Thermophysical properties of high porosity metal foams

In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity ( k e), permeability ( K) and inertial coefficient ( f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 45; no. 5; pp. 1017 - 1031
Main Authors: Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-02-2002
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity ( k e), permeability ( K) and inertial coefficient ( f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating the effective thermal conductivity ( k e). Commercially available metal foams form a complex array of interconnected fibers with an irregular lump of metal at the intersection of two fibers. In our theoretical model, we represent this structure by a model consisting of a two-dimensional array of hexagonal cells where the fibers form the sides of the hexagons. The lump is taken into account by considering a circular blob of metal at the intersection. The analysis shows that k e depends strongly on the porosity and the ratio of the cross-sections of the fiber and the intersection. However, it has no systematic dependence on pore density. Experimental data with aluminum and reticulated vitreous carbon (RVC) foams, using air and water as fluid media are used to validate the analytical predictions. The second part of our paper involves the determination of the permeability ( K) and inertial coefficient ( f) of these high porosity metal foams. Fluid flow experiments were conducted on a number of metal foam samples covering a wide range of porosities and pore densities in our in-house wind tunnel. The results show that K increases with pore diameter and porosity of the medium. The inertial coefficient, f, on the other hand, depends only on porosity. An analytical model is proposed to predict f based on the theory of flow over bluff bodies, and is found to be in excellent agreement with the experimental data. A modified permeability model is also presented in terms of the porosity, pore diameter and tortuosity of our metal foam samples, and is shown to be in reasonable agreement with measured data.
AbstractList In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity ( k e), permeability ( K) and inertial coefficient ( f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating the effective thermal conductivity ( k e). Commercially available metal foams form a complex array of interconnected fibers with an irregular lump of metal at the intersection of two fibers. In our theoretical model, we represent this structure by a model consisting of a two-dimensional array of hexagonal cells where the fibers form the sides of the hexagons. The lump is taken into account by considering a circular blob of metal at the intersection. The analysis shows that k e depends strongly on the porosity and the ratio of the cross-sections of the fiber and the intersection. However, it has no systematic dependence on pore density. Experimental data with aluminum and reticulated vitreous carbon (RVC) foams, using air and water as fluid media are used to validate the analytical predictions. The second part of our paper involves the determination of the permeability ( K) and inertial coefficient ( f) of these high porosity metal foams. Fluid flow experiments were conducted on a number of metal foam samples covering a wide range of porosities and pore densities in our in-house wind tunnel. The results show that K increases with pore diameter and porosity of the medium. The inertial coefficient, f, on the other hand, depends only on porosity. An analytical model is proposed to predict f based on the theory of flow over bluff bodies, and is found to be in excellent agreement with the experimental data. A modified permeability model is also presented in terms of the porosity, pore diameter and tortuosity of our metal foam samples, and is shown to be in reasonable agreement with measured data.
In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity (k sub e ), permeability (K) and inertial coefficient (f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating the effective thermal conductivity (k sub e ). Commercially available metal foams form a complex array of interconnected fibers with an irregular lump of metal at the intersection of two fibers. In our theoretical model, we represent this structure by a model consisting of a two-dimensional array of hexagonal cells where the fibers form the sides of the hexagons. The lump is taken into account by considering a circular blob of metal at the intersection. The analysis shows that k sub e depends strongly on the porosity and the ratio of the cross-sections of the fiber and the intersection. However, it has no systematic dependence on pore density. Experimental data with aluminum and reticulated vitreous carbon (RVC) foams, using air and water as fluid media are used to validate the analytical predictions. The second part of our paper involves the determination of the permeability (K) and inertial coefficient (f) of these high porosity metal foams. Fluid flow experiments were conducted on a number of metal foam samples covering a wide range of porosities and pore densities in our in-housc wind tunnel. The results show that K increases with pore diameter and porosity of the medium. The inertial coefficient, f, on the other hand, depends only on porosity. An analytical model is proposed to predict f based on the theory of flow over bluff bodies, and is found to be in excellent agreement with the experimental data. A modified permeability model is also presented in terms of the porosity, pore diameter and tortuosity of our metal foam samples, and is shown to be in reasonable agreement with measured data.
Author Mahajan, R.L.
Bhattacharya, A.
Calmidi, V.V.
Author_xml – sequence: 1
  givenname: A.
  surname: Bhattacharya
  fullname: Bhattacharya, A.
– sequence: 2
  givenname: V.V.
  surname: Calmidi
  fullname: Calmidi, V.V.
– sequence: 3
  givenname: R.L.
  surname: Mahajan
  fullname: Mahajan, R.L.
  email: mahajan@spot.colorado.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13401094$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoMo2FZ_grAXRQ-rmWx205xEil9Q8GDvIc1O3Eh3syZbof_e9AM9ehpmeGbmfd8xOe58h4RcAL0FCtXdO6UgclkAvaZwQyljNOdHZARTIXMGU3lMRr_IKRnH-LltKa9GpFo0GFrfN5vojF5lffA9hsFhzLzNGvfRZL0PPrphk7U4JMJ63cYzcmL1KuL5oU7I4ulxMXvJ52_Pr7OHeW5KVgw5LqlBYZIEBrWwyDSIimnBuFxyKvlSgixZGkvQwhity6KuSouWl9KALibkan82yfpaYxxU66LB1Up36NdRMSEETAESWO5Bk7TGgFb1wbU6bBRQtQ1J7UJS2wQUBbULSfG0d3l4oGOyb4PujIt_ywWnkHQm7n7PYTL77TCoaBx2BmsX0Ayq9u6fTz8i43zV
CODEN IJHMAK
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2022_122591
crossref_primary_10_1016_j_ces_2009_02_010
crossref_primary_10_1016_j_ijheatmasstransfer_2006_03_024
crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_053
crossref_primary_10_1016_j_ijheatmasstransfer_2008_07_047
crossref_primary_10_1115_1_4032957
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120853
crossref_primary_10_1016_j_actamat_2014_08_037
crossref_primary_10_1016_j_tsep_2021_100989
crossref_primary_10_1016_j_est_2022_106567
crossref_primary_10_1016_j_est_2022_104386
crossref_primary_10_1016_j_ijft_2023_100374
crossref_primary_10_2139_ssrn_4120039
crossref_primary_10_1016_j_enrev_2023_100035
crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_058
crossref_primary_10_2139_ssrn_4054207
crossref_primary_10_1007_s11242_016_0750_7
crossref_primary_10_1016_j_ijmecsci_2022_107830
crossref_primary_10_1149_1_3160571
crossref_primary_10_1088_1361_648X_ac8512
crossref_primary_10_1080_02670836_2016_1180795
crossref_primary_10_1115_1_4037394
crossref_primary_10_1016_j_applthermaleng_2019_02_004
crossref_primary_10_1115_1_2352787
crossref_primary_10_1016_j_applthermaleng_2019_114112
crossref_primary_10_1016_j_ijheatfluidflow_2012_08_005
crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_022
crossref_primary_10_1007_s12217_022_09946_3
crossref_primary_10_1590_S0104_66322010000100011
crossref_primary_10_1016_j_apenergy_2009_08_009
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123944
crossref_primary_10_1007_s00231_010_0687_2
crossref_primary_10_1134_S1810232819030019
crossref_primary_10_1080_15435075_2023_2281336
crossref_primary_10_1016_j_ces_2012_02_047
crossref_primary_10_1016_j_solener_2013_10_028
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_057
crossref_primary_10_3390_fire7030070
crossref_primary_10_1115_1_4048036
crossref_primary_10_1016_j_seta_2022_102734
crossref_primary_10_1016_j_est_2019_02_019
crossref_primary_10_3390_en14030672
crossref_primary_10_1016_j_applthermaleng_2014_10_033
crossref_primary_10_1115_1_3216036
crossref_primary_10_1007_s11242_016_0808_6
crossref_primary_10_1115_1_2217750
crossref_primary_10_1016_j_powtec_2014_01_001
crossref_primary_10_1007_s11242_014_0354_z
crossref_primary_10_1016_j_catcom_2007_05_017
crossref_primary_10_1007_s00231_017_2095_3
crossref_primary_10_1016_j_enganabound_2022_10_014
crossref_primary_10_1016_j_tsep_2024_102729
crossref_primary_10_1115_1_4039302
crossref_primary_10_1115_1_1997159
crossref_primary_10_1016_j_compositesa_2022_107367
crossref_primary_10_1021_acs_iecr_0c06210
crossref_primary_10_1016_j_ces_2014_06_009
crossref_primary_10_1016_j_ijheatmasstransfer_2005_07_012
crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_017
crossref_primary_10_1205_cherd05034
crossref_primary_10_1016_j_icheatmasstransfer_2010_01_015
crossref_primary_10_1002_app_50901
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120823
crossref_primary_10_1177_09544089231157151
crossref_primary_10_1002_adem_201500356
crossref_primary_10_1002_admi_202001423
crossref_primary_10_1016_j_ijheatmasstransfer_2014_11_022
crossref_primary_10_1002_adem_200600102
crossref_primary_10_1016_j_apenergy_2018_05_063
crossref_primary_10_1016_j_applthermaleng_2019_114162
crossref_primary_10_1016_j_radphyschem_2014_11_003
crossref_primary_10_1016_j_nima_2024_169215
crossref_primary_10_1016_j_cesx_2019_100016
crossref_primary_10_3390_en15207703
crossref_primary_10_1016_j_cattod_2015_12_012
