acc Chem Res 1981, 14, 122-130.
Mutter, M.; Vuilleumier, S. Angew Chem Int Ed Engl 1989, 28, 535-554.
Carulla, N.; Caddy, G. L.; Hall, D. R.; Zurdo, J.; Gairi, M.; Felliz, M.; Giralt, E.; Robinson, C. V.; Dobson, C. M. Nature 2005, 436, 554-558.
Toniolo, C.; Crisma, M.; Formaggio, F. Biopolymers 1996, 40, 627-651.
Hamada, Y.; Matsumoto, H.; Yamaguchi, S.; Kimura, T.; Hayashi, Y.; Kiso, Y. Bioorg Med Chem 2004, 12, 159-170.
Taylor, J. P.; Hardy, J.; Fischbeck, K. H. Science 2002, 296, 1991-1995.
Machova, Z.; von Eggelkraut-Gottanka, R.; Wehofsky, N.; Bordusa, F.; Beck-Sickinger, A. Angew Chem Int Ed Engl 2003, 42, 4916-4918.
Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Science, 2003, 300, 486-489.
Hurley, T. R.; Colson, C. E.; Hicks, G.; Ryan, M. J. J Med Chem 1993, 36, 1496-1498.
Toniolo, C.; Bonora, G. M.; Mutter, M.; Pillai, V. N. R. Makromol Chem 1981, 182, 2007-2014.
Saucède, L.; Dos Santos, S.; Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Camus, M.-S.; Bérard, J.; Grouzmann, E.; Adrain, M.; Dubochet, J.; Lopez, J.; Lashuel, H.; Tuchscherer, G.; Mutter, M. Chimia 2006, 60, 199-202.
Mutter M.; Hersperger, R. Angew Chem Int Ed Engl 1990, 29, 185-187.
Merrifield, R. B. J Am Chem Soc 1963, 85, 2149-2154.
Fowler, D. M.; Koulov, A. V.; Alory-Jost, C.; Marks, M. S.; Balch, W. E.; Kelly, J. W. PloS Biol 2006, 4, 100-107.
Sohma, Y.; Sasaki, M.; Hayashi, Y.; Kimura, T.; Kiso, Y. Tetrahedron Lett 2004, 45, 5965-5968.
Haack, T.; Mutter, M. Tetrahedron Lett 1992, 33, 1589-1592.
Muir, T. W.; Sondhi, D.; Cole, P. A. Proc Natl Acad Sci USA 1998, 95, 6705-6710.
Lorenzo, A.; Yankner, B.A. Proc Natl Acad Sci USA 1994, 91, 12243-12247.
Kiso, Y.; Matsumoto, H.; Yamaguchi, S.; Kimura, T. Lett Pept Sci 1999, 6, 275-281.
Mutter, M.; Chandravarkar, A.; Boyat, C.; Lopez, J.; Dos Santos, S.; Mandal, B.; Mimna, R.; Murat, K.; Patiny, L.; Saucède, L.; Tuchscherer, G. Angew Chem Int Ed Engl 2004, 43, 4172-4178.
Coin, I.; Dölling, R.; Krause, E.; Bienert, M.; Beyermann, M.; Sferdean C. D.; Carpino, L. A. J Org Chem 2006, 71, 6171-6177.
Sohma, Y.; Sasaki, M.; Hayashi, Y.; Kimura, T.; Kiso, Y. Chem Commun 2004, 124-125.
Oliyai, R.; Stella, V. J. Bioorg Med Chem Lett 1995, 5, 2735-2740.
Goodman, M., Ed. in Chief. Houben-Weyl. Methods of Organic Synthesis, Vol. E22d: Synthesis of Peptides and Peptidomimetics; Felix A.; Moroder L.; Toniolo, C., Eds.; Thieme Stuttgart: New York, 2003.
Mutter, M.; Gassmann, R.; Buttkus, U.; Altmann, K.-H. Angew Chem Int Ed Engl 1991, 30, 1514-1516.
Sohma, Y.; Kiso, Y. ChemBioChem 2006, 7, 1549-1557.
Malis, D.-D.; Grouzmann, E.; Morel, D. R.; Mutter, M.; Lacroix, J.-S. Br J Pharmacol 1999, 126, 1-8.
