Assembly of erodible, DNA-containing thin films on the surfaces of polymer microparticles: Toward a layer-by-layer approach to the delivery of DNA to antigen-presenting cells

We report a layer-by-layer approach to the assembly of ultrathin and erodible DNA-containing films on the surfaces of polymer microparticles. DNA-containing multilayered films were fabricated layer-by-layer on the surfaces of polystyrene microspheres (∼6 μm) by iterative and alternating cycles of pa...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia Vol. 5; no. 3; pp. 913 - 924
Main Authors: Saurer, Eric M., Jewell, Christopher M., Kuchenreuther, Jon M., Lynn, David M.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-03-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a layer-by-layer approach to the assembly of ultrathin and erodible DNA-containing films on the surfaces of polymer microparticles. DNA-containing multilayered films were fabricated layer-by-layer on the surfaces of polystyrene microspheres (∼6 μm) by iterative and alternating cycles of particle suspension, centrifugation and resuspension in solutions of plasmid DNA and a hydrolytically degradable polyamine. Film growth occurred in a stepwise manner, as demonstrated by characterization of the zeta potentials and fluorescence intensities of film-coated particles during film assembly. Characterization of film-coated particles by confocal fluorescence microscopy and scanning electron microscopy revealed the multilayered particle coatings to be smooth, uniform and free of large-scale physical defects. Film-coated microparticles sustained the release of transcriptionally active DNA into solution for approximately three days when incubated in physiologically relevant media. Previous studies have demonstrated that the adsorption of DNA onto the surfaces of cationic microparticles can be used to target the delivery of DNA to antigen-presenting cells. As a first step toward the application of this layer-by-layer approach to the development of methods for the delivery of DNA to antigen-presenting cells, we demonstrated that film-coated microparticles could be used to transport DNA into macrophage cells in vitro using a model mouse macrophage cell line. Our results suggest the basis of a general approach that could, with further development, prove useful for the delivery of DNA-encoded antigens to macrophages, or other antigen-presenting cells, and provide new materials-based methods for the formulation and delivery of DNA vaccines.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2008.08.022