crossref_primary_10_1016_j_ces_2011_06_040
crossref_primary_10_1016_j_expthermflusci_2018_04_020
crossref_primary_10_1016_j_matdes_2014_03_004
crossref_primary_10_1063_1_3639269
crossref_primary_10_1016_j_ijhydene_2020_04_065
crossref_primary_10_1016_j_tsep_2024_102732
crossref_primary_10_1088_1757_899X_171_1_012048
crossref_primary_10_1016_j_est_2020_101378
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123438
crossref_primary_10_2514_1_T4567
crossref_primary_10_1115_1_4006272
crossref_primary_10_1016_j_ijthermalsci_2022_107869
crossref_primary_10_1088_1755_1315_701_1_012082
crossref_primary_10_1016_j_enconman_2022_116359
crossref_primary_10_1016_j_ijthermalsci_2012_08_015
crossref_primary_10_1007_s00170_017_1415_6
crossref_primary_10_1115_1_4056524
crossref_primary_10_1016_j_ijheatmasstransfer_2012_11_041
crossref_primary_10_1016_j_ijthermalsci_2024_109138
crossref_primary_10_1016_j_apm_2022_10_018
crossref_primary_10_1007_s10973_020_09658_z
crossref_primary_10_1016_j_matchar_2016_11_013
crossref_primary_10_1115_1_4024707
crossref_primary_10_1016_j_applthermaleng_2021_117313
crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_023
crossref_primary_10_1021_acsami_6b10502
crossref_primary_10_1088_1742_6596_745_3_032148
crossref_primary_10_1177_13694332221086701
crossref_primary_10_3390_en15197213
crossref_primary_10_1016_j_apenergy_2019_01_075
crossref_primary_10_1016_j_ijthermalsci_2018_12_002
crossref_primary_10_1115_1_4006015
crossref_primary_10_1016_j_applthermaleng_2013_09_051
crossref_primary_10_2139_ssrn_3990718
crossref_primary_10_1016_j_icheatmasstransfer_2020_104775
crossref_primary_10_1051_matecconf_202033001052
crossref_primary_10_1177_0021955X04041954
crossref_primary_10_1016_j_cej_2023_143349
crossref_primary_10_1007_s12540_019_00512_y
crossref_primary_10_1080_15440478_2019_1584075
crossref_primary_10_1016_j_cej_2008_06_007
crossref_primary_10_1016_j_measurement_2014_09_069
crossref_primary_10_3390_ma12162552
crossref_primary_10_1007_s12205_012_1470_3
crossref_primary_10_1016_j_enconman_2022_115486
crossref_primary_10_1016_j_renene_2022_11_065
crossref_primary_10_1016_j_applthermaleng_2019_01_041
crossref_primary_10_1115_1_4000747
crossref_primary_10_1016_j_ijhydene_2021_10_046
crossref_primary_10_3390_buildings13123094
crossref_primary_10_1016_j_physleta_2016_06_049
crossref_primary_10_1007_s11356_018_3019_6
crossref_primary_10_1016_j_rser_2016_05_059
crossref_primary_10_2514_1_T6510
crossref_primary_10_1016_j_applthermaleng_2024_122506
crossref_primary_10_1088_1755_1315_354_1_012123
crossref_primary_10_1016_j_ces_2021_117097
crossref_primary_10_1016_j_energy_2019_116108
crossref_primary_10_1016_j_apenergy_2016_02_028
crossref_primary_10_1115_1_3160537
crossref_primary_10_1179_1432891714Z_0000000001164
crossref_primary_10_1016_j_applthermaleng_2011_05_015
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123635
crossref_primary_10_1021_ie200796p
crossref_primary_10_1115_1_2789718
crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_020
crossref_primary_10_1080_10407780307349
crossref_primary_10_1080_15361055_2020_1777672
crossref_primary_10_1080_10407782_2016_1214479
crossref_primary_10_1016_j_ijhydene_2015_04_096
crossref_primary_10_1007_s10934_010_9393_1
crossref_primary_10_1115_1_4032751
crossref_primary_10_1016_j_applthermaleng_2011_12_032
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123927
crossref_primary_10_1016_j_applthermaleng_2022_119809
crossref_primary_10_1016_j_actamat_2004_10_037
crossref_primary_10_1007_s00170_020_06092_1
crossref_primary_10_1016_j_est_2021_103596
crossref_primary_10_1007_s11431_020_1637_3
crossref_primary_10_1016_j_applthermaleng_2024_122766
crossref_primary_10_1016_j_est_2024_110985
crossref_primary_10_1016_j_msea_2017_03_091
crossref_primary_10_1115_1_4053203
crossref_primary_10_1016_j_ces_2017_05_031
crossref_primary_10_1016_j_euromechsol_2023_104923
crossref_primary_10_1080_01457632_2013_776899
crossref_primary_10_1016_j_ijheatfluidflow_2024_109445
crossref_primary_10_1021_acs_chemrev_2c00539
crossref_primary_10_1016_j_ijhydene_2017_04_003
crossref_primary_10_1080_10407782_2019_1599270
crossref_primary_10_1115_1_4000708
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121364
crossref_primary_10_1016_j_matdes_2019_107830
crossref_primary_10_1016_j_egypro_2017_07_015
crossref_primary_10_1007_s10973_019_08619_5
crossref_primary_10_1016_j_energy_2021_120191
crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_017
crossref_primary_10_1016_j_expthermflusci_2018_02_025
crossref_primary_10_3390_colloids6040080
crossref_primary_10_3390_en16104058
crossref_primary_10_1080_10407782_2023_2279290
crossref_primary_10_1016_j_egypro_2018_08_132
crossref_primary_10_1016_j_rser_2020_109986
crossref_primary_10_1016_j_egypro_2018_08_131
crossref_primary_10_1016_j_ijthermalsci_2016_11_020
crossref_primary_10_3390_en14175558
crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_088
crossref_primary_10_1016_j_applthermaleng_2021_117778
crossref_primary_10_1016_j_cep_2009_02_001
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_117
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_052
crossref_primary_10_1016_j_ijheatmasstransfer_2006_03_035
crossref_primary_10_1016_j_seta_2022_102533
crossref_primary_10_1063_1_2745095
crossref_primary_10_1007_s10973_022_11779_6
crossref_primary_10_1115_1_4049173
crossref_primary_10_1134_S181023281601001X
crossref_primary_10_1615_JPorMedia_2023043975
crossref_primary_10_1088_1742_6596_1868_1_012007
crossref_primary_10_1007_s00231_018_2466_4
crossref_primary_10_1016_j_cej_2017_01_069
crossref_primary_10_1080_10407782_2022_2078598
crossref_primary_10_1016_j_ijthermalsci_2016_06_007
crossref_primary_10_1016_j_ijthermalsci_2018_11_031
crossref_primary_10_1002_cite_200600029
crossref_primary_10_2320_matertrans_47_2195
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_084
crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_001
crossref_primary_10_1016_j_tca_2019_02_005
crossref_primary_10_1088_1742_6596_501_1_012021
crossref_primary_10_1080_15567036_2023_2171515
crossref_primary_10_1007_s11242_022_01895_0
crossref_primary_10_1016_j_ces_2017_07_027
crossref_primary_10_1016_j_icheatmasstransfer_2017_10_014
crossref_primary_10_1007_s11029_019_9783_7
crossref_primary_10_1016_j_mset_2023_03_004
crossref_primary_10_1016_j_ijthermalsci_2016_06_013
crossref_primary_10_1115_1_4036526
crossref_primary_10_1115_1_4036767
crossref_primary_10_1515_afe_2017_0129
crossref_primary_10_1016_j_egypro_2017_09_225
crossref_primary_10_1016_j_energy_2010_03_058
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118852
crossref_primary_10_1115_1_4062834
crossref_primary_10_1140_epjs_s11734_023_00789_6
crossref_primary_10_2514_1_14675
crossref_primary_10_1016_j_ijthermalsci_2019_105978
crossref_primary_10_1016_j_ijrefrig_2010_10_006
crossref_primary_10_1016_j_applthermaleng_2017_03_056
crossref_primary_10_1016_j_rser_2018_04_064
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121327
crossref_primary_10_1016_j_rineng_2022_100531
crossref_primary_10_1016_j_applthermaleng_2023_120546
crossref_primary_10_1016_j_applthermaleng_2013_11_056
crossref_primary_10_1016_j_ijheatmasstransfer_2014_03_090
crossref_primary_10_1016_j_expthermflusci_2016_12_006
crossref_primary_10_1007_s10934_019_00739_5
crossref_primary_10_1016_j_apenergy_2019_114385
crossref_primary_10_2139_ssrn_4117328
crossref_primary_10_1016_j_ijthermalsci_2014_02_005
crossref_primary_10_1016_j_est_2023_107370
crossref_primary_10_1016_j_ces_2010_02_002
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_115
crossref_primary_10_1016_j_desal_2008_03_036
crossref_primary_10_1016_j_ijpharm_2017_10_018
crossref_primary_10_1007_s10973_020_09357_9
crossref_primary_10_1016_j_commatsci_2010_09_026
crossref_primary_10_1007_s10404_017_1863_1
crossref_primary_10_1016_j_applthermaleng_2014_06_035
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121509
crossref_primary_10_1007_s00170_005_0352_y
crossref_primary_10_1016_j_biortech_2009_05_055
crossref_primary_10_1016_j_ijheatmasstransfer_2013_07_020
crossref_primary_10_1016_j_cep_2018_01_023
crossref_primary_10_1016_j_ijheatfluidflow_2024_109299
crossref_primary_10_1002_est2_479
crossref_primary_10_1002_aic_15487
crossref_primary_10_4028_www_scientific_net_DDF_354_195
crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_055
crossref_primary_10_1108_09615531011024075
crossref_primary_10_1080_10407782_2016_1230430
crossref_primary_10_1016_j_applthermaleng_2016_11_052
crossref_primary_10_3390_met12061001
crossref_primary_10_1016_j_solmat_2023_112315
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_119
crossref_primary_10_1103_PhysRevE_85_026318
crossref_primary_10_1016_j_ces_2007_03_027
crossref_primary_10_1016_j_ces_2018_03_022
crossref_primary_10_1016_j_ces_2012_07_040
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_041
crossref_primary_10_3390_catal8100448
crossref_primary_10_1016_j_applthermaleng_2014_06_058
crossref_primary_10_1016_j_solmat_2015_12_041
crossref_primary_10_1007_s11106_018_9942_8
crossref_primary_10_1121_1_2945115
crossref_primary_10_1016_j_actamat_2021_116664
crossref_primary_10_1103_PhysRevE_83_046314
crossref_primary_10_1115_1_4056546
crossref_primary_10_1007_s00231_017_1993_8
crossref_primary_10_1088_1361_665X_ab49de
crossref_primary_10_1108_HFF_02_2015_0046
crossref_primary_10_1016_j_icheatmasstransfer_2018_09_002
crossref_primary_10_1016_j_applthermaleng_2023_120573
crossref_primary_10_1115_1_4056541
crossref_primary_10_4028_www_scientific_net_DDF_312_315_477
crossref_primary_10_1007_s11630_023_1841_8
crossref_primary_10_1016_j_ijthermalsci_2020_106444
crossref_primary_10_1016_j_applthermaleng_2021_117806
crossref_primary_10_1016_j_conbuildmat_2019_117242
crossref_primary_10_1155_2013_474935
crossref_primary_10_1016_j_ijthermalsci_2014_03_006
crossref_primary_10_1016_j_csite_2020_100716
crossref_primary_10_1016_j_jnucmat_2016_07_031
crossref_primary_10_1115_1_4045640