Wieslaw, M.; Kazmierski, W. M.; Bevans, P.; Furfine, E.; Spaltenstein, A.; Yang, H. Bioorg Med Chem Lett 2003, 13, 2523-2526.
Ambroggio, X. I.; Kuhlman, B. J Am Chem Soc 2006, 128, 1154-1161.
Dos Santos, S.; Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Saucède, L.; Tella, P.; Tuchscherer, G.; Mutter, M. J Am Chem Soc 2005, 127, 11888-11889.
Kent, S. B. H. J Pept Sci 2003, 9, 574-593.
Abd El Rahman, S.; Anzinger, H.; Mutter, M. Biopolymers 1980, 19, 173-187.
Mutter, M.; Nefzi, A.; Sato, T.; Sun, X.; Wahl, F.; Wöhr, T. Pept Res 1995, 8, 145-153.
Mutter, M. Angew Chem Int Ed Engl 1985, 24, 639-652.
Tam, J. P.; Xu, J.; Eom, K. D. Biopolymers (Pept Sci) 2001, 60, 194-205.
Shepherd, N. E.; Abbenante, G.; Fairlie, D. P. Angew Chem Int Ed Engl 2004, 43, 2687-2690.
Tuchscherer, G.; Mutter, M. Chem Ind 1997, 15, 597-601.
Toniolo, C.; Bonora, G. M.; Mutter, M.; Pillai, V. N. R. Makromol Chem 1981, 182, 1997-2005.
Hamada, Y.; Ohtake, J.; Sohma, Y.; Kimura, T.; Hayashi, Y.; Kiso, Y. Biorg Med Chem 2002, 10, 4155-4167.
Dawson, P. E.; Kent, S. B. H. Annu Rev Biochem 2000, 69, 923-960.
Carpino, L. A.; Krause, E.; Sferdean, C. D.; Schühmann, M.; Fabian, H.; Bienert, M.; Beyermann, M. Tetrahedron Lett 2004, 45, 7519-7523.
Coltart, D. M. Tetrahedron 2000, 56, 3449-3491.
Shao, Y.; Paulus, H. J Peptide Res 1997, 50, 193-198.
1981; 182
2006; 71
2006; 31
1979; 101
1995; 37
1963; 85
2002; 10
2003; 13
1999; 126
1985; 24
1993; 36
2006; 60
2001; 410
2001; 60
1997; 50
2001
2000; 56
2005; 102
1997; 15
2003; 9
2003; 4
1985
2003; 125
1998; 95
2006; 128
2003; 42
2006; 443
2004; 43
2002; 296
2000; 69
1991; 30
2004; 45
2005; 436
2006; 7
2003; E22d
1988; 57
2006
1993
2006; 4
2004
1999; 6
1992; 33
1995; 5
1989; 28
1995; 8
2001; 311
1980; 19
1990; 29
2004; 12
2005; 127
1981; 14
1996; 40
2005; 3
1994; 91
2003; 300
1996; 118
e_1_2_5_27_2
e_1_2_5_48_2
e_1_2_5_25_2
e_1_2_5_46_2
e_1_2_5_23_2
e_1_2_5_44_2
e_1_2_5_42_2
e_1_2_5_65_2
Goodman M. (e_1_2_5_64_2) 2003
e_1_2_5_29_2
Mimna R. (e_1_2_5_53_2)
e_1_2_5_61_2
e_1_2_5_40_2
e_1_2_5_13_2
e_1_2_5_38_2
e_1_2_5_59_2
e_1_2_5_9_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_57_2
e_1_2_5_7_2
e_1_2_5_34_2
e_1_2_5_55_2
e_1_2_5_5_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_17_2
e_1_2_5_19_2
Creighton T. E. (e_1_2_5_6_2) 1993
e_1_2_5_30_2
e_1_2_5_51_2
e_1_2_5_26_2
e_1_2_5_49_2
e_1_2_5_24_2
e_1_2_5_45_2
e_1_2_5_20_2
e_1_2_5_43_2
e_1_2_5_66_2
Mihara H. (e_1_2_5_22_2) 2001
e_1_2_5_28_2
Mutter M. (e_1_2_5_62_2) 1995; 8
e_1_2_5_60_2
e_1_2_5_41_2
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_58_2
e_1_2_5_8_2
e_1_2_5_33_2
e_1_2_5_56_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_54_2
e_1_2_5_4_2
e_1_2_5_2_2
Mimna R. (e_1_2_5_47_2)
e_1_2_5_18_2
Moroder L. (e_1_2_5_63_2) 2006
e_1_2_5_39_2
Tuchscherer G. (e_1_2_5_3_2) 1997; 15
e_1_2_5_52_2
Aggeli A. (e_1_2_5_10_2) 2001
Kapurniotu A. (e_1_2_5_21_2) 2001
e_1_2_5_50_2
References_xml – volume: 6
  start-page: 275
  year: 1999
  end-page: 281
  publication-title: Lett Pept Sci
– volume: 10
  start-page: 4155
  year: 2002
  end-page: 4167
  publication-title: Biorg Med Chem