crossref_primary_10_1016_j_cherd_2019_05_022
crossref_primary_10_1088_1742_6596_1224_1_012045
crossref_primary_10_1109_TCPMT_2020_2998078
crossref_primary_10_1115_1_4064828
crossref_primary_10_1016_j_fuel_2023_130688
crossref_primary_10_1002_er_4896
crossref_primary_10_1016_j_ijthermalsci_2019_03_026
crossref_primary_10_1016_j_applthermaleng_2023_120584
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_047
crossref_primary_10_1002_adem_200700331
crossref_primary_10_1007_s11242_007_9169_5
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124776
crossref_primary_10_1016_j_ijheatmasstransfer_2009_12_067
crossref_primary_10_3390_nano4040856
crossref_primary_10_1016_j_actamat_2009_07_044
crossref_primary_10_1016_j_est_2020_101701
crossref_primary_10_1016_j_applthermaleng_2015_01_009
crossref_primary_10_1016_j_solener_2022_12_035
crossref_primary_10_1016_j_applthermaleng_2020_115511
crossref_primary_10_1016_j_ijheatmasstransfer_2013_09_054
crossref_primary_10_1080_01457632_2012_646872
crossref_primary_10_1080_01457632_2015_1052682
crossref_primary_10_1007_s10853_019_03480_1
crossref_primary_10_1103_PhysRevFluids_7_084606
crossref_primary_10_1007_s11242_011_9759_0
crossref_primary_10_1115_1_4050414
crossref_primary_10_1088_1757_899X_1096_1_012005
crossref_primary_10_1007_s10765_020_02747_z
crossref_primary_10_1016_j_cej_2015_11_050
crossref_primary_10_1016_j_tsep_2017_03_004
crossref_primary_10_1007_s11666_015_0291_6
crossref_primary_10_1007_s11242_013_0231_1
crossref_primary_10_1016_j_expthermflusci_2015_02_021
crossref_primary_10_1115_1_2165203
crossref_primary_10_1016_j_renene_2023_119155
crossref_primary_10_1088_1757_899X_670_1_012021
crossref_primary_10_1007_s00231_012_0985_y
crossref_primary_10_1016_j_applthermaleng_2015_01_045
crossref_primary_10_1063_5_0031243
crossref_primary_10_1080_10407780802148481
crossref_primary_10_1016_j_icheatmasstransfer_2021_105473
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124517
crossref_primary_10_1016_j_ces_2009_04_036
crossref_primary_10_1016_j_applthermaleng_2022_119413
crossref_primary_10_1016_j_applthermaleng_2022_118564
crossref_primary_10_1016_j_icheatmasstransfer_2023_106902
crossref_primary_10_1016_j_icheatmasstransfer_2022_106607
crossref_primary_10_1177_0957650919862974
crossref_primary_10_1016_j_ijthermalsci_2024_108926
crossref_primary_10_1115_1_4003451
crossref_primary_10_1108_HFF_11_2017_0465
crossref_primary_10_1115_1_4004530
crossref_primary_10_1016_j_est_2024_111096
crossref_primary_10_1016_j_applthermaleng_2024_123036
crossref_primary_10_1016_j_rser_2017_10_021
crossref_primary_10_1007_s10409_023_23109_x
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_114
crossref_primary_10_3390_en10070902
crossref_primary_10_1016_j_tsep_2020_100667
crossref_primary_10_1016_j_applthermaleng_2018_10_021
crossref_primary_10_1051_e3sconf_202131203003
crossref_primary_10_1002_adem_201700389
crossref_primary_10_1016_j_ijheatmasstransfer_2004_10_011
crossref_primary_10_1016_j_icheatmasstransfer_2023_106936
crossref_primary_10_1016_j_ces_2016_12_006
crossref_primary_10_1016_j_expthermflusci_2017_04_012
crossref_primary_10_1002_aic_12372
crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_068
crossref_primary_10_1016_j_ijthermalsci_2019_05_003
crossref_primary_10_1115_1_2721081
crossref_primary_10_1016_j_ijthermalsci_2020_106607
crossref_primary_10_1016_j_est_2020_101990
crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_058
crossref_primary_10_1016_j_cep_2018_04_018
crossref_primary_10_3390_ma10080907
crossref_primary_10_1016_j_expthermflusci_2008_08_007
crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_097
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119526
crossref_primary_10_1016_j_jnucmat_2018_08_014
crossref_primary_10_1007_s00348_006_0194_x
crossref_primary_10_1002_adem_200700196
crossref_primary_10_1016_j_apenergy_2013_04_050
crossref_primary_10_1016_j_applthermaleng_2017_03_002
crossref_primary_10_1016_j_rser_2024_114480
crossref_primary_10_1016_j_mtener_2021_100642
crossref_primary_10_1016_j_renene_2023_119167
crossref_primary_10_1016_j_icheatmasstransfer_2021_105265
crossref_primary_10_1016_j_solener_2010_04_022
crossref_primary_10_1016_j_ijmultiphaseflow_2017_04_010
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119107
crossref_primary_10_1007_s11242_014_0358_8
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124790
crossref_primary_10_1016_j_ijthermalsci_2014_06_022
crossref_primary_10_1016_j_ijrefrig_2014_01_005
crossref_primary_10_1016_j_ces_2009_06_056
crossref_primary_10_1007_s11242_013_0222_2
crossref_primary_10_1016_j_proeng_2011_11_042
crossref_primary_10_1016_j_ijhydene_2023_01_361
crossref_primary_10_1016_j_nucengdes_2006_03_034
crossref_primary_10_1016_j_ijthermalsci_2016_09_006
crossref_primary_10_1016_j_expthermflusci_2007_12_001
crossref_primary_10_1007_s00707_022_03401_5
crossref_primary_10_1016_j_ces_2018_01_006
crossref_primary_10_1016_j_ijthermalsci_2012_02_017
crossref_primary_10_1016_j_icheatmasstransfer_2022_106407
crossref_primary_10_1016_j_ijheatmasstransfer_2011_07_042
crossref_primary_10_1016_j_apenergy_2014_10_004
crossref_primary_10_1016_j_ijthermalsci_2014_06_030
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119784
crossref_primary_10_1016_j_cej_2017_03_112
crossref_primary_10_1016_j_matdes_2018_03_044
crossref_primary_10_1016_j_applthermaleng_2019_114011
crossref_primary_10_3390_math11020356
crossref_primary_10_1021_acs_chemrev_0c00149
crossref_primary_10_1016_j_applthermaleng_2023_121082
crossref_primary_10_1016_j_tsep_2021_100860
crossref_primary_10_1016_j_enconman_2006_08_005
crossref_primary_10_1016_j_nucengdes_2021_111329
crossref_primary_10_1039_C6RE00185H
crossref_primary_10_1016_j_energy_2022_123636
crossref_primary_10_1115_1_4063354
crossref_primary_10_1016_j_applthermaleng_2004_03_010
crossref_primary_10_1093_ijlct_ctz005
crossref_primary_10_1007_s11242_018_1208_x
crossref_primary_10_1016_j_renene_2020_12_041
crossref_primary_10_1007_s11431_019_1455_0
crossref_primary_10_1007_s11771_018_3903_8
crossref_primary_10_3390_ma14051195
crossref_primary_10_1115_1_4028113
crossref_primary_10_1016_j_energy_2024_131813
crossref_primary_10_1016_j_tsep_2024_102632
crossref_primary_10_1115_1_4004354
crossref_primary_10_1016_j_ijrefrig_2017_04_002
crossref_primary_10_1115_1_4037034
crossref_primary_10_1007_s00193_021_01009_7
crossref_primary_10_3390_catal7040124
crossref_primary_10_1016_j_applthermaleng_2021_117284
crossref_primary_10_1016_j_jpowsour_2009_08_025
crossref_primary_10_1007_s11630_021_1403_x
crossref_primary_10_1016_j_est_2020_101444
crossref_primary_10_1016_j_apenergy_2019_113621
crossref_primary_10_1016_j_applthermaleng_2015_09_102
crossref_primary_10_1016_j_molliq_2021_117183
crossref_primary_10_1016_j_ijheatmasstransfer_2010_04_033
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123352
crossref_primary_10_2514_1_T6475
crossref_primary_10_3390_su2082365
crossref_primary_10_1016_j_ijheatmasstransfer_2015_07_096
crossref_primary_10_1115_1_1464877
crossref_primary_10_1039_c3ta13240d
crossref_primary_10_1088_1757_899X_1128_1_012042
crossref_primary_10_1080_01457632_2018_1564204
crossref_primary_10_1016_j_applthermaleng_2018_01_010
crossref_primary_10_1016_j_spmi_2004_04_002
crossref_primary_10_3139_120_110784
crossref_primary_10_1080_10407790_2017_1420325
crossref_primary_10_1115_1_4036160
crossref_primary_10_1016_j_msea_2016_01_017
crossref_primary_10_1002_ente_202300790
crossref_primary_10_1016_j_est_2022_104450
crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_013
crossref_primary_10_1016_j_jtice_2022_104644
crossref_primary_10_1115_1_4063149
crossref_primary_10_1007_s11663_016_0819_2
crossref_primary_10_1016_j_csite_2023_103307
crossref_primary_10_1016_j_fusengdes_2018_03_067
crossref_primary_10_1016_j_tsep_2023_102320
crossref_primary_10_1098_rsta_2005_1697
crossref_primary_10_1177_0021955X20966329
crossref_primary_10_1016_j_ces_2013_05_041
crossref_primary_10_1088_1742_6596_2177_1_012031
crossref_primary_10_1016_j_actamat_2004_09_024
crossref_primary_10_1016_j_expthermflusci_2008_06_011
crossref_primary_10_1016_j_ijheatmasstransfer_2007_12_012
crossref_primary_10_1115_1_4065575
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_053
crossref_primary_10_1016_j_ijthermalsci_2012_11_008
crossref_primary_10_1016_j_ces_2022_118389
crossref_primary_10_1088_2053_1591_abf3e2
crossref_primary_10_1115_1_4007827
crossref_primary_10_1016_j_applthermaleng_2009_12_001
crossref_primary_10_1109_ACCESS_2020_2964337
crossref_primary_10_1115_1_2236132
crossref_primary_10_1016_j_mechmat_2015_08_010
crossref_primary_10_1016_j_ijheatmasstransfer_2015_08_085
crossref_primary_10_1016_j_ast_2023_108565
crossref_primary_10_1016_j_est_2020_101482
crossref_primary_10_1016_j_ijft_2022_100141
crossref_primary_10_1088_0022_3727_46_25_255302
crossref_primary_10_1016_j_medengphy_2012_08_011
crossref_primary_10_1007_s12666_019_01758_1
crossref_primary_10_1115_1_4005678
crossref_primary_10_1016_j_csite_2023_103525
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119077
crossref_primary_10_1115_1_2993540
crossref_primary_10_2514_1_T6039
crossref_primary_10_1088_1742_6596_2177_1_012014
crossref_primary_10_1007_s00231_010_0620_8
crossref_primary_10_1007_s00231_018_2305_7
crossref_primary_10_1016_j_expthermflusci_2014_06_011
crossref_primary_10_1115_1_4065352
crossref_primary_10_1002_2013JC009577
crossref_primary_10_1007_s10973_019_09166_9
crossref_primary_10_1002_er_6151
crossref_primary_10_1088_1361_651X_aa7e34
crossref_primary_10_1016_j_est_2020_102108
crossref_primary_10_1016_j_solener_2016_07_008
crossref_primary_10_1109_TCAPT_2005_848528
crossref_primary_10_1016_j_scib_2016_12_009
crossref_primary_10_1016_j_est_2022_104650
crossref_primary_10_1063_1_2039998
crossref_primary_10_1108_09615531311289114
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122111
crossref_primary_10_1016_j_ijhydene_2019_01_086
crossref_primary_10_3390_ma14123153
crossref_primary_10_2514_1_T4206
crossref_primary_10_1016_j_ijhydene_2018_04_215
crossref_primary_10_1051_meca_2020028
crossref_primary_10_1016_j_applthermaleng_2015_05_028
crossref_primary_10_1016_j_elstat_2018_11_002
crossref_primary_10_1016_j_est_2022_104417
crossref_primary_10_1088_1757_899X_618_1_012094
crossref_primary_10_1016_j_msec_2019_110404
crossref_primary_10_1016_j_applthermaleng_2021_117436
crossref_primary_10_1016_j_ijhydene_2014_03_075
crossref_primary_10_3390_en13112902
crossref_primary_10_1002_adem_200800090
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_054
crossref_primary_10_4028_www_scientific_net_SSP_298_208
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_048
crossref_primary_10_1016_j_powtec_2021_02_017
crossref_primary_10_1016_j_tsep_2023_101684
crossref_primary_10_1016_j_icheatmasstransfer_2020_104897
crossref_primary_10_1016_j_msea_2018_10_022
crossref_primary_10_1109_TCPMT_2019_2956722
crossref_primary_10_1016_j_cej_2022_135912
crossref_primary_10_1016_j_applthermaleng_2016_11_129
crossref_primary_10_1016_j_ijthermalsci_2021_107240
crossref_primary_10_1016_j_solmat_2022_112092
crossref_primary_10_1088_1742_6596_2509_1_012014
crossref_primary_10_2478_ama_2018_0030
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124076
crossref_primary_10_1115_1_4045732
crossref_primary_10_1299_jtst_22_00397
crossref_primary_10_1016_j_ijhydene_2018_09_058
crossref_primary_10_1016_j_ces_2009_08_028
crossref_primary_10_1016_j_applthermaleng_2016_10_125
crossref_primary_10_1016_j_ijthermalsci_2013_09_001
crossref_primary_10_1007_s10934_007_9169_4
crossref_primary_10_1088_1742_6596_1224_1_012009
crossref_primary_10_1016_j_ces_2016_03_013
crossref_primary_10_1016_j_ijrefrig_2019_06_023
crossref_primary_10_1080_10407790_2022_2105124
crossref_primary_10_1088_1873_7005_aa73cd
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123512
crossref_primary_10_1080_10407782_2022_2083874
crossref_primary_10_1016_j_cej_2024_151139
crossref_primary_10_1115_1_4035937
crossref_primary_10_1016_j_ces_2016_03_001
crossref_primary_10_1007_s11356_018_1766_z
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121279
crossref_primary_10_1149_2_001311jes
crossref_primary_10_1007_s00170_024_13230_6
crossref_primary_10_1080_10407782_2010_511987
crossref_primary_10_1016_j_ast_2018_09_002
crossref_primary_10_1021_acsenergylett_2c02425
crossref_primary_10_1016_j_physleta_2017_08_003
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121223
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118832
crossref_primary_10_1016_j_ijthermalsci_2022_107706
crossref_primary_10_1002_htj_22938
crossref_primary_10_1016_j_jmrt_2023_08_196
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125263
crossref_primary_10_1016_j_ijrefrig_2020_07_020
crossref_primary_10_1016_j_ijthermalsci_2022_107709
crossref_primary_10_1016_j_icheatmasstransfer_2015_06_007
crossref_primary_10_1016_j_applthermaleng_2017_08_051
crossref_primary_10_1016_j_applthermaleng_2015_04_024
crossref_primary_10_1115_1_2229225
crossref_primary_10_1016_j_ijhydene_2023_10_305
crossref_primary_10_1016_j_physo_2024_100216
crossref_primary_10_1016_j_applthermaleng_2015_05_068
crossref_primary_10_1016_j_ijheatmasstransfer_2007_11_062
crossref_primary_10_1088_1757_899X_709_3_033064
crossref_primary_10_1016_j_est_2020_102166
crossref_primary_10_1016_j_applthermaleng_2024_122886
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_016
crossref_primary_10_1115_1_2804932
crossref_primary_10_1115_1_2739598
crossref_primary_10_1007_s11242_007_9143_2
crossref_primary_10_1115_1_2227038
crossref_primary_10_1016_j_ijheatfluidflow_2024_109324
crossref_primary_10_1088_1742_6596_547_1_012021
crossref_primary_10_1016_j_jcat_2008_08_014
crossref_primary_10_1016_j_ces_2005_03_027
crossref_primary_10_1080_10407782_2024_2330087
crossref_primary_10_1016_j_ijheatmasstransfer_2007_11_051
crossref_primary_10_1016_j_ijthermalsci_2019_106057
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120071
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121001
crossref_primary_10_1080_10618560701624518
crossref_primary_10_1016_j_ijheatmasstransfer_2005_02_040
crossref_primary_10_1016_j_ijthermalsci_2024_109039
crossref_primary_10_1115_1_2804941
crossref_primary_10_1016_j_applthermaleng_2021_116558
crossref_primary_10_1080_01457632_2011_584812
crossref_primary_10_1016_j_powtec_2014_08_018
crossref_primary_10_1016_S0894_1777_03_00039_6
crossref_primary_10_1016_j_compositesb_2023_110913
crossref_primary_10_1016_j_proeng_2012_07_500
crossref_primary_10_1007_s11242_011_9841_7
crossref_primary_10_1080_01457632_2011_584817
crossref_primary_10_1016_j_actamat_2016_12_067
crossref_primary_10_1115_1_4037082
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125253
crossref_primary_10_1016_j_expthermflusci_2014_10_018
crossref_primary_10_1252_kakoronbunshu_39_78
crossref_primary_10_1016_j_jpowsour_2018_03_011
crossref_primary_10_26701_ems_783892
crossref_primary_10_1016_j_ijthermalsci_2011_05_018
crossref_primary_10_1016_j_energy_2016_09_008
crossref_primary_10_1088_1742_6596_547_1_012045
crossref_primary_10_1016_j_ijheatmasstransfer_2004_08_001
crossref_primary_10_1007_s11242_009_9356_7
crossref_primary_10_1016_j_jmatprotec_2019_116406
crossref_primary_10_1016_j_ijheatmasstransfer_2007_11_031
crossref_primary_10_1016_j_est_2021_102233
crossref_primary_10_1016_j_icheatmasstransfer_2021_105522
crossref_primary_10_1016_j_est_2020_102077
crossref_primary_10_1016_j_apenergy_2020_114875
crossref_primary_10_1016_j_ensm_2019_10_010
crossref_primary_10_1016_j_seta_2022_102048
crossref_primary_10_1557_s43577_022_00323_4
crossref_primary_10_3390_ma15062168
crossref_primary_10_1016_j_ijheatmasstransfer_2014_09_065
crossref_primary_10_3390_en14196308
crossref_primary_10_1115_1_4048861
crossref_primary_10_1007_s11242_014_0281_z
crossref_primary_10_1007_s10694_010_0167_8
crossref_primary_10_1016_j_enbuild_2017_08_011
crossref_primary_10_1016_j_applthermaleng_2021_116617
crossref_primary_10_1007_s11663_016_0703_0
crossref_primary_10_1063_1_3587159
crossref_primary_10_1016_j_ijthermalsci_2015_04_007
crossref_primary_10_1016_S0017_9310_02_00089_3
crossref_primary_10_1016_j_cherd_2020_01_021
crossref_primary_10_1016_j_ijthermalsci_2015_04_005
crossref_primary_10_1016_j_applthermaleng_2020_115230
crossref_primary_10_1080_08916152_2018_1434575
crossref_primary_10_1016_j_ijheatfluidflow_2003_08_002
crossref_primary_10_1016_j_ijengsci_2011_08_010
crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_003
crossref_primary_10_1016_j_applthermaleng_2016_10_173
crossref_primary_10_1088_1742_6596_1158_4_042023
crossref_primary_10_4028_www_scientific_net_MSF_539_543_242
crossref_primary_10_1115_1_4044008
crossref_primary_10_1515_IJNSNS_2009_10_5_617
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118974
crossref_primary_10_1016_j_cej_2014_11_055
crossref_primary_10_4028_www_scientific_net_AMM_787_112
crossref_primary_10_1007_s10765_018_2405_0
crossref_primary_10_1002_htj_22798
crossref_primary_10_1088_0022_3727_40_1_024
crossref_primary_10_1016_j_ijengsci_2008_01_012
crossref_primary_10_3390_thermo3040034
crossref_primary_10_1115_1_4000226
crossref_primary_10_1080_00986445_2013_863188
crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_038
crossref_primary_10_1016_j_applthermaleng_2016_02_095
crossref_primary_10_1080_10407781003656827
crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_082
crossref_primary_10_1016_j_applthermaleng_2023_121994
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_157
crossref_primary_10_2514_1_6725
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_056
crossref_primary_10_1016_j_conbuildmat_2017_05_020
crossref_primary_10_1016_j_applthermaleng_2020_115493
crossref_primary_10_1016_j_energy_2019_116742
crossref_primary_10_1016_j_ijthermalsci_2024_108896
crossref_primary_10_1016_j_solener_2015_09_010
crossref_primary_10_1016_j_icheatmasstransfer_2020_104599
crossref_primary_10_2514_1_1032
crossref_primary_10_1016_j_measurement_2018_10_025
crossref_primary_10_1016_j_ijhydene_2015_04_100
crossref_primary_10_1016_j_cattod_2013_06_019
crossref_primary_10_1016_j_apenergy_2016_04_012
crossref_primary_10_1016_j_enbenv_2021_08_002
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120490
crossref_primary_10_1016_j_applthermaleng_2015_09_094
crossref_primary_10_1080_02670836_2016_1180795_test
crossref_primary_10_1016_j_expthermflusci_2016_04_010
crossref_primary_10_1016_j_egyai_2023_100264
crossref_primary_10_1016_j_expthermflusci_2007_08_004
crossref_primary_10_1080_10407782_2014_894371
crossref_primary_10_1016_j_ijheatmasstransfer_2015_02_047
crossref_primary_10_1080_15361055_2020_1712994
crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_043
crossref_primary_10_1007_s10934_010_9423_z
crossref_primary_10_1016_j_ijheatmasstransfer_2010_07_007
crossref_primary_10_1142_S2737549821500010
crossref_primary_10_1016_j_applthermaleng_2019_113897
crossref_primary_10_2514_1_49434
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121850
crossref_primary_10_1016_j_ijhydene_2021_11_058
crossref_primary_10_1080_10407790802154173
crossref_primary_10_1016_j_apenergy_2018_08_012
crossref_primary_10_1016_j_actamat_2014_04_061
crossref_primary_10_1088_0022_3727_44_12_125406
crossref_primary_10_1016_j_est_2019_100985
crossref_primary_10_1080_01457632_2020_1723841
crossref_primary_10_1016_j_ijheatmasstransfer_2009_05_015
crossref_primary_10_12989_cac_2016_18_3_319
crossref_primary_10_3390_en15134894
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_029
crossref_primary_10_1080_10407782_2015_1031607
crossref_primary_10_1016_j_ces_2018_09_045
crossref_primary_10_1016_j_applthermaleng_2023_121319
crossref_primary_10_1016_j_cej_2016_06_117
crossref_primary_10_1016_j_ijrefrig_2018_12_027
crossref_primary_10_1016_j_applthermaleng_2020_115456
crossref_primary_10_1016_j_apenergy_2016_12_163
crossref_primary_10_1051_matecconf_201824005027
crossref_primary_10_1016_j_compstruct_2021_115159
crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_070
crossref_primary_10_1016_j_ijhydene_2020_02_228