– volume: 3
  start-page: 3843
  year: 2005
  end-page: 3850
  publication-title: Org Biomol Chem
– volume: 4
  start-page: 100
  year: 2006
  end-page: 107
  publication-title: PloS Biol
– year: 2001
– volume: 43
  start-page: 4172
  year: 2004
  end-page: 4178
  publication-title: Angew Chem Int Ed Engl
– volume: 101
  start-page: 450
  year: 1979
  end-page: 454
  publication-title: J Am Chem Soc
– volume: 5
  start-page: 2735
  year: 1995
  end-page: 2740
  publication-title: Bioorg Med Chem Lett
– volume: 182
  start-page: 1997
  year: 1981
  end-page: 2005
  publication-title: Makromol Chem
– volume: 57
  start-page: 957
  year: 1988
  end-page: 989
  publication-title: Annu Rev Biochem
– volume: 311
  start-page: 373
  year: 2001
  end-page: 393
  publication-title: J Mol Biol
– volume: 4
  start-page: 49
  year: 2003
  end-page: 60
  publication-title: Nat Rev Neurosci
– volume: 443
  start-page: 774
  year: 2006
  end-page: 779
  publication-title: Nature
– volume: 28
  start-page: 535
  year: 1989
  end-page: 554
  publication-title: Angew Chem Int Ed Engl
– volume: 29
  start-page: 185
  year: 1990
  end-page: 187
  publication-title: Angew Chem Int Ed Engl
– volume: 56
  start-page: 3449
  year: 2000
  end-page: 3491
  publication-title: Tetrahedron
– volume: 12
  start-page: 159
  year: 2004
  end-page: 170
  publication-title: Bioorg Med Chem
– volume: 182
  start-page: 2007
  year: 1981
  end-page: 2014
  publication-title: Makromol Chem
– volume: 13
  start-page: 2523
  year: 2003
  end-page: 2526
  publication-title: Bioorg Med Chem Lett
– volume: 8
  start-page: 145
  year: 1995
  end-page: 153
  publication-title: Pept Res
– volume: 102
  start-page: 17342
  year: 2005
  end-page: 17347
  publication-title: Proc Natl Acad Sci USA
– start-page: 124
  year: 2004
  end-page: 125
  publication-title: Chem Commun
– volume: 9
  start-page: 574
  year: 2003
  end-page: 593
  publication-title: J Pept Sci
– volume: 300
  start-page: 486
  year: 2003
  end-page: 489
  publication-title: Science
– publication-title: Angew Chem Int Engl
– volume: 128
  start-page: 1154
  year: 2006
  end-page: 1161
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 1549
  year: 2006
  end-page: 1557
  publication-title: ChemBioChem
– volume: 36
  start-page: 1496
  year: 1993
  end-page: 1498
  publication-title: J Med Chem
– volume: 128
  start-page: 2196
  year: 2006
  end-page: 2197
  publication-title: J Am Chem Soc
– volume: 43
  start-page: 2687
  year: 2004
  end-page: 2690
  publication-title: Angew Chem Int Ed Engl
– volume: 71
  start-page: 2542
  year: 2006
  end-page: 2545
  publication-title: J Org Chem
– volume: 95
  start-page: 6705
  year: 1998
  end-page: 6710
  publication-title: Proc Natl Acad Sci USA
– volume: 436
  start-page: 554
  year: 2005
  end-page: 558
  publication-title: Nature
– year: 1993
– volume: 60
  start-page: 194
  year: 2001
  end-page: 205
  publication-title: Biopolymers (Pept Sci)
– volume: 296
  start-page: 1991
  year: 2002
  end-page: 1995
  publication-title: Science
– volume: 31
  start-page: 150
  year: 2006
  end-page: 155
  publication-title: Trends Biochem Sci
– volume: 15
  start-page: 597
  year: 1997
  end-page: 601
  publication-title: Chem Ind
– volume: 40
  start-page: 627
  year: 1996
  end-page: 651
  publication-title: Biopolymers
– volume: 91
  start-page: 12243
  year: 1994
  end-page: 12247
  publication-title: Proc Natl Acad Sci USA
– start-page: 397
  year: 1985
  end-page: 405
– volume: 14
  start-page: 122
  year: 1981
  end-page: 130
  publication-title: Acc Chem Res
– volume: 45
  start-page: 5965
  year: 2004
  end-page: 5968
  publication-title: Tetrahedron Lett
– volume: 30
  start-page: 1514
  year: 1991
  end-page: 1516
  publication-title: Angew Chem Int Ed Engl
– volume: E22d
  year: 2003
– volume: 60
  start-page: 199
  year: 2006
  end-page: 202
  publication-title: Chimia
– volume: 118
  start-page: 9218
  year: 1996
  end-page: 9227
  publication-title: J Am Chem Soc
– volume: 126
  start-page: 1
  year: 1999
  end-page: 8
  publication-title: Br J Pharmacol
– volume: 127
  start-page: 11888
  year: 2005
  end-page: 11889
  publication-title: J Am Chem Soc
– publication-title: Int J Pept Res Ther
– volume: 24
  start-page: 639
  year: 1985
  end-page: 652
  publication-title: Angew Chem Int Ed Engl
– volume: 37
  start-page: 123
  year: 1995
  end-page: 142
  publication-title: Biopolymers (Pept Sci)
– volume: 50
  start-page: 193
  year: 1997
  end-page: 198
  publication-title: J Peptide Res
– volume: 125
  start-page: 7180
  year: 2003
  end-page: 7181
  publication-title: J Am Chem Soc
– volume: 42
  start-page: 4916
  year: 2003
  end-page: 4918
  publication-title: Angew Chem Int Ed Engl
– volume: 69
  start-page: 923
  year: 2000
  end-page: 960
  publication-title: Annu Rev Biochem
– volume: 410
  start-page: 165
  year: 2001
  end-page: 166
  publication-title: Nature
– volume: 19
  start-page: 173
  year: 1980
  end-page: 187
  publication-title: Biopolymers
– year: 2006
– volume: 45
  start-page: 7519
  year: 2004
  end-page: 7523
  publication-title: Tetrahedron Lett
– volume: 85
  start-page: 2149
  year: 1963
  end-page: 2154
  publication-title: J Am Chem Soc
– volume: 71
  start-page: 6171
  year: 2006
  end-page: 6177
  publication-title: J Org Chem
– volume: 33
  start-page: 1589
  year: 1992
  end-page: 1592
  publication-title: Tetrahedron Lett
– ident: e_1_2_5_16_2
  doi: 10.1073/pnas.91.25.12243
– volume: 15
  start-page: 597
  year: 1997
  ident: e_1_2_5_3_2
  publication-title: Chem Ind
  contributor:
    fullname: Tuchscherer G.
– ident: e_1_2_5_31_2
  doi: 10.1016/j.tetlet.2004.06.059
– ident: e_1_2_5_59_2
  doi: 10.1146/annurev.bi.57.070188.004521
– ident: e_1_2_5_41_2
  doi: 10.1002/anie.200454045
– ident: e_1_2_5_48_2
  doi: 10.1002/bip.360370207
– ident: e_1_2_5_27_2
  doi: 10.1021/ja034736i
– ident: e_1_2_5_4_2
  doi: 10.1021/ar00064a005
– ident: e_1_2_5_42_2
  doi: 10.1021/ja052083v
– volume-title: In Self‐Assembling Peptide‐Systems in Biology, Medicine and Engineering
  year: 2001
  ident: e_1_2_5_22_2
  contributor:
    fullname: Mihara H.
– ident: e_1_2_5_32_2
  doi: 10.1016/S0968-0896(02)00322-X
– ident: e_1_2_5_43_2
  doi: 10.2533/000942906777674921
– ident: e_1_2_5_33_2
  doi: 10.1016/0960-894X(95)00454-2
– ident: e_1_2_5_34_2
  doi: 10.1016/S0960-894X(03)00463-3
– ident: e_1_2_5_2_2
  doi: 10.1002/anie.198506391
– ident: e_1_2_5_51_2
  doi: 10.1021/ja054718w
– ident: e_1_2_5_50_2
  doi: 10.1021/ja057450h
– ident: e_1_2_5_55_2
  doi: 10.1002/bip.1980.360190112
– ident: e_1_2_5_8_2
  doi: 10.1002/anie.199001851
– ident: e_1_2_5_19_2
  doi: 10.1038/nature05290
– ident: e_1_2_5_20_2
  doi: 10.1016/j.tibs.2006.01.002
– ident: e_1_2_5_7_2
  doi: 10.1002/anie.198905353
– volume-title: Self‐Assembling Peptide‐Systems in Biology, Medicine and Engineering
  year: 2001
  ident: e_1_2_5_10_2
  contributor:
    fullname: Aggeli A.
– ident: e_1_2_5_65_2
  doi: 10.1073/pnas.95.12.6705
– ident: e_1_2_5_23_2
  doi: 10.1006/jmbi.2001.4873
– ident: e_1_2_5_25_2
  doi: 10.1016/S0040-4020(00)00147-2
– ident: e_1_2_5_49_2
  doi: 10.1038/sj.bjp.0702388
– ident: e_1_2_5_29_2
  doi: 10.1016/j.tetlet.2004.07.162
– ident: e_1_2_5_13_2
  doi: 10.1038/nrn1007
– ident: e_1_2_5_14_2
  doi: 10.1126/science.1067122
– ident: e_1_2_5_61_2
  doi: 10.1021/ja961509q
– ident: e_1_2_5_15_2
  doi: 10.1371/journal.pbio.0040100
– ident: e_1_2_5_57_2
  doi: 10.1002/macp.1981.021820713
– ident: e_1_2_5_52_2
  doi: 10.1038/nature03986
– ident: e_1_2_5_54_2
  doi: 10.1002/anie.200352659
– ident: e_1_2_5_12_2
  doi: 10.1073/pnas.0506723102
– ident: e_1_2_5_58_2
– ident: e_1_2_5_5_2
  doi: 10.1002/(SICI)1097-0282(1996)40:6<627::AID-BIP4>3.0.CO;2-Y
– ident: e_1_2_5_35_2
  doi: 10.1007/BF02443422
– volume: 8
  start-page: 145
  year: 1995
  ident: e_1_2_5_62_2
  publication-title: Pept Res
  contributor:
    fullname: Mutter M.
– ident: e_1_2_5_18_2
  doi: 10.1038/35065514
– ident: e_1_2_5_39_2
  doi: 10.1146/annurev.biochem.69.1.923
– volume-title: In cis‐trans Isomerization in Biochemistry
  year: 2006
  ident: e_1_2_5_63_2
  contributor:
    fullname: Moroder L.
– ident: e_1_2_5_38_2
  doi: 10.1002/1097-0282(2001)60:3<194::AID-BIP10031>3.0.CO;2-8
– ident: e_1_2_5_47_2
  publication-title: Int J Pept Res Ther
  contributor:
    fullname: Mimna R.
– ident: e_1_2_5_45_2
  doi: 10.1021/jo060914p
– ident: e_1_2_5_26_2
  doi: 10.1111/j.1399-3011.1997.tb01185.x
– ident: e_1_2_5_24_2
  doi: 10.1021/ja00496a030
– ident: e_1_2_5_11_2
  doi: 10.1039/b510098d
– volume-title: Self‐Assembling Peptide‐Systems in Biology, Medicine and Engineering
  year: 2001
  ident: e_1_2_5_21_2
  contributor:
    fullname: Kapurniotu A.
– ident: e_1_2_5_66_2
  doi: 10.1002/anie.200351774
– ident: e_1_2_5_9_2
  doi: 10.1002/anie.199115141
– volume-title: Houben‐Weyl. Methods of Organic Synthesis
  year: 2003
  ident: e_1_2_5_64_2
  contributor:
    fullname: Goodman M.
– ident: e_1_2_5_37_2
  doi: 10.1021/jo0525579
– ident: e_1_2_5_46_2
  doi: 10.1021/ja00897a025
– ident: e_1_2_5_28_2
  doi: 10.1021/jm00062a024
– ident: e_1_2_5_30_2
  doi: 10.1039/B312129A
– ident: e_1_2_5_44_2
  doi: 10.1002/cbic.200600112
– ident: e_1_2_5_36_2
  doi: 10.1016/j.bmc.2003.10.026
– ident: e_1_2_5_40_2
  doi: 10.1002/psc.475
– ident: e_1_2_5_53_2
  publication-title: Angew Chem Int Engl
  contributor:
    fullname: Mimna R.
– ident: e_1_2_5_56_2
  doi: 10.1002/macp.1981.021820712
– ident: e_1_2_5_60_2
  doi: 10.1016/S0040-4039(00)91681-2
– volume-title: Proteins
  year: 1993
  ident: e_1_2_5_6_2
  contributor:
    fullname: Creighton T. E.
– ident: e_1_2_5_17_2
  doi: 10.1126/science.1079469
SSID ssj0044310
ssj0011473
Score 2.0358582
Snippet The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 239
SubjectTerms Amyloid - chemistry
Amyloid - ultrastructure
amyloid β fibrillogenesis
conformational transitions
enzyme-triggered O
enzyme‐triggered O,N‐acyl migration
folding precursors
Microscopy, Electron
Models, Biological
Models, Molecular
N-acyl migration
Peptides - chemistry
Proline - analogs & derivatives
Proline - chemistry
Protein Folding
Protein Precursors - chemistry
Protein Precursors - ultrastructure
Protein Structure, Secondary
pseudoprolines (ΨPro)
self-assembling peptides
switch-peptides
Thiazoles - chemistry
α-helix to β-sheet reversal
β-sheet disruption
Title Switch-peptides as folding precursors in self-assembling peptides and amyloid fibrillogenesis
URI https://api.istex.fr/ark:/67375/WNG-LJ4QBRDT-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbip.20663
https://www.ncbi.nlm.nih.gov/pubmed/17206626
https://search.proquest.com/docview/30070052
https://search.proquest.com/docview/70439969
https://search.proquest.com/docview/746002108
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Be4AL5VnCo1gIIS5Rs44TJ-LUx5aCUFX6EOVk-RUpYptdbboCbvwEfiO_hBmnSVWJlZA4ZaRMEmfGnhmPPZ8BXnkrtS6Mj61LdCykdLFJKhFnPrcYblhvHNU77x_Lg7Nid0wwOW_7WpgOH2JIuNHICPaaBrg27eYVaKipCW4SHSbaX5wlhPKN9HBYQRgJOZhkgV6yq0WhjV4Zz3qIoYRvDq-55phWScbf_xZ1Xg9igxfaW_uv9t-FO5fBJ9vqess9uOGb-3Brpz_z7QHo4281qvH3z18z2u3ifMt0y6puhYrN5pScb6fzltUNa_2kQkYMvv25mYT7wzONY_r8x2RaO1ZRTcEELSwZ1bp9CKd745Od_fjyEIbYoqDSOHPcaevzFAVqS8LO8UjoUc45hrq8KjXPicikkUlp8WKFNEjbkUbnWKWPYKWZNv4xsFFVZLywaYmzMmETqb1zuaDPcFemRkbwsteAmnVYG6pDVeYKpaWCtCJ4HXQzcOj5V9qcJjP1-eCd-vhBfNo-2j1RZxG86JWnUIq0DqIbP120KiWMoyTjyzkkFQyXeRkBW8Yh8jBdLiJY7zrGVZMlNZTnEbwJ-l_-L2r7_WEgnvw761O43aWXKQv0DFYu5gv_HG62brERBsAGrG6NT78c_QH4BgpP
link.rule.ids 315,782,786,1408,4028,27932,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R9lAuvCkpj1oIIS5Rs44TJxIX-mILy6rQRfRmObYjRd1mVxtWwI2fwG_klzDjNKkqsRISp4yUSWKPxzPjsecLwAtnpNZZ4UJjIx0KKW1YRKUIE5caDDeMKyzVOw9P5fgsOzgkmJzXXS1Miw_RJ9xoZnh7TROcEtK7V6ihRUV4k-gx12BDpKiIVMARn_R7CAMhe6Ms0E-21Sh01CvhSQcyFPHd_j3XXNMGSfn73-LO62Gs90NHt_-vB3fg1mX8yd60CnMXbrj6Hmzud799uw_69FuFI_n75685HXixrmG6YWW7ScXmC8rPN7NFw6qaNW5aIiPG3-6imPr7_TO1Zfrix3RWWVZSWcEUjSzZ1ap5AJ-PDif7w_DyPwyhQUnFYWK51calMUrU5ASf45DQg5RzjHZ5mWueEpHIQka5wYsRskDaDDT6xzJ-COv1rHaPgA3KLOGZiXNcmAkTSe2sTQV9hts8LmQAz7shUPMWbkO1wMpcobSUl1YAL_3g9Bx6cU7n02SivozfqtE78XHv08FEnQWw042eQinSVoiu3WzZqJhgjqKEr-aQVDOcp3kAbBWHSP2KOQtgq9WMqyZLaihPA3jlFWB1X9Te8Ykntv-ddQc2h5MPIzU6Hr9_DDfbbDMlhZ7A-tfF0j2FtcYun_nZ8AdUWAzO
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aBNpc-n64r4hSSi8mXlm2bHJqstkmbVi2TUpzE7Ikg8nGu6y7tL31J-Q39pd0Ro4dAl0o9OQBj21pxpoZjTSfAF47I7XOChcaG-lQSGnDIipFmLjUYLhhXGGp3vngWI5Ps-E-weTsdLUwLT5En3CjkeHtNQ3wuS23r0BDi4rgJtFhrsGGwDCcgPPjeNIvIQyE7G2yQDfZFqPQTq-EJx3GUMS3-_dc80wbJOQffws7r0ex3g2N7vxXB-7C7cvok71rf5d7cMPV9-HWXnfo2wPQx98r1OPvXxdz2u5iXcN0w8p2iYrNF5Sdb2aLhlU1a9y0REaMvt15MfX3-2dqy_T5z-mssqykooIpmliyqlXzEL6M9k_2DsLLUxhCg4KKw8Ryq41LYxSoyQk8xyGhBynnGOvyMtc8JSKRhYxygxcjZIG0GWj0jmX8CNbrWe2eABuUWcIzE-c4LRMmktpZmwr6DLd5XMgAXnUaUPMWbEO1sMpcobSUl1YAb7xueg69OKPdaTJRX8fv1dEH8Wn38_BEnQaw1SlPoRRpIUTXbrZsVEwgR1HCV3NIqhjO0zwAtopDpH6-nAXwuP0xrposqaE8DeCt1__qvqjdw4knnv476xbcnAxH6uhw_PEZbLapZsoIPYf1b4ulewFrjV2-9GPhDwv3C3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switch%E2%80%90peptides+as+folding+precursors+in+self%E2%80%90assembling+peptides+and+amyloid+fibrillogenesis&rft.jtitle=Peptide+Science&rft.au=Tuchscherer%2C+Gabriele&rft.au=Chandravarkar%2C+Arunan&rft.au=Camus%2C+Marie%E2%80%90St%C3%A9phanie&rft.au=B%C3%A9rard%2C+J%C3%A9r%C3%A9my&rft.date=2007&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3525&rft.eissn=1097-0282&rft.volume=88&rft.issue=2&rft.spage=239&rft.epage=252&rft_id=info:doi/10.1002%2Fbip.20663&rft.externalDBID=10.1002%252Fbip.20663&rft.externalDocID=BIP20663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3525&client=summon