crossref_primary_10_1016_j_icheatmasstransfer_2023_107080
crossref_primary_10_1016_j_powtec_2019_06_037
crossref_primary_10_1021_acs_langmuir_7b01334
crossref_primary_10_1007_s10934_016_0225_9
crossref_primary_10_1016_j_matchar_2012_10_001
crossref_primary_10_1016_j_applthermaleng_2021_116844
crossref_primary_10_4271_2016_01_0965
crossref_primary_10_1016_j_ijthermalsci_2020_106796
crossref_primary_10_1016_j_ijthermalsci_2023_108156
crossref_primary_10_1016_j_rser_2017_01_048
crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_033
crossref_primary_10_1080_01457630601166127
crossref_primary_10_1016_j_cej_2012_05_045
crossref_primary_10_1016_j_ijthermalsci_2015_06_008
crossref_primary_10_1016_j_jpowsour_2009_09_004
crossref_primary_10_1007_BF02704775
crossref_primary_10_1016_j_ces_2011_05_005
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2022044114
crossref_primary_10_1016_j_applthermaleng_2019_114773
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123283
crossref_primary_10_1016_j_ijhydene_2015_07_149
crossref_primary_10_1016_j_applthermaleng_2018_10_106
crossref_primary_10_1088_1742_6596_2385_1_012023
crossref_primary_10_1016_j_medengphy_2014_11_001
crossref_primary_10_1016_j_ijheatmasstransfer_2005_11_028
crossref_primary_10_1016_j_ces_2010_12_031
crossref_primary_10_1016_j_micromeso_2008_12_011
crossref_primary_10_1016_j_ijheatmasstransfer_2010_06_002
crossref_primary_10_1016_j_applthermaleng_2015_09_043
crossref_primary_10_1016_j_est_2019_101005
crossref_primary_10_1016_j_ijheatmasstransfer_2021_120974
crossref_primary_10_1080_01457632_2013_838065
crossref_primary_10_1016_j_tsep_2020_100748
crossref_primary_10_1016_j_est_2021_102860
crossref_primary_10_1007_s10765_018_2473_1
crossref_primary_10_1016_j_apenergy_2018_10_036
crossref_primary_10_1007_s10765_013_1545_5
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123056
crossref_primary_10_1016_j_applthermaleng_2020_115874
crossref_primary_10_1016_j_est_2022_106284
crossref_primary_10_1002_adem_200900138
crossref_primary_10_1016_j_apenergy_2015_12_043
crossref_primary_10_1016_j_ces_2023_119138
crossref_primary_10_1177_0731684414545904
crossref_primary_10_1016_j_ijhydene_2020_12_183
crossref_primary_10_1016_j_jcis_2009_10_011
crossref_primary_10_1063_1_2829774
crossref_primary_10_1016_j_est_2021_103950
crossref_primary_10_4028_p_23o6w9
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124633
crossref_primary_10_1080_01457632_2012_659613
crossref_primary_10_1016_j_enconman_2004_06_010
crossref_primary_10_1016_j_ijrefrig_2016_12_019
crossref_primary_10_1016_j_ijthermalsci_2020_106514
crossref_primary_10_4271_2017_01_9288
crossref_primary_10_1016_j_est_2022_106493
crossref_primary_10_1016_j_energy_2022_124230
crossref_primary_10_1016_j_matdes_2020_109114
crossref_primary_10_1007_s40996_021_00685_w
crossref_primary_10_1016_j_jpowsour_2018_08_002
crossref_primary_10_32604_cmes_2021_016894
crossref_primary_10_1016_j_ces_2019_02_010
crossref_primary_10_1016_j_ijheatmasstransfer_2010_03_015
crossref_primary_10_1002_adem_201901468
crossref_primary_10_1016_j_apenergy_2023_121633
crossref_primary_10_1016_j_rser_2014_08_040
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120675
crossref_primary_10_1016_j_ijmecsci_2020_105480
crossref_primary_10_3390_ma12142261
crossref_primary_10_1143_JJAP_45_L575
crossref_primary_10_1016_j_icheatmasstransfer_2021_105574
crossref_primary_10_1016_j_physleta_2014_06_002
crossref_primary_10_4028_www_scientific_net_AMR_668_42
crossref_primary_10_1016_j_applthermaleng_2016_04_085
crossref_primary_10_1016_j_ijheatmasstransfer_2009_03_051
crossref_primary_10_1016_j_crhy_2014_09_002
crossref_primary_10_1016_j_ijheatmasstransfer_2006_09_039
crossref_primary_10_1088_1742_6596_2385_1_012057
crossref_primary_10_1007_s00170_004_2440_9
crossref_primary_10_1016_j_applthermaleng_2021_116800
crossref_primary_10_1016_j_expthermflusci_2018_07_018
crossref_primary_10_1080_01457632_2022_2102960
crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_001
crossref_primary_10_1016_j_ijheatmasstransfer_2013_02_037
crossref_primary_10_1016_j_tsep_2024_102690
crossref_primary_10_1063_1_3673523
crossref_primary_10_1115_1_4049752
crossref_primary_10_1016_j_ijhydene_2021_11_221
crossref_primary_10_1016_j_ijthermalsci_2008_12_010
crossref_primary_10_1016_j_ijthermalsci_2015_07_017
crossref_primary_10_1016_j_ces_2016_08_025
crossref_primary_10_4150_KPMI_2010_17_6_489
crossref_primary_10_1016_j_matlet_2008_11_051
crossref_primary_10_4028_p_x73mgH
crossref_primary_10_1016_j_applthermaleng_2020_115609
crossref_primary_10_1016_j_ijthermalsci_2015_07_016
crossref_primary_10_1016_j_applthermaleng_2003_12_011
crossref_primary_10_3390_en16196915
crossref_primary_10_1016_j_ijheatmasstransfer_2005_12_014
crossref_primary_10_1016_j_ijheatmasstransfer_2005_12_012
crossref_primary_10_1016_j_actamat_2008_06_033
crossref_primary_10_1016_j_applthermaleng_2018_07_094
crossref_primary_10_1007_s11242_015_0534_5
crossref_primary_10_1002_aic_12490
crossref_primary_10_3390_ma12122017
crossref_primary_10_1016_j_cryogenics_2017_04_005
crossref_primary_10_21205_deufmd_2022247111
crossref_primary_10_1016_j_ces_2016_08_031
crossref_primary_10_1016_j_ijft_2024_100677
crossref_primary_10_1080_10789669_2012_623565
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_027
crossref_primary_10_1016_j_applthermaleng_2015_09_019
crossref_primary_10_1016_j_solener_2020_03_025
crossref_primary_10_1007_s12540_014_5017_7
crossref_primary_10_1007_s10853_006_0602_x
crossref_primary_10_1016_j_ijheatmasstransfer_2014_10_053
crossref_primary_10_3390_en12112045
crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_044
crossref_primary_10_1016_j_rinp_2020_103655
crossref_primary_10_1007_s11242_012_0022_0
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_050
crossref_primary_10_1115_1_4047560
crossref_primary_10_1016_j_ijhydene_2020_12_172
crossref_primary_10_1016_j_energy_2015_10_056
crossref_primary_10_1016_j_ijheatmasstransfer_2015_06_088
crossref_primary_10_1016_j_renene_2022_06_122
crossref_primary_10_1016_j_ces_2021_116518
crossref_primary_10_1016_j_est_2023_107858
crossref_primary_10_1007_s11708_011_0140_3
crossref_primary_10_4028_www_scientific_net_DDF_387_166
crossref_primary_10_1080_15567260600901642
crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_033
crossref_primary_10_1016_j_cattod_2013_05_018
crossref_primary_10_1002_pssa_202100576
crossref_primary_10_1016_j_applthermaleng_2016_03_081
crossref_primary_10_1016_j_tsep_2024_102458
crossref_primary_10_1016_j_energy_2022_124276
crossref_primary_10_1080_2374068X_2024_2306574
crossref_primary_10_1080_01457632_2016_1206415
Cites_doi 10.1115/1.2822636
10.1023/A:1006643815323
10.1002/cite.330430610
10.1029/WR018i004p01049
10.1115/1.3242658
10.1016/0009-2509(94)00170-7
10.1016/S0017-9310(05)80286-8
10.1115/1.2826001
10.1029/TR039i004p00702
10.1007/BF00820342
10.1016/0017-9310(81)90027-2
10.1016/0017-9310(94)90392-1
10.1016/0009-2509(85)85037-5
10.1016/0022-5096(82)90022-9
10.1007/BF01007133
10.1016/0017-9310(88)90013-0
10.1007/BF00826965
10.1016/0094-4548(77)90100-X
10.1016/0017-9310(82)90212-5
10.1016/0017-9310(86)90234-6
10.1016/0017-9310(73)90104-X
10.1115/1.2910229
10.1080/14786449208620364
10.1016/0017-9310(93)90080-P
10.1016/S0017-9310(00)00123-X
10.1007/BF00773737
10.1115/1.2819148
10.1115/1.2819301
10.1115/1.2822515
10.1115/IMECE2000-1544
10.1115/IMECE1999-0795
10.1002/cite.330421408
10.1115/1.3564760
10.1088/0022-3727/24/9/002
10.1063/1.346276
10.1115/1.3167081
10.1021/i160071a001
10.1063/1.343422
10.2514/3.299
ContentType Journal Article
Copyright 2002
2002 INIST-CNRS
Copyright_xml – notice: 2002
– notice: 2002 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1016/S0017-9310(01)00220-4
DatabaseName Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 1031
ExternalDocumentID 10_1016_S0017_9310_01_00220_4
13401094
S0017931001002204
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
08R
AAPBV
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c523t-eb0ce7c18921d7fe2a1762a7249b4094b91952e2a91a7ccaa53d65fef459c1a3
ISSN 0017-9310
IngestDate Sat Oct 05 06:28:41 EDT 2024
Thu Sep 26 18:30:38 EDT 2024
Sun Oct 22 16:05:58 EDT 2023
Fri Feb 23 02:14:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Metal foam
Thermal conductivity
Aluminium
Modelling
Permeability
Porosity
Experimental study
Thermophysical properties
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c523t-eb0ce7c18921d7fe2a1762a7249b4094b91952e2a91a7ccaa53d65fef459c1a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27771811
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_27771811
crossref_primary_10_1016_S0017_9310_01_00220_4
pascalfrancis_primary_13401094
elsevier_sciencedirect_doi_10_1016_S0017_9310_01_00220_4
PublicationCentury 2000
PublicationDate 2002-02-01
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: 2002-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2002
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (BIB5) 2000
A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, An analytical–experimental study for the determination of the thermal conductivity of high porosity metal foams, in: R.M. Sullivan, N.J. Salamon, M. Keyhani, S. White, Application of Porous Media Methods for Engineered Materials, AMD-Vol. 233, 1999, pp. 13–20
Zumbrunnen, Viskanta, Incropera (BIB38) 1986; 29
Darcy (BIB40) 1856
Verma, Shrotriya, Singh, Chaudhary (BIB16) 1991; 24
Hsu, Cheng, Wong (BIB20) 1994; 37
V.V. Calmidi, Transport phenomena in high porosity metal foams, Ph.D. Thesis, University of Colorado, Boulder, CO, 1998
E.G. Alexander, Structure–property relationships in heat pipe wicking materials, Ph.D. Thesis, North Carolina State University, Raleigh, NC, 1972
Taylor (BIB39) 1980
Hashin (BIB12) 1983; 50
Kaviany (BIB2) 1991
Koh, Fortini (BIB28) 1973; 6
Vafai, Tien (BIB43) 1982; 25
Beavers, Sparrow (BIB42) 1969; 36
Boomsma, Poulikakos (BIB33) 2001; 44
Semena, Zaripov (BIB29) 1977; 24
Du Plessis (BIB57) 1992
Munson, Young, Okiishi (BIB60) 1998
Joseph, Nield, Papanicolaou (BIB44) 1982; 18
Fand, Kim, Lam, Phan (BIB50) 1987; 109
Irmay (BIB47) 1958; 39
Hunt, Tien (BIB55) 1988; 31
Smith, Torquato (BIB14) 1989; 65
Calmidi, Mahajan (BIB31) 1999; 121
Bauer (BIB18) 1993; 36
Tien, Vafai (BIB19) 1979; 65
Zumbrunnen, Viskanta, Incropera (BIB37) 1984; 18
Vafai, Tien (BIB54) 1981; 24
Hsu (BIB24) 2000
S.F. Hoerner, Fluid Dynamic Drag, Midland Park, NJ, 1965
Nozad, Carbonell, Whitaker (BIB13) 1985; 40
Forchheimer (BIB41) 1901; 45
Mantle, Chang (BIB25) 1991; 5
Zehner, Schlunder (BIB10) 1970; 42
Aivazov, Domashnev (BIB9) 1968; 7
A. Bhattacharya, Thermophysical properties and convective transport in metal foam and finned metal foam heat sinks, Ph.D. Thesis, University of Colorado, Boulder, CO, 2001
Lage, Antohe, Nield (BIB53) 1997; 119
User Manuals, MARC Analysis Research Corporation, Palo Alto, CA, 1999
Whitaker (BIB22) 1999
B. Leyda, Personal Communications, ERG Aerospace, 2000
Du Plessis, Masliyah (BIB58) 1988; 3
(BIB3) 1998
Paek, Kang, Kim, Hyun (BIB32) 2000; 21
Hwang, Chao (BIB56) 1994; 117
Dul'nev, Muratova (BIB26) 1968; 14
Hsu, Cheng, Wong (BIB21) 1995; 117
Kececioglu, Jiang (BIB51) 1994; 116
Rumpf, Gupta (BIB48) 1971; 43
Dullien (BIB1) 1979
Kim, Torquato (BIB15) 1990; 68
Sahraoui, Kaviany (BIB17) 1993; 36
Milton (BIB11) 1982; 30
MARC
Januszewski, Khokhar, Majumdar (BIB30) 1977; 4
Rayleigh (BIB8) 1892; 34
Cheng, Hsu (BIB23) 1998
Du Plessis, Montillet, Comiti, Legrand (BIB52) 1994; 49
Nield, Bejan (BIB4) 1999
Ergun (BIB46) 1952; 48
Macdonald, El-Sayed, Mow, Dullien (BIB49) 1979; 18
Antohe, Lage, Price, Weber (BIB45) 1997; 119
Nield (10.1016/S0017-9310(01)00220-4_BIB4) 1999
Rumpf (10.1016/S0017-9310(01)00220-4_BIB48) 1971; 43
(10.1016/S0017-9310(01)00220-4_BIB3) 1998
Irmay (10.1016/S0017-9310(01)00220-4_BIB47) 1958; 39
10.1016/S0017-9310(01)00220-4_BIB27
Bauer (10.1016/S0017-9310(01)00220-4_BIB18) 1993; 36
Hsu (10.1016/S0017-9310(01)00220-4_BIB24) 2000
Semena (10.1016/S0017-9310(01)00220-4_BIB29) 1977; 24
Kim (10.1016/S0017-9310(01)00220-4_BIB15) 1990; 68
Calmidi (10.1016/S0017-9310(01)00220-4_BIB31) 1999; 121
10.1016/S0017-9310(01)00220-4_BIB34
10.1016/S0017-9310(01)00220-4_BIB35
10.1016/S0017-9310(01)00220-4_BIB36
Tien (10.1016/S0017-9310(01)00220-4_BIB19) 1979; 65
Dullien (10.1016/S0017-9310(01)00220-4_BIB1) 1979
Taylor (10.1016/S0017-9310(01)00220-4_BIB39) 1980
Zumbrunnen (10.1016/S0017-9310(01)00220-4_BIB37) 1984; 18
Mantle (10.1016/S0017-9310(01)00220-4_BIB25) 1991; 5
Munson (10.1016/S0017-9310(01)00220-4_BIB60) 1998
10.1016/S0017-9310(01)00220-4_BIB7
Ergun (10.1016/S0017-9310(01)00220-4_BIB46) 1952; 48
10.1016/S0017-9310(01)00220-4_BIB6
Nozad (10.1016/S0017-9310(01)00220-4_BIB13) 1985; 40
Zumbrunnen (10.1016/S0017-9310(01)00220-4_BIB38) 1986; 29
Beavers (10.1016/S0017-9310(01)00220-4_BIB42) 1969; 36
Antohe (10.1016/S0017-9310(01)00220-4_BIB45) 1997; 119
Koh (10.1016/S0017-9310(01)00220-4_BIB28) 1973; 6
Vafai (10.1016/S0017-9310(01)00220-4_BIB43) 1982; 25
Hsu (10.1016/S0017-9310(01)00220-4_BIB21) 1995; 117
Kececioglu (10.1016/S0017-9310(01)00220-4_BIB51) 1994; 116
Du Plessis (10.1016/S0017-9310(01)00220-4_BIB58) 1988; 3
(10.1016/S0017-9310(01)00220-4_BIB5) 2000
Hsu (10.1016/S0017-9310(01)00220-4_BIB20) 1994; 37
Darcy (10.1016/S0017-9310(01)00220-4_BIB40) 1856
Fand (10.1016/S0017-9310(01)00220-4_BIB50) 1987; 109
Vafai (10.1016/S0017-9310(01)00220-4_BIB54) 1981; 24
Rayleigh (10.1016/S0017-9310(01)00220-4_BIB8) 1892; 34
Zehner (10.1016/S0017-9310(01)00220-4_BIB10) 1970; 42
Hunt (10.1016/S0017-9310(01)00220-4_BIB55) 1988; 31
Hwang (10.1016/S0017-9310(01)00220-4_BIB56) 1994; 117
10.1016/S0017-9310(01)00220-4_BIB59
Du Plessis (10.1016/S0017-9310(01)00220-4_BIB52) 1994; 49
Kaviany (10.1016/S0017-9310(01)00220-4_BIB2) 1991
Milton (10.1016/S0017-9310(01)00220-4_BIB11) 1982; 30
Forchheimer (10.1016/S0017-9310(01)00220-4_BIB41) 1901; 45
Sahraoui (10.1016/S0017-9310(01)00220-4_BIB17) 1993; 36
Januszewski (10.1016/S0017-9310(01)00220-4_BIB30) 1977; 4
Boomsma (10.1016/S0017-9310(01)00220-4_BIB33) 2001; 44
Cheng (10.1016/S0017-9310(01)00220-4_BIB23) 1998
Macdonald (10.1016/S0017-9310(01)00220-4_BIB49) 1979; 18
Paek (10.1016/S0017-9310(01)00220-4_BIB32) 2000; 21
Hashin (10.1016/S0017-9310(01)00220-4_BIB12) 1983; 50
Smith (10.1016/S0017-9310(01)00220-4_BIB14) 1989; 65
Verma (10.1016/S0017-9310(01)00220-4_BIB16) 1991; 24
Dul'nev (10.1016/S0017-9310(01)00220-4_BIB26) 1968; 14
Aivazov (10.1016/S0017-9310(01)00220-4_BIB9) 1968; 7
Whitaker (10.1016/S0017-9310(01)00220-4_BIB22) 1999
Lage (10.1016/S0017-9310(01)00220-4_BIB53) 1997; 119
Joseph (10.1016/S0017-9310(01)00220-4_BIB44) 1982; 18
Du Plessis (10.1016/S0017-9310(01)00220-4_BIB57) 1992
References_xml – year: 2000
  ident: BIB5
  publication-title: Handbook of Porous Media
– year: 1856
  ident: BIB40
  publication-title: Les Fontaines Publiques de la ville de Dijon
  contributor:
    fullname: Darcy
– volume: 43
  start-page: 367
  year: 1971
  end-page: 375
  ident: BIB48
  article-title: Einflusse der porositat and kongroß enverteilung im widerstandsgesetz der porenstromung
  publication-title: Chem.-Ing.-Tech.
  contributor:
    fullname: Gupta
– start-page: 249
  year: 1992
  end-page: 262
  ident: BIB57
  article-title: Pore scale modeling for flow through different types of porous environments
  publication-title: Heat and Mass Transfer in Porous Media
  contributor:
    fullname: Du Plessis
– volume: 36
  start-page: 4181
  year: 1993
  end-page: 4191
  ident: BIB18
  article-title: A general approach toward the thermal conductivity of porous media
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Bauer
– year: 1998
  ident: BIB3
  publication-title: Transport Phenomena in Porous Media
– volume: 6
  start-page: 2013
  year: 1973
  end-page: 2021
  ident: BIB28
  article-title: Prediction of thermal conductivity and electrical resistivity of porous metalic materials
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Fortini
– volume: 24
  start-page: 195
  year: 1981
  end-page: 203
  ident: BIB54
  article-title: Boundary and inertia effects on flow and heat transfer in porous media
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Tien
– volume: 24
  start-page: 1515
  year: 1991
  end-page: 1526
  ident: BIB16
  article-title: Prediction and measurement of effective thermal conductivity of three-phase systems
  publication-title: J. Phys. D
  contributor:
    fullname: Chaudhary
– volume: 18
  start-page: 199
  year: 1979
  end-page: 208
  ident: BIB49
  article-title: Flow through porous media: the Ergun equation revisited
  publication-title: Ind. Chem. Fund.
  contributor:
    fullname: Dullien
– volume: 34
  start-page: 481
  year: 1892
  end-page: 502
  ident: BIB8
  article-title: On the influence of obstacles arranged in rectangular order upon the properties of a medium
  publication-title: Philos. Mag.
  contributor:
    fullname: Rayleigh
– volume: 25
  start-page: 1183
  year: 1982
  end-page: 1190
  ident: BIB43
  article-title: Boundary and inertia effects on convective mass transfer in porous media
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Tien
– volume: 40
  start-page: 843
  year: 1985
  end-page: 855
  ident: BIB13
  article-title: Heat conduction in multi-phase systems I: theory and experiments for two-phase systems
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Whitaker
– volume: 65
  start-page: 893
  year: 1989
  end-page: 900
  ident: BIB14
  article-title: Computer simulation results for bounds on the effective conductivity of porous media
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Torquato
– volume: 24
  start-page: 82
  year: 1977
  end-page: 84
  ident: BIB29
  article-title: Influence of the diameter and length on material heat transfer of metal fiber wicks of heat pipes
  publication-title: Tepleonergetika
  contributor:
    fullname: Zaripov
– year: 1979
  ident: BIB1
  publication-title: Porous Media: Fluid Transport and Pore Structure
  contributor:
    fullname: Dullien
– volume: 44
  start-page: 827
  year: 2001
  end-page: 836
  ident: BIB33
  article-title: On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Poulikakos
– volume: 31
  start-page: 301
  year: 1988
  end-page: 309
  ident: BIB55
  article-title: Effects of thermal dispersion on forced convection in fibrous media
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Tien
– year: 1998
  ident: BIB60
  publication-title: Fundamentals of Fluid Mechanics
  contributor:
    fullname: Okiishi
– volume: 117
  start-page: 725
  year: 1994
  end-page: 732
  ident: BIB56
  article-title: Heat transfer measurements and analysis for sintered porous channels
  publication-title: ASME J. Heat Transfer
  contributor:
    fullname: Chao
– start-page: 57
  year: 1998
  end-page: 76
  ident: BIB23
  article-title: Heat conduction
  publication-title: Transport Phenomena in Porous Media
  contributor:
    fullname: Hsu
– volume: 4
  start-page: 417
  year: 1977
  end-page: 423
  ident: BIB30
  article-title: Thermal conductivity of some porous metals
  publication-title: Lett. Heat Mass Transfer
  contributor:
    fullname: Majumdar
– volume: 121
  start-page: 466
  year: 1999
  end-page: 471
  ident: BIB31
  article-title: The effective thermal conductivity of high porosity metal foams
  publication-title: ASME J. Heat Transfer
  contributor:
    fullname: Mahajan
– volume: 36
  start-page: 1019
  year: 1993
  end-page: 1033
  ident: BIB17
  article-title: Slip and no-slip temperature boundary conditions at interface of porous, plain media: conduction
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Kaviany
– volume: 5
  start-page: 545
  year: 1991
  end-page: 549
  ident: BIB25
  article-title: Effective thermal conductivity of sintered metal fibers
  publication-title: AIAA J. Thermophys. Heat Transfer
  contributor:
    fullname: Chang
– volume: 119
  start-page: 700
  year: 1997
  end-page: 706
  ident: BIB53
  article-title: Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media
  publication-title: ASME J. Fluids Eng.
  contributor:
    fullname: Nield
– volume: 29
  start-page: 275
  year: 1986
  end-page: 284
  ident: BIB38
  article-title: Heat transfer through porous solids with complex internal geometries
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Incropera
– volume: 68
  start-page: 3892
  year: 1990
  end-page: 3903
  ident: BIB15
  article-title: Determination of the effective conductivity of heterogeneous media by Brownian motion simulation
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Torquato
– volume: 21
  start-page: 453
  year: 2000
  end-page: 464
  ident: BIB32
  article-title: Effective thermal conductivity and permeability of aluminum foam materials
  publication-title: Int. J. Thermophys.
  contributor:
    fullname: Hyun
– volume: 18
  start-page: 1049
  year: 1982
  end-page: 1052
  ident: BIB44
  article-title: Nonlinear equation governing flow in a saturated porous medium
  publication-title: Water Resour. Res.
  contributor:
    fullname: Papanicolaou
– volume: 14
  start-page: 29
  year: 1968
  end-page: 35
  ident: BIB26
  article-title: Thermal conductivity of fibrous systems
  publication-title: J. Eng. Phys.
  contributor:
    fullname: Muratova
– volume: 39
  start-page: 702
  year: 1958
  end-page: 707
  ident: BIB47
  article-title: On the theoretical derivation of Darcy and Forcheimer formula
  publication-title: Trans. Am. Geograph. Union
  contributor:
    fullname: Irmay
– year: 1991
  ident: BIB2
  publication-title: Principles of Heat Transfer in Porous Media
  contributor:
    fullname: Kaviany
– volume: 7
  start-page: 708
  year: 1968
  end-page: 710
  ident: BIB9
  article-title: Influence of porosity on the conductivity of hot pressed titanium specimens
  publication-title: Sov. Powder Metall. Met. Ceram.
  contributor:
    fullname: Domashnev
– volume: 3
  start-page: 145
  year: 1988
  end-page: 161
  ident: BIB58
  article-title: Mathematical modeling of flow through consolidated isotropic porous media
  publication-title: Transp. Porous Media
  contributor:
    fullname: Masliyah
– year: 1999
  ident: BIB22
  publication-title: The Method of Volume Averaging
  contributor:
    fullname: Whitaker
– volume: 65
  start-page: 135
  year: 1979
  end-page: 148
  ident: BIB19
  article-title: Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation
  publication-title: AIAA Progress Ser.
  contributor:
    fullname: Vafai
– volume: 117
  start-page: 264
  year: 1995
  end-page: 269
  ident: BIB21
  article-title: A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media
  publication-title: ASME J. Heat Transfer
  contributor:
    fullname: Wong
– volume: 50
  start-page: 481
  year: 1983
  end-page: 505
  ident: BIB12
  article-title: Analysis of composite materials – a survey
  publication-title: ASME J. Appl. Mech.
  contributor:
    fullname: Hashin
– start-page: 171
  year: 2000
  end-page: 200
  ident: BIB24
  article-title: Heat conduction in porous media
  publication-title: Handbook of Porous Media
  contributor:
    fullname: Hsu
– volume: 36
  start-page: 711
  year: 1969
  end-page: 714
  ident: BIB42
  article-title: Non-darcy flow through fibrous porous media
  publication-title: ASME J. Appl. Mech.
  contributor:
    fullname: Sparrow
– volume: 119
  start-page: 404
  year: 1997
  end-page: 412
  ident: BIB45
  article-title: Experimental determination of permeability and inertial coefficients of mechanically compressed aluminum metal layers
  publication-title: ASME J. Fluids Eng.
  contributor:
    fullname: Weber
– volume: 37
  start-page: 2751
  year: 1994
  end-page: 2759
  ident: BIB20
  article-title: Modified Zehner–Schlunder models for stagnant thermal conductivity of porous media
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Wong
– year: 1999
  ident: BIB4
  publication-title: Convection in Porous Media
  contributor:
    fullname: Bejan
– volume: 48
  start-page: 89
  year: 1952
  end-page: 94
  ident: BIB46
  article-title: Fluid flow through packed column
  publication-title: Chem. Eng. Prog.
  contributor:
    fullname: Ergun
– year: 1980
  ident: BIB39
  publication-title: An Introduction to Error Analysis – The Study of Uncertainties in Physical Measurements
  contributor:
    fullname: Taylor
– volume: 45
  start-page: 1782
  year: 1901
  end-page: 1788
  ident: BIB41
  article-title: Wasserbewegung durch boden
  publication-title: VDI Z.
  contributor:
    fullname: Forchheimer
– volume: 42
  start-page: 933
  year: 1970
  end-page: 941
  ident: BIB10
  article-title: Thermal conductivity of granular materials at moderate temperatures
  publication-title: Chem.-Ing.-Tech.
  contributor:
    fullname: Schlunder
– volume: 30
  start-page: 177
  year: 1982
  end-page: 191
  ident: BIB11
  article-title: Bounds on the elastic and transport properties of two-component composites
  publication-title: J. Mech. Phys. Solids
  contributor:
    fullname: Milton
– volume: 116
  start-page: 164
  year: 1994
  end-page: 170
  ident: BIB51
  article-title: Flow through porous media of packed spheres saturated with water
  publication-title: ASME J. Fluids Eng.
  contributor:
    fullname: Jiang
– volume: 18
  start-page: 221
  year: 1984
  end-page: 226
  ident: BIB37
  article-title: Heat transfer through granular beds at high temperature
  publication-title: Warme- Stoffubertrag.
  contributor:
    fullname: Incropera
– volume: 109
  start-page: 268
  year: 1987
  end-page: 274
  ident: BIB50
  article-title: Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres
  publication-title: ASME J. Fluids Eng.
  contributor:
    fullname: Phan
– volume: 49
  start-page: 3545
  year: 1994
  end-page: 3553
  ident: BIB52
  article-title: Pressure drop prediction for flow through high porosity metallic foams
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Legrand
– year: 1999
  ident: 10.1016/S0017-9310(01)00220-4_BIB4
  contributor:
    fullname: Nield
– volume: 117
  start-page: 725
  year: 1994
  ident: 10.1016/S0017-9310(01)00220-4_BIB56
  article-title: Heat transfer measurements and analysis for sintered porous channels
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2822636
  contributor:
    fullname: Hwang
– volume: 21
  start-page: 453
  issue: 2
  year: 2000
  ident: 10.1016/S0017-9310(01)00220-4_BIB32
  article-title: Effective thermal conductivity and permeability of aluminum foam materials
  publication-title: Int. J. Thermophys.
  doi: 10.1023/A:1006643815323
  contributor:
    fullname: Paek
– volume: 43
  start-page: 367
  year: 1971
  ident: 10.1016/S0017-9310(01)00220-4_BIB48
  article-title: Einflusse der porositat and kongroß enverteilung im widerstandsgesetz der porenstromung
  publication-title: Chem.-Ing.-Tech.
  doi: 10.1002/cite.330430610
  contributor:
    fullname: Rumpf
– volume: 18
  start-page: 1049
  year: 1982
  ident: 10.1016/S0017-9310(01)00220-4_BIB44
  article-title: Nonlinear equation governing flow in a saturated porous medium
  publication-title: Water Resour. Res.
  doi: 10.1029/WR018i004p01049
  contributor:
    fullname: Joseph
– volume: 109
  start-page: 268
  year: 1987
  ident: 10.1016/S0017-9310(01)00220-4_BIB50
  article-title: Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.3242658
  contributor:
    fullname: Fand
– year: 2000
  ident: 10.1016/S0017-9310(01)00220-4_BIB5
– ident: 10.1016/S0017-9310(01)00220-4_BIB7
– volume: 49
  start-page: 3545
  year: 1994
  ident: 10.1016/S0017-9310(01)00220-4_BIB52
  article-title: Pressure drop prediction for flow through high porosity metallic foams
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(94)00170-7
  contributor:
    fullname: Du Plessis
– volume: 45
  start-page: 1782
  year: 1901
  ident: 10.1016/S0017-9310(01)00220-4_BIB41
  article-title: Wasserbewegung durch boden
  publication-title: VDI Z.
  contributor:
    fullname: Forchheimer
– volume: 36
  start-page: 1019
  issue: 4
  year: 1993
  ident: 10.1016/S0017-9310(01)00220-4_BIB17
  article-title: Slip and no-slip temperature boundary conditions at interface of porous, plain media: conduction
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(05)80286-8
  contributor:
    fullname: Sahraoui
– year: 1998
  ident: 10.1016/S0017-9310(01)00220-4_BIB60
  contributor:
    fullname: Munson
– volume: 121
  start-page: 466
  year: 1999
  ident: 10.1016/S0017-9310(01)00220-4_BIB31
  article-title: The effective thermal conductivity of high porosity metal foams
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2826001
  contributor:
    fullname: Calmidi
– volume: 39
  start-page: 702
  issue: 4
  year: 1958
  ident: 10.1016/S0017-9310(01)00220-4_BIB47
  article-title: On the theoretical derivation of Darcy and Forcheimer formula
  publication-title: Trans. Am. Geograph. Union
  doi: 10.1029/TR039i004p00702
  contributor:
    fullname: Irmay
– volume: 3
  start-page: 145
  year: 1988
  ident: 10.1016/S0017-9310(01)00220-4_BIB58
  article-title: Mathematical modeling of flow through consolidated isotropic porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00820342
  contributor:
    fullname: Du Plessis
– volume: 24
  start-page: 195
  year: 1981
  ident: 10.1016/S0017-9310(01)00220-4_BIB54
  article-title: Boundary and inertia effects on flow and heat transfer in porous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(81)90027-2
  contributor:
    fullname: Vafai
– year: 1979
  ident: 10.1016/S0017-9310(01)00220-4_BIB1
  contributor:
    fullname: Dullien
– volume: 37
  start-page: 2751
  issue: 17
  year: 1994
  ident: 10.1016/S0017-9310(01)00220-4_BIB20
  article-title: Modified Zehner–Schlunder models for stagnant thermal conductivity of porous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(94)90392-1
  contributor:
    fullname: Hsu
– volume: 40
  start-page: 843
  year: 1985
  ident: 10.1016/S0017-9310(01)00220-4_BIB13
  article-title: Heat conduction in multi-phase systems I: theory and experiments for two-phase systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(85)85037-5
  contributor:
    fullname: Nozad
– year: 1856
  ident: 10.1016/S0017-9310(01)00220-4_BIB40
  contributor:
    fullname: Darcy
– volume: 30
  start-page: 177
  issue: 3
  year: 1982
  ident: 10.1016/S0017-9310(01)00220-4_BIB11
  article-title: Bounds on the elastic and transport properties of two-component composites
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(82)90022-9
  contributor:
    fullname: Milton
– volume: 65
  start-page: 135
  year: 1979
  ident: 10.1016/S0017-9310(01)00220-4_BIB19
  article-title: Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation
  publication-title: AIAA Progress Ser.
  contributor:
    fullname: Tien
– volume: 18
  start-page: 221
  year: 1984
  ident: 10.1016/S0017-9310(01)00220-4_BIB37
  article-title: Heat transfer through granular beds at high temperature
  publication-title: Warme- Stoffubertrag.
  doi: 10.1007/BF01007133
  contributor:
    fullname: Zumbrunnen
– volume: 31
  start-page: 301
  year: 1988
  ident: 10.1016/S0017-9310(01)00220-4_BIB55
  article-title: Effects of thermal dispersion on forced convection in fibrous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(88)90013-0
  contributor:
    fullname: Hunt
– volume: 14
  start-page: 29
  year: 1968
  ident: 10.1016/S0017-9310(01)00220-4_BIB26
  article-title: Thermal conductivity of fibrous systems
  publication-title: J. Eng. Phys.
  doi: 10.1007/BF00826965
  contributor:
    fullname: Dul'nev
– year: 1991
  ident: 10.1016/S0017-9310(01)00220-4_BIB2
  contributor:
    fullname: Kaviany
– volume: 4
  start-page: 417
  year: 1977
  ident: 10.1016/S0017-9310(01)00220-4_BIB30
  article-title: Thermal conductivity of some porous metals
  publication-title: Lett. Heat Mass Transfer
  doi: 10.1016/0094-4548(77)90100-X
  contributor:
    fullname: Januszewski
– volume: 25
  start-page: 1183
  issue: 8
  year: 1982
  ident: 10.1016/S0017-9310(01)00220-4_BIB43
  article-title: Boundary and inertia effects on convective mass transfer in porous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(82)90212-5
  contributor:
    fullname: Vafai
– volume: 29
  start-page: 275
  year: 1986
  ident: 10.1016/S0017-9310(01)00220-4_BIB38
  article-title: Heat transfer through porous solids with complex internal geometries
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(86)90234-6
  contributor:
    fullname: Zumbrunnen
– ident: 10.1016/S0017-9310(01)00220-4_BIB59
– start-page: 249
  year: 1992
  ident: 10.1016/S0017-9310(01)00220-4_BIB57
  article-title: Pore scale modeling for flow through different types of porous environments
  contributor:
    fullname: Du Plessis
– volume: 6
  start-page: 2013
  year: 1973
  ident: 10.1016/S0017-9310(01)00220-4_BIB28
  article-title: Prediction of thermal conductivity and electrical resistivity of porous metalic materials
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(73)90104-X
  contributor:
    fullname: Koh
– year: 1998
  ident: 10.1016/S0017-9310(01)00220-4_BIB3
– volume: 116
  start-page: 164
  year: 1994
  ident: 10.1016/S0017-9310(01)00220-4_BIB51
  article-title: Flow through porous media of packed spheres saturated with water
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.2910229
  contributor:
    fullname: Kececioglu
– volume: 34
  start-page: 481
  year: 1892
  ident: 10.1016/S0017-9310(01)00220-4_BIB8
  article-title: On the influence of obstacles arranged in rectangular order upon the properties of a medium
  publication-title: Philos. Mag.
  doi: 10.1080/14786449208620364
  contributor:
    fullname: Rayleigh
– ident: 10.1016/S0017-9310(01)00220-4_BIB36
– volume: 36
  start-page: 4181
  issue: 17
  year: 1993
  ident: 10.1016/S0017-9310(01)00220-4_BIB18
  article-title: A general approach toward the thermal conductivity of porous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(93)90080-P
  contributor:
    fullname: Bauer
– volume: 44
  start-page: 827
  year: 2001
  ident: 10.1016/S0017-9310(01)00220-4_BIB33
  article-title: On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(00)00123-X
  contributor:
    fullname: Boomsma
– volume: 7
  start-page: 708
  year: 1968
  ident: 10.1016/S0017-9310(01)00220-4_BIB9
  article-title: Influence of porosity on the conductivity of hot pressed titanium specimens
  publication-title: Sov. Powder Metall. Met. Ceram.
  doi: 10.1007/BF00773737
  contributor:
    fullname: Aivazov
– year: 1999
  ident: 10.1016/S0017-9310(01)00220-4_BIB22
  contributor:
    fullname: Whitaker
– volume: 119
  start-page: 404
  year: 1997
  ident: 10.1016/S0017-9310(01)00220-4_BIB45
  article-title: Experimental determination of permeability and inertial coefficients of mechanically compressed aluminum metal layers
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.2819148
  contributor:
    fullname: Antohe
– ident: 10.1016/S0017-9310(01)00220-4_BIB27
– start-page: 57
  year: 1998
  ident: 10.1016/S0017-9310(01)00220-4_BIB23
  article-title: Heat conduction
  contributor:
    fullname: Cheng
– volume: 119
  start-page: 700
  year: 1997
  ident: 10.1016/S0017-9310(01)00220-4_BIB53
  article-title: Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.2819301
  contributor:
    fullname: Lage
– volume: 117
  start-page: 264
  year: 1995
  ident: 10.1016/S0017-9310(01)00220-4_BIB21
  article-title: A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2822515
  contributor:
    fullname: Hsu
– ident: 10.1016/S0017-9310(01)00220-4_BIB34
  doi: 10.1115/IMECE2000-1544
– year: 1980
  ident: 10.1016/S0017-9310(01)00220-4_BIB39
  contributor:
    fullname: Taylor
– start-page: 171
  year: 2000
  ident: 10.1016/S0017-9310(01)00220-4_BIB24
  article-title: Heat conduction in porous media
  contributor:
    fullname: Hsu
– ident: 10.1016/S0017-9310(01)00220-4_BIB35
  doi: 10.1115/IMECE1999-0795
– volume: 42
  start-page: 933
  year: 1970
  ident: 10.1016/S0017-9310(01)00220-4_BIB10
  article-title: Thermal conductivity of granular materials at moderate temperatures
  publication-title: Chem.-Ing.-Tech.
  doi: 10.1002/cite.330421408
  contributor:
    fullname: Zehner
– volume: 36
  start-page: 711
  issue: 4
  year: 1969
  ident: 10.1016/S0017-9310(01)00220-4_BIB42
  article-title: Non-darcy flow through fibrous porous media
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.3564760
  contributor:
    fullname: Beavers
– ident: 10.1016/S0017-9310(01)00220-4_BIB6
– volume: 24
  start-page: 1515
  year: 1991
  ident: 10.1016/S0017-9310(01)00220-4_BIB16
  article-title: Prediction and measurement of effective thermal conductivity of three-phase systems
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/24/9/002
  contributor:
    fullname: Verma
– volume: 68
  start-page: 3892
  issue: 8
  year: 1990
  ident: 10.1016/S0017-9310(01)00220-4_BIB15
  article-title: Determination of the effective conductivity of heterogeneous media by Brownian motion simulation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346276
  contributor:
    fullname: Kim
– volume: 50
  start-page: 481
  year: 1983
  ident: 10.1016/S0017-9310(01)00220-4_BIB12
  article-title: Analysis of composite materials – a survey
  publication-title: ASME J. Appl. Mech.
  doi: 10.1115/1.3167081
  contributor:
    fullname: Hashin
– volume: 18
  start-page: 199
  year: 1979
  ident: 10.1016/S0017-9310(01)00220-4_BIB49
  article-title: Flow through porous media: the Ergun equation revisited
  publication-title: Ind. Chem. Fund.
  doi: 10.1021/i160071a001
  contributor:
    fullname: Macdonald
– volume: 48
  start-page: 89
  issue: 2
  year: 1952
  ident: 10.1016/S0017-9310(01)00220-4_BIB46
  article-title: Fluid flow through packed column
  publication-title: Chem. Eng. Prog.
  contributor:
    fullname: Ergun
– volume: 24
  start-page: 82
  year: 1977
  ident: 10.1016/S0017-9310(01)00220-4_BIB29
  article-title: Influence of the diameter and length on material heat transfer of metal fiber wicks of heat pipes
  publication-title: Tepleonergetika
  contributor:
    fullname: Semena
– volume: 65
  start-page: 893
  issue: 3
  year: 1989
  ident: 10.1016/S0017-9310(01)00220-4_BIB14
  article-title: Computer simulation results for bounds on the effective conductivity of porous media
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.343422
  contributor:
    fullname: Smith
– volume: 5
  start-page: 545
  year: 1991
  ident: 10.1016/S0017-9310(01)00220-4_BIB25
  article-title: Effective thermal conductivity of sintered metal fibers
  publication-title: AIAA J. Thermophys. Heat Transfer
  doi: 10.2514/3.299
  contributor:
    fullname: Mantle
SSID ssj0017046
Score 2.3779528
Snippet In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity ( k e),...
In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity (k sub e ),...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1017
SubjectTerms Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electrical and thermal conduction in amorphous and liquid metals and alloys
Electronic conduction in metals and alloys
Electronic transport in condensed matter
Exact sciences and technology
Physics
Title Thermophysical properties of high porosity metal foams
URI https://dx.doi.org/10.1016/S0017-9310(01)00220-4
https://search.proquest.com/docview/27771811
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dixMxMPR6CIKIn3h-nPvggyK7brIfaR5PrZyivlw57i1kswl3h-2WdvtwcD_eydemRcUP8CWUYbqBmclkvoPQC3C5mhqOTaokE2kplUybqqlTypqWqQllxI7YOD6hX88m76fldDS6Dl7_APuvnAYY8Np0zv4Ft4ePAgB-A89hBa7D-qd8X827ZSD_0gTbV2ZqqjULwRV_DRZ3Zysx5qq37YvCTyy_jFXtMUi4NVrC6G2bbJiDxW0elwCTNxb3vj0XfS9MF9eVi9VmMb_xbX7R2rKB0-x0AH8R5-LSp6Gyz9lO_IGEkuUQFAuNMbEKySpauPxY4StWldOtwPkULAq2rXzdLEkvZNWWJjWqYutWNq9R_FTju-DDybAh2OXm7QFmjJPcNxDtDtS2uAY1xxap3EP7BADVGO0ffZyefRqyUDR3jV7h27ED7E3c8GWOX_nNfmXb3FqKNbBcu6dSfrj1rSkzu4Nuex8kOXLCcxeN1OIeumFrgeX6Pqp3RSiJIpR0OjEilAQRSqwIJVaEHqDZh-ns3XHqn9dIZUWKPlVNLhWVwBCCW6oVERhuRkHBIW-M198wzCoCYIYFhYMuqqKtK610WTGJRfEQjRfdQj1CiQBkrEH7yxxWXQhMdINboYFGZT3JD1AW6MKXbogKj9WFgMQNIXmOuSUkLw_QJFCPe0vQWXgc2P67vx7uUDtuWJQmDQwIzwP5OahSkx8TC9Vt1pxQCpYaxo__ffcn6GY8I0_RuF9t1DO0t243h164vgOZ3JDt
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermophysical+properties+of+high+porosity+metal+foams&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Bhattacharya%2C+A.&rft.au=Calmidi%2C+V.V.&rft.au=Mahajan%2C+R.L.&rft.date=2002-02-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=45&rft.issue=5&rft.spage=1017&rft.epage=1031&rft_id=info:doi/10.1016%2FS0017-9310%2801%2900220-4&rft.externalDocID=S0017931001002204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon