Thermophysical properties of high porosity metal foams
In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity ( k e), permeability ( K) and inertial coefficient ( f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating...
Saved in:
Published in: | International journal of heat and mass transfer Vol. 45; no. 5; pp. 1017 - 1031 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-02-2002
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity (
k
e), permeability (
K) and inertial coefficient (
f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating the effective thermal conductivity (
k
e). Commercially available metal foams form a complex array of interconnected fibers with an irregular lump of metal at the intersection of two fibers. In our theoretical model, we represent this structure by a model consisting of a two-dimensional array of hexagonal cells where the fibers form the sides of the hexagons. The lump is taken into account by considering a circular blob of metal at the intersection. The analysis shows that
k
e depends strongly on the porosity and the ratio of the cross-sections of the fiber and the intersection. However, it has no systematic dependence on pore density. Experimental data with aluminum and reticulated vitreous carbon (RVC) foams, using air and water as fluid media are used to validate the analytical predictions.
The second part of our paper involves the determination of the permeability (
K) and inertial coefficient (
f) of these high porosity metal foams. Fluid flow experiments were conducted on a number of metal foam samples covering a wide range of porosities and pore densities in our in-house wind tunnel. The results show that
K increases with pore diameter and porosity of the medium. The inertial coefficient,
f, on the other hand, depends only on porosity. An analytical model is proposed to predict
f based on the theory of flow over bluff bodies, and is found to be in excellent agreement with the experimental data. A modified permeability model is also presented in terms of the porosity, pore diameter and tortuosity of our metal foam samples, and is shown to be in reasonable agreement with measured data. |
---|---|
AbstractList | In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity (
k
e), permeability (
K) and inertial coefficient (
f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating the effective thermal conductivity (
k
e). Commercially available metal foams form a complex array of interconnected fibers with an irregular lump of metal at the intersection of two fibers. In our theoretical model, we represent this structure by a model consisting of a two-dimensional array of hexagonal cells where the fibers form the sides of the hexagons. The lump is taken into account by considering a circular blob of metal at the intersection. The analysis shows that
k
e depends strongly on the porosity and the ratio of the cross-sections of the fiber and the intersection. However, it has no systematic dependence on pore density. Experimental data with aluminum and reticulated vitreous carbon (RVC) foams, using air and water as fluid media are used to validate the analytical predictions.
The second part of our paper involves the determination of the permeability (
K) and inertial coefficient (
f) of these high porosity metal foams. Fluid flow experiments were conducted on a number of metal foam samples covering a wide range of porosities and pore densities in our in-house wind tunnel. The results show that
K increases with pore diameter and porosity of the medium. The inertial coefficient,
f, on the other hand, depends only on porosity. An analytical model is proposed to predict
f based on the theory of flow over bluff bodies, and is found to be in excellent agreement with the experimental data. A modified permeability model is also presented in terms of the porosity, pore diameter and tortuosity of our metal foam samples, and is shown to be in reasonable agreement with measured data. In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity (k sub e ), permeability (K) and inertial coefficient (f) of high porosity metal foams. In the first part of the study, we provide an analysis for estimating the effective thermal conductivity (k sub e ). Commercially available metal foams form a complex array of interconnected fibers with an irregular lump of metal at the intersection of two fibers. In our theoretical model, we represent this structure by a model consisting of a two-dimensional array of hexagonal cells where the fibers form the sides of the hexagons. The lump is taken into account by considering a circular blob of metal at the intersection. The analysis shows that k sub e depends strongly on the porosity and the ratio of the cross-sections of the fiber and the intersection. However, it has no systematic dependence on pore density. Experimental data with aluminum and reticulated vitreous carbon (RVC) foams, using air and water as fluid media are used to validate the analytical predictions. The second part of our paper involves the determination of the permeability (K) and inertial coefficient (f) of these high porosity metal foams. Fluid flow experiments were conducted on a number of metal foam samples covering a wide range of porosities and pore densities in our in-housc wind tunnel. The results show that K increases with pore diameter and porosity of the medium. The inertial coefficient, f, on the other hand, depends only on porosity. An analytical model is proposed to predict f based on the theory of flow over bluff bodies, and is found to be in excellent agreement with the experimental data. A modified permeability model is also presented in terms of the porosity, pore diameter and tortuosity of our metal foam samples, and is shown to be in reasonable agreement with measured data. |
Author | Mahajan, R.L. Bhattacharya, A. Calmidi, V.V. |
Author_xml | – sequence: 1 givenname: A. surname: Bhattacharya fullname: Bhattacharya, A. – sequence: 2 givenname: V.V. surname: Calmidi fullname: Calmidi, V.V. – sequence: 3 givenname: R.L. surname: Mahajan fullname: Mahajan, R.L. email: mahajan@spot.colorado.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13401094$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoMo2FZ_grAXRQ-rmWx205xEil9Q8GDvIc1O3Eh3syZbof_e9AM9ehpmeGbmfd8xOe58h4RcAL0FCtXdO6UgclkAvaZwQyljNOdHZARTIXMGU3lMRr_IKRnH-LltKa9GpFo0GFrfN5vojF5lffA9hsFhzLzNGvfRZL0PPrphk7U4JMJ63cYzcmL1KuL5oU7I4ulxMXvJ52_Pr7OHeW5KVgw5LqlBYZIEBrWwyDSIimnBuFxyKvlSgixZGkvQwhity6KuSouWl9KALibkan82yfpaYxxU66LB1Up36NdRMSEETAESWO5Bk7TGgFb1wbU6bBRQtQ1J7UJS2wQUBbULSfG0d3l4oGOyb4PujIt_ywWnkHQm7n7PYTL77TCoaBx2BmsX0Ayq9u6fTz8i43zV |
CODEN | IJHMAK |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2022_122591 crossref_primary_10_1016_j_ces_2009_02_010 crossref_primary_10_1016_j_ijheatmasstransfer_2006_03_024 crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_053 crossref_primary_10_1016_j_ijheatmasstransfer_2008_07_047 crossref_primary_10_1115_1_4032957 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120853 crossref_primary_10_1016_j_actamat_2014_08_037 crossref_primary_10_1016_j_tsep_2021_100989 crossref_primary_10_1016_j_est_2022_106567 crossref_primary_10_1016_j_est_2022_104386 crossref_primary_10_1016_j_ijft_2023_100374 crossref_primary_10_2139_ssrn_4120039 crossref_primary_10_1016_j_enrev_2023_100035 crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_058 crossref_primary_10_2139_ssrn_4054207 crossref_primary_10_1007_s11242_016_0750_7 crossref_primary_10_1016_j_ijmecsci_2022_107830 crossref_primary_10_1149_1_3160571 crossref_primary_10_1088_1361_648X_ac8512 crossref_primary_10_1080_02670836_2016_1180795 crossref_primary_10_1115_1_4037394 crossref_primary_10_1016_j_applthermaleng_2019_02_004 crossref_primary_10_1115_1_2352787 crossref_primary_10_1016_j_applthermaleng_2019_114112 crossref_primary_10_1016_j_ijheatfluidflow_2012_08_005 crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_022 crossref_primary_10_1007_s12217_022_09946_3 crossref_primary_10_1590_S0104_66322010000100011 crossref_primary_10_1016_j_apenergy_2009_08_009 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123944 crossref_primary_10_1007_s00231_010_0687_2 crossref_primary_10_1134_S1810232819030019 crossref_primary_10_1080_15435075_2023_2281336 crossref_primary_10_1016_j_ces_2012_02_047 crossref_primary_10_1016_j_solener_2013_10_028 crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_057 crossref_primary_10_3390_fire7030070 crossref_primary_10_1115_1_4048036 crossref_primary_10_1016_j_seta_2022_102734 crossref_primary_10_1016_j_est_2019_02_019 crossref_primary_10_3390_en14030672 crossref_primary_10_1016_j_applthermaleng_2014_10_033 crossref_primary_10_1115_1_3216036 crossref_primary_10_1007_s11242_016_0808_6 crossref_primary_10_1115_1_2217750 crossref_primary_10_1016_j_powtec_2014_01_001 crossref_primary_10_1007_s11242_014_0354_z crossref_primary_10_1016_j_catcom_2007_05_017 crossref_primary_10_1007_s00231_017_2095_3 crossref_primary_10_1016_j_enganabound_2022_10_014 crossref_primary_10_1016_j_tsep_2024_102729 crossref_primary_10_1115_1_4039302 crossref_primary_10_1115_1_1997159 crossref_primary_10_1016_j_compositesa_2022_107367 crossref_primary_10_1021_acs_iecr_0c06210 crossref_primary_10_1016_j_ces_2014_06_009 crossref_primary_10_1016_j_ijheatmasstransfer_2005_07_012 crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_017 crossref_primary_10_1205_cherd05034 crossref_primary_10_1016_j_icheatmasstransfer_2010_01_015 crossref_primary_10_1002_app_50901 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120823 crossref_primary_10_1177_09544089231157151 crossref_primary_10_1002_adem_201500356 crossref_primary_10_1002_admi_202001423 crossref_primary_10_1016_j_ijheatmasstransfer_2014_11_022 crossref_primary_10_1002_adem_200600102 crossref_primary_10_1016_j_apenergy_2018_05_063 crossref_primary_10_1016_j_applthermaleng_2019_114162 crossref_primary_10_1016_j_radphyschem_2014_11_003 crossref_primary_10_1016_j_nima_2024_169215 crossref_primary_10_1016_j_cesx_2019_100016 crossref_primary_10_3390_en15207703 crossref_primary_10_1016_j_cattod_2015_12_012 crossref_primary_10_1016_j_ces_2011_06_040 crossref_primary_10_1016_j_expthermflusci_2018_04_020 crossref_primary_10_1016_j_matdes_2014_03_004 crossref_primary_10_1063_1_3639269 crossref_primary_10_1016_j_ijhydene_2020_04_065 crossref_primary_10_1016_j_tsep_2024_102732 crossref_primary_10_1088_1757_899X_171_1_012048 crossref_primary_10_1016_j_est_2020_101378 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123438 crossref_primary_10_2514_1_T4567 crossref_primary_10_1115_1_4006272 crossref_primary_10_1016_j_ijthermalsci_2022_107869 crossref_primary_10_1088_1755_1315_701_1_012082 crossref_primary_10_1016_j_enconman_2022_116359 crossref_primary_10_1016_j_ijthermalsci_2012_08_015 crossref_primary_10_1007_s00170_017_1415_6 crossref_primary_10_1115_1_4056524 crossref_primary_10_1016_j_ijheatmasstransfer_2012_11_041 crossref_primary_10_1016_j_ijthermalsci_2024_109138 crossref_primary_10_1016_j_apm_2022_10_018 crossref_primary_10_1007_s10973_020_09658_z crossref_primary_10_1016_j_matchar_2016_11_013 crossref_primary_10_1115_1_4024707 crossref_primary_10_1016_j_applthermaleng_2021_117313 crossref_primary_10_1016_j_ijheatmasstransfer_2017_01_023 crossref_primary_10_1021_acsami_6b10502 crossref_primary_10_1088_1742_6596_745_3_032148 crossref_primary_10_1177_13694332221086701 crossref_primary_10_3390_en15197213 crossref_primary_10_1016_j_apenergy_2019_01_075 crossref_primary_10_1016_j_ijthermalsci_2018_12_002 crossref_primary_10_1115_1_4006015 crossref_primary_10_1016_j_applthermaleng_2013_09_051 crossref_primary_10_2139_ssrn_3990718 crossref_primary_10_1016_j_icheatmasstransfer_2020_104775 crossref_primary_10_1051_matecconf_202033001052 crossref_primary_10_1177_0021955X04041954 crossref_primary_10_1016_j_cej_2023_143349 crossref_primary_10_1007_s12540_019_00512_y crossref_primary_10_1080_15440478_2019_1584075 crossref_primary_10_1016_j_cej_2008_06_007 crossref_primary_10_1016_j_measurement_2014_09_069 crossref_primary_10_3390_ma12162552 crossref_primary_10_1007_s12205_012_1470_3 crossref_primary_10_1016_j_enconman_2022_115486 crossref_primary_10_1016_j_renene_2022_11_065 crossref_primary_10_1016_j_applthermaleng_2019_01_041 crossref_primary_10_1115_1_4000747 crossref_primary_10_1016_j_ijhydene_2021_10_046 crossref_primary_10_3390_buildings13123094 crossref_primary_10_1016_j_physleta_2016_06_049 crossref_primary_10_1007_s11356_018_3019_6 crossref_primary_10_1016_j_rser_2016_05_059 crossref_primary_10_2514_1_T6510 crossref_primary_10_1016_j_applthermaleng_2024_122506 crossref_primary_10_1088_1755_1315_354_1_012123 crossref_primary_10_1016_j_ces_2021_117097 crossref_primary_10_1016_j_energy_2019_116108 crossref_primary_10_1016_j_apenergy_2016_02_028 crossref_primary_10_1115_1_3160537 crossref_primary_10_1179_1432891714Z_0000000001164 crossref_primary_10_1016_j_applthermaleng_2011_05_015 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123635 crossref_primary_10_1021_ie200796p crossref_primary_10_1115_1_2789718 crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_020 crossref_primary_10_1080_10407780307349 crossref_primary_10_1080_15361055_2020_1777672 crossref_primary_10_1080_10407782_2016_1214479 crossref_primary_10_1016_j_ijhydene_2015_04_096 crossref_primary_10_1007_s10934_010_9393_1 crossref_primary_10_1115_1_4032751 crossref_primary_10_1016_j_applthermaleng_2011_12_032 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123927 crossref_primary_10_1016_j_applthermaleng_2022_119809 crossref_primary_10_1016_j_actamat_2004_10_037 crossref_primary_10_1007_s00170_020_06092_1 crossref_primary_10_1016_j_est_2021_103596 crossref_primary_10_1007_s11431_020_1637_3 crossref_primary_10_1016_j_applthermaleng_2024_122766 crossref_primary_10_1016_j_est_2024_110985 crossref_primary_10_1016_j_msea_2017_03_091 crossref_primary_10_1115_1_4053203 crossref_primary_10_1016_j_ces_2017_05_031 crossref_primary_10_1016_j_euromechsol_2023_104923 crossref_primary_10_1080_01457632_2013_776899 crossref_primary_10_1016_j_ijheatfluidflow_2024_109445 crossref_primary_10_1021_acs_chemrev_2c00539 crossref_primary_10_1016_j_ijhydene_2017_04_003 crossref_primary_10_1080_10407782_2019_1599270 crossref_primary_10_1115_1_4000708 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121364 crossref_primary_10_1016_j_matdes_2019_107830 crossref_primary_10_1016_j_egypro_2017_07_015 crossref_primary_10_1007_s10973_019_08619_5 crossref_primary_10_1016_j_energy_2021_120191 crossref_primary_10_1016_j_ijheatmasstransfer_2012_03_017 crossref_primary_10_1016_j_expthermflusci_2018_02_025 crossref_primary_10_3390_colloids6040080 crossref_primary_10_3390_en16104058 crossref_primary_10_1080_10407782_2023_2279290 crossref_primary_10_1016_j_egypro_2018_08_132 crossref_primary_10_1016_j_rser_2020_109986 crossref_primary_10_1016_j_egypro_2018_08_131 crossref_primary_10_1016_j_ijthermalsci_2016_11_020 crossref_primary_10_3390_en14175558 crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_088 crossref_primary_10_1016_j_applthermaleng_2021_117778 crossref_primary_10_1016_j_cep_2009_02_001 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_117 crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_052 crossref_primary_10_1016_j_ijheatmasstransfer_2006_03_035 crossref_primary_10_1016_j_seta_2022_102533 crossref_primary_10_1063_1_2745095 crossref_primary_10_1007_s10973_022_11779_6 crossref_primary_10_1115_1_4049173 crossref_primary_10_1134_S181023281601001X crossref_primary_10_1615_JPorMedia_2023043975 crossref_primary_10_1088_1742_6596_1868_1_012007 crossref_primary_10_1007_s00231_018_2466_4 crossref_primary_10_1016_j_cej_2017_01_069 crossref_primary_10_1080_10407782_2022_2078598 crossref_primary_10_1016_j_ijthermalsci_2016_06_007 crossref_primary_10_1016_j_ijthermalsci_2018_11_031 crossref_primary_10_1002_cite_200600029 crossref_primary_10_2320_matertrans_47_2195 crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_084 crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_001 crossref_primary_10_1016_j_tca_2019_02_005 crossref_primary_10_1088_1742_6596_501_1_012021 crossref_primary_10_1080_15567036_2023_2171515 crossref_primary_10_1007_s11242_022_01895_0 crossref_primary_10_1016_j_ces_2017_07_027 crossref_primary_10_1016_j_icheatmasstransfer_2017_10_014 crossref_primary_10_1007_s11029_019_9783_7 crossref_primary_10_1016_j_mset_2023_03_004 crossref_primary_10_1016_j_ijthermalsci_2016_06_013 crossref_primary_10_1115_1_4036526 crossref_primary_10_1115_1_4036767 crossref_primary_10_1515_afe_2017_0129 crossref_primary_10_1016_j_egypro_2017_09_225 crossref_primary_10_1016_j_energy_2010_03_058 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118852 crossref_primary_10_1115_1_4062834 crossref_primary_10_1140_epjs_s11734_023_00789_6 crossref_primary_10_2514_1_14675 crossref_primary_10_1016_j_ijthermalsci_2019_105978 crossref_primary_10_1016_j_ijrefrig_2010_10_006 crossref_primary_10_1016_j_applthermaleng_2017_03_056 crossref_primary_10_1016_j_rser_2018_04_064 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121327 crossref_primary_10_1016_j_rineng_2022_100531 crossref_primary_10_1016_j_applthermaleng_2023_120546 crossref_primary_10_1016_j_applthermaleng_2013_11_056 crossref_primary_10_1016_j_ijheatmasstransfer_2014_03_090 crossref_primary_10_1016_j_expthermflusci_2016_12_006 crossref_primary_10_1007_s10934_019_00739_5 crossref_primary_10_1016_j_apenergy_2019_114385 crossref_primary_10_2139_ssrn_4117328 crossref_primary_10_1016_j_ijthermalsci_2014_02_005 crossref_primary_10_1016_j_est_2023_107370 crossref_primary_10_1016_j_ces_2010_02_002 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_115 crossref_primary_10_1016_j_desal_2008_03_036 crossref_primary_10_1016_j_ijpharm_2017_10_018 crossref_primary_10_1007_s10973_020_09357_9 crossref_primary_10_1016_j_commatsci_2010_09_026 crossref_primary_10_1007_s10404_017_1863_1 crossref_primary_10_1016_j_applthermaleng_2014_06_035 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121509 crossref_primary_10_1007_s00170_005_0352_y crossref_primary_10_1016_j_biortech_2009_05_055 crossref_primary_10_1016_j_ijheatmasstransfer_2013_07_020 crossref_primary_10_1016_j_cep_2018_01_023 crossref_primary_10_1016_j_ijheatfluidflow_2024_109299 crossref_primary_10_1002_est2_479 crossref_primary_10_1002_aic_15487 crossref_primary_10_4028_www_scientific_net_DDF_354_195 crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_055 crossref_primary_10_1108_09615531011024075 crossref_primary_10_1080_10407782_2016_1230430 crossref_primary_10_1016_j_applthermaleng_2016_11_052 crossref_primary_10_3390_met12061001 crossref_primary_10_1016_j_solmat_2023_112315 crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_119 crossref_primary_10_1103_PhysRevE_85_026318 crossref_primary_10_1016_j_ces_2007_03_027 crossref_primary_10_1016_j_ces_2018_03_022 crossref_primary_10_1016_j_ces_2012_07_040 crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_041 crossref_primary_10_3390_catal8100448 crossref_primary_10_1016_j_applthermaleng_2014_06_058 crossref_primary_10_1016_j_solmat_2015_12_041 crossref_primary_10_1007_s11106_018_9942_8 crossref_primary_10_1121_1_2945115 crossref_primary_10_1016_j_actamat_2021_116664 crossref_primary_10_1103_PhysRevE_83_046314 crossref_primary_10_1115_1_4056546 crossref_primary_10_1007_s00231_017_1993_8 crossref_primary_10_1088_1361_665X_ab49de crossref_primary_10_1108_HFF_02_2015_0046 crossref_primary_10_1016_j_icheatmasstransfer_2018_09_002 crossref_primary_10_1016_j_applthermaleng_2023_120573 crossref_primary_10_1115_1_4056541 crossref_primary_10_4028_www_scientific_net_DDF_312_315_477 crossref_primary_10_1007_s11630_023_1841_8 crossref_primary_10_1016_j_ijthermalsci_2020_106444 crossref_primary_10_1016_j_applthermaleng_2021_117806 crossref_primary_10_1016_j_conbuildmat_2019_117242 crossref_primary_10_1155_2013_474935 crossref_primary_10_1016_j_ijthermalsci_2014_03_006 crossref_primary_10_1016_j_csite_2020_100716 crossref_primary_10_1016_j_jnucmat_2016_07_031 crossref_primary_10_1115_1_4045640 crossref_primary_10_1016_j_cherd_2019_05_022 crossref_primary_10_1088_1742_6596_1224_1_012045 crossref_primary_10_1109_TCPMT_2020_2998078 crossref_primary_10_1115_1_4064828 crossref_primary_10_1016_j_fuel_2023_130688 crossref_primary_10_1002_er_4896 crossref_primary_10_1016_j_ijthermalsci_2019_03_026 crossref_primary_10_1016_j_applthermaleng_2023_120584 crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_047 crossref_primary_10_1002_adem_200700331 crossref_primary_10_1007_s11242_007_9169_5 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124776 crossref_primary_10_1016_j_ijheatmasstransfer_2009_12_067 crossref_primary_10_3390_nano4040856 crossref_primary_10_1016_j_actamat_2009_07_044 crossref_primary_10_1016_j_est_2020_101701 crossref_primary_10_1016_j_applthermaleng_2015_01_009 crossref_primary_10_1016_j_solener_2022_12_035 crossref_primary_10_1016_j_applthermaleng_2020_115511 crossref_primary_10_1016_j_ijheatmasstransfer_2013_09_054 crossref_primary_10_1080_01457632_2012_646872 crossref_primary_10_1080_01457632_2015_1052682 crossref_primary_10_1007_s10853_019_03480_1 crossref_primary_10_1103_PhysRevFluids_7_084606 crossref_primary_10_1007_s11242_011_9759_0 crossref_primary_10_1115_1_4050414 crossref_primary_10_1088_1757_899X_1096_1_012005 crossref_primary_10_1007_s10765_020_02747_z crossref_primary_10_1016_j_cej_2015_11_050 crossref_primary_10_1016_j_tsep_2017_03_004 crossref_primary_10_1007_s11666_015_0291_6 crossref_primary_10_1007_s11242_013_0231_1 crossref_primary_10_1016_j_expthermflusci_2015_02_021 crossref_primary_10_1115_1_2165203 crossref_primary_10_1016_j_renene_2023_119155 crossref_primary_10_1088_1757_899X_670_1_012021 crossref_primary_10_1007_s00231_012_0985_y crossref_primary_10_1016_j_applthermaleng_2015_01_045 crossref_primary_10_1063_5_0031243 crossref_primary_10_1080_10407780802148481 crossref_primary_10_1016_j_icheatmasstransfer_2021_105473 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124517 crossref_primary_10_1016_j_ces_2009_04_036 crossref_primary_10_1016_j_applthermaleng_2022_119413 crossref_primary_10_1016_j_applthermaleng_2022_118564 crossref_primary_10_1016_j_icheatmasstransfer_2023_106902 crossref_primary_10_1016_j_icheatmasstransfer_2022_106607 crossref_primary_10_1177_0957650919862974 crossref_primary_10_1016_j_ijthermalsci_2024_108926 crossref_primary_10_1115_1_4003451 crossref_primary_10_1108_HFF_11_2017_0465 crossref_primary_10_1115_1_4004530 crossref_primary_10_1016_j_est_2024_111096 crossref_primary_10_1016_j_applthermaleng_2024_123036 crossref_primary_10_1016_j_rser_2017_10_021 crossref_primary_10_1007_s10409_023_23109_x crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_114 crossref_primary_10_3390_en10070902 crossref_primary_10_1016_j_tsep_2020_100667 crossref_primary_10_1016_j_applthermaleng_2018_10_021 crossref_primary_10_1051_e3sconf_202131203003 crossref_primary_10_1002_adem_201700389 crossref_primary_10_1016_j_ijheatmasstransfer_2004_10_011 crossref_primary_10_1016_j_icheatmasstransfer_2023_106936 crossref_primary_10_1016_j_ces_2016_12_006 crossref_primary_10_1016_j_expthermflusci_2017_04_012 crossref_primary_10_1002_aic_12372 crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_068 crossref_primary_10_1016_j_ijthermalsci_2019_05_003 crossref_primary_10_1115_1_2721081 crossref_primary_10_1016_j_ijthermalsci_2020_106607 crossref_primary_10_1016_j_est_2020_101990 crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_058 crossref_primary_10_1016_j_cep_2018_04_018 crossref_primary_10_3390_ma10080907 crossref_primary_10_1016_j_expthermflusci_2008_08_007 crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_097 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119526 crossref_primary_10_1016_j_jnucmat_2018_08_014 crossref_primary_10_1007_s00348_006_0194_x crossref_primary_10_1002_adem_200700196 crossref_primary_10_1016_j_apenergy_2013_04_050 crossref_primary_10_1016_j_applthermaleng_2017_03_002 crossref_primary_10_1016_j_rser_2024_114480 crossref_primary_10_1016_j_mtener_2021_100642 crossref_primary_10_1016_j_renene_2023_119167 crossref_primary_10_1016_j_icheatmasstransfer_2021_105265 crossref_primary_10_1016_j_solener_2010_04_022 crossref_primary_10_1016_j_ijmultiphaseflow_2017_04_010 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119107 crossref_primary_10_1007_s11242_014_0358_8 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124790 crossref_primary_10_1016_j_ijthermalsci_2014_06_022 crossref_primary_10_1016_j_ijrefrig_2014_01_005 crossref_primary_10_1016_j_ces_2009_06_056 crossref_primary_10_1007_s11242_013_0222_2 crossref_primary_10_1016_j_proeng_2011_11_042 crossref_primary_10_1016_j_ijhydene_2023_01_361 crossref_primary_10_1016_j_nucengdes_2006_03_034 crossref_primary_10_1016_j_ijthermalsci_2016_09_006 crossref_primary_10_1016_j_expthermflusci_2007_12_001 crossref_primary_10_1007_s00707_022_03401_5 crossref_primary_10_1016_j_ces_2018_01_006 crossref_primary_10_1016_j_ijthermalsci_2012_02_017 crossref_primary_10_1016_j_icheatmasstransfer_2022_106407 crossref_primary_10_1016_j_ijheatmasstransfer_2011_07_042 crossref_primary_10_1016_j_apenergy_2014_10_004 crossref_primary_10_1016_j_ijthermalsci_2014_06_030 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119784 crossref_primary_10_1016_j_cej_2017_03_112 crossref_primary_10_1016_j_matdes_2018_03_044 crossref_primary_10_1016_j_applthermaleng_2019_114011 crossref_primary_10_3390_math11020356 crossref_primary_10_1021_acs_chemrev_0c00149 crossref_primary_10_1016_j_applthermaleng_2023_121082 crossref_primary_10_1016_j_tsep_2021_100860 crossref_primary_10_1016_j_enconman_2006_08_005 crossref_primary_10_1016_j_nucengdes_2021_111329 crossref_primary_10_1039_C6RE00185H crossref_primary_10_1016_j_energy_2022_123636 crossref_primary_10_1115_1_4063354 crossref_primary_10_1016_j_applthermaleng_2004_03_010 crossref_primary_10_1093_ijlct_ctz005 crossref_primary_10_1007_s11242_018_1208_x crossref_primary_10_1016_j_renene_2020_12_041 crossref_primary_10_1007_s11431_019_1455_0 crossref_primary_10_1007_s11771_018_3903_8 crossref_primary_10_3390_ma14051195 crossref_primary_10_1115_1_4028113 crossref_primary_10_1016_j_energy_2024_131813 crossref_primary_10_1016_j_tsep_2024_102632 crossref_primary_10_1115_1_4004354 crossref_primary_10_1016_j_ijrefrig_2017_04_002 crossref_primary_10_1115_1_4037034 crossref_primary_10_1007_s00193_021_01009_7 crossref_primary_10_3390_catal7040124 crossref_primary_10_1016_j_applthermaleng_2021_117284 crossref_primary_10_1016_j_jpowsour_2009_08_025 crossref_primary_10_1007_s11630_021_1403_x crossref_primary_10_1016_j_est_2020_101444 crossref_primary_10_1016_j_apenergy_2019_113621 crossref_primary_10_1016_j_applthermaleng_2015_09_102 crossref_primary_10_1016_j_molliq_2021_117183 crossref_primary_10_1016_j_ijheatmasstransfer_2010_04_033 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123352 crossref_primary_10_2514_1_T6475 crossref_primary_10_3390_su2082365 crossref_primary_10_1016_j_ijheatmasstransfer_2015_07_096 crossref_primary_10_1115_1_1464877 crossref_primary_10_1039_c3ta13240d crossref_primary_10_1088_1757_899X_1128_1_012042 crossref_primary_10_1080_01457632_2018_1564204 crossref_primary_10_1016_j_applthermaleng_2018_01_010 crossref_primary_10_1016_j_spmi_2004_04_002 crossref_primary_10_3139_120_110784 crossref_primary_10_1080_10407790_2017_1420325 crossref_primary_10_1115_1_4036160 crossref_primary_10_1016_j_msea_2016_01_017 crossref_primary_10_1002_ente_202300790 crossref_primary_10_1016_j_est_2022_104450 crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_013 crossref_primary_10_1016_j_jtice_2022_104644 crossref_primary_10_1115_1_4063149 crossref_primary_10_1007_s11663_016_0819_2 crossref_primary_10_1016_j_csite_2023_103307 crossref_primary_10_1016_j_fusengdes_2018_03_067 crossref_primary_10_1016_j_tsep_2023_102320 crossref_primary_10_1098_rsta_2005_1697 crossref_primary_10_1177_0021955X20966329 crossref_primary_10_1016_j_ces_2013_05_041 crossref_primary_10_1088_1742_6596_2177_1_012031 crossref_primary_10_1016_j_actamat_2004_09_024 crossref_primary_10_1016_j_expthermflusci_2008_06_011 crossref_primary_10_1016_j_ijheatmasstransfer_2007_12_012 crossref_primary_10_1115_1_4065575 crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_053 crossref_primary_10_1016_j_ijthermalsci_2012_11_008 crossref_primary_10_1016_j_ces_2022_118389 crossref_primary_10_1088_2053_1591_abf3e2 crossref_primary_10_1115_1_4007827 crossref_primary_10_1016_j_applthermaleng_2009_12_001 crossref_primary_10_1109_ACCESS_2020_2964337 crossref_primary_10_1115_1_2236132 crossref_primary_10_1016_j_mechmat_2015_08_010 crossref_primary_10_1016_j_ijheatmasstransfer_2015_08_085 crossref_primary_10_1016_j_ast_2023_108565 crossref_primary_10_1016_j_est_2020_101482 crossref_primary_10_1016_j_ijft_2022_100141 crossref_primary_10_1088_0022_3727_46_25_255302 crossref_primary_10_1016_j_medengphy_2012_08_011 crossref_primary_10_1007_s12666_019_01758_1 crossref_primary_10_1115_1_4005678 crossref_primary_10_1016_j_csite_2023_103525 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119077 crossref_primary_10_1115_1_2993540 crossref_primary_10_2514_1_T6039 crossref_primary_10_1088_1742_6596_2177_1_012014 crossref_primary_10_1007_s00231_010_0620_8 crossref_primary_10_1007_s00231_018_2305_7 crossref_primary_10_1016_j_expthermflusci_2014_06_011 crossref_primary_10_1115_1_4065352 crossref_primary_10_1002_2013JC009577 crossref_primary_10_1007_s10973_019_09166_9 crossref_primary_10_1002_er_6151 crossref_primary_10_1088_1361_651X_aa7e34 crossref_primary_10_1016_j_est_2020_102108 crossref_primary_10_1016_j_solener_2016_07_008 crossref_primary_10_1109_TCAPT_2005_848528 crossref_primary_10_1016_j_scib_2016_12_009 crossref_primary_10_1016_j_est_2022_104650 crossref_primary_10_1063_1_2039998 crossref_primary_10_1108_09615531311289114 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122111 crossref_primary_10_1016_j_ijhydene_2019_01_086 crossref_primary_10_3390_ma14123153 crossref_primary_10_2514_1_T4206 crossref_primary_10_1016_j_ijhydene_2018_04_215 crossref_primary_10_1051_meca_2020028 crossref_primary_10_1016_j_applthermaleng_2015_05_028 crossref_primary_10_1016_j_elstat_2018_11_002 crossref_primary_10_1016_j_est_2022_104417 crossref_primary_10_1088_1757_899X_618_1_012094 crossref_primary_10_1016_j_msec_2019_110404 crossref_primary_10_1016_j_applthermaleng_2021_117436 crossref_primary_10_1016_j_ijhydene_2014_03_075 crossref_primary_10_3390_en13112902 crossref_primary_10_1002_adem_200800090 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_054 crossref_primary_10_4028_www_scientific_net_SSP_298_208 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_048 crossref_primary_10_1016_j_powtec_2021_02_017 crossref_primary_10_1016_j_tsep_2023_101684 crossref_primary_10_1016_j_icheatmasstransfer_2020_104897 crossref_primary_10_1016_j_msea_2018_10_022 crossref_primary_10_1109_TCPMT_2019_2956722 crossref_primary_10_1016_j_cej_2022_135912 crossref_primary_10_1016_j_applthermaleng_2016_11_129 crossref_primary_10_1016_j_ijthermalsci_2021_107240 crossref_primary_10_1016_j_solmat_2022_112092 crossref_primary_10_1088_1742_6596_2509_1_012014 crossref_primary_10_2478_ama_2018_0030 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124076 crossref_primary_10_1115_1_4045732 crossref_primary_10_1299_jtst_22_00397 crossref_primary_10_1016_j_ijhydene_2018_09_058 crossref_primary_10_1016_j_ces_2009_08_028 crossref_primary_10_1016_j_applthermaleng_2016_10_125 crossref_primary_10_1016_j_ijthermalsci_2013_09_001 crossref_primary_10_1007_s10934_007_9169_4 crossref_primary_10_1088_1742_6596_1224_1_012009 crossref_primary_10_1016_j_ces_2016_03_013 crossref_primary_10_1016_j_ijrefrig_2019_06_023 crossref_primary_10_1080_10407790_2022_2105124 crossref_primary_10_1088_1873_7005_aa73cd crossref_primary_10_1016_j_ijheatmasstransfer_2022_123512 crossref_primary_10_1080_10407782_2022_2083874 crossref_primary_10_1016_j_cej_2024_151139 crossref_primary_10_1115_1_4035937 crossref_primary_10_1016_j_ces_2016_03_001 crossref_primary_10_1007_s11356_018_1766_z crossref_primary_10_1016_j_ijheatmasstransfer_2021_121279 crossref_primary_10_1149_2_001311jes crossref_primary_10_1007_s00170_024_13230_6 crossref_primary_10_1080_10407782_2010_511987 crossref_primary_10_1016_j_ast_2018_09_002 crossref_primary_10_1021_acsenergylett_2c02425 crossref_primary_10_1016_j_physleta_2017_08_003 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121223 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118832 crossref_primary_10_1016_j_ijthermalsci_2022_107706 crossref_primary_10_1002_htj_22938 crossref_primary_10_1016_j_jmrt_2023_08_196 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125263 crossref_primary_10_1016_j_ijrefrig_2020_07_020 crossref_primary_10_1016_j_ijthermalsci_2022_107709 crossref_primary_10_1016_j_icheatmasstransfer_2015_06_007 crossref_primary_10_1016_j_applthermaleng_2017_08_051 crossref_primary_10_1016_j_applthermaleng_2015_04_024 crossref_primary_10_1115_1_2229225 crossref_primary_10_1016_j_ijhydene_2023_10_305 crossref_primary_10_1016_j_physo_2024_100216 crossref_primary_10_1016_j_applthermaleng_2015_05_068 crossref_primary_10_1016_j_ijheatmasstransfer_2007_11_062 crossref_primary_10_1088_1757_899X_709_3_033064 crossref_primary_10_1016_j_est_2020_102166 crossref_primary_10_1016_j_applthermaleng_2024_122886 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_016 crossref_primary_10_1115_1_2804932 crossref_primary_10_1115_1_2739598 crossref_primary_10_1007_s11242_007_9143_2 crossref_primary_10_1115_1_2227038 crossref_primary_10_1016_j_ijheatfluidflow_2024_109324 crossref_primary_10_1088_1742_6596_547_1_012021 crossref_primary_10_1016_j_jcat_2008_08_014 crossref_primary_10_1016_j_ces_2005_03_027 crossref_primary_10_1080_10407782_2024_2330087 crossref_primary_10_1016_j_ijheatmasstransfer_2007_11_051 crossref_primary_10_1016_j_ijthermalsci_2019_106057 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120071 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121001 crossref_primary_10_1080_10618560701624518 crossref_primary_10_1016_j_ijheatmasstransfer_2005_02_040 crossref_primary_10_1016_j_ijthermalsci_2024_109039 crossref_primary_10_1115_1_2804941 crossref_primary_10_1016_j_applthermaleng_2021_116558 crossref_primary_10_1080_01457632_2011_584812 crossref_primary_10_1016_j_powtec_2014_08_018 crossref_primary_10_1016_S0894_1777_03_00039_6 crossref_primary_10_1016_j_compositesb_2023_110913 crossref_primary_10_1016_j_proeng_2012_07_500 crossref_primary_10_1007_s11242_011_9841_7 crossref_primary_10_1080_01457632_2011_584817 crossref_primary_10_1016_j_actamat_2016_12_067 crossref_primary_10_1115_1_4037082 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125253 crossref_primary_10_1016_j_expthermflusci_2014_10_018 crossref_primary_10_1252_kakoronbunshu_39_78 crossref_primary_10_1016_j_jpowsour_2018_03_011 crossref_primary_10_26701_ems_783892 crossref_primary_10_1016_j_ijthermalsci_2011_05_018 crossref_primary_10_1016_j_energy_2016_09_008 crossref_primary_10_1088_1742_6596_547_1_012045 crossref_primary_10_1016_j_ijheatmasstransfer_2004_08_001 crossref_primary_10_1007_s11242_009_9356_7 crossref_primary_10_1016_j_jmatprotec_2019_116406 crossref_primary_10_1016_j_ijheatmasstransfer_2007_11_031 crossref_primary_10_1016_j_est_2021_102233 crossref_primary_10_1016_j_icheatmasstransfer_2021_105522 crossref_primary_10_1016_j_est_2020_102077 crossref_primary_10_1016_j_apenergy_2020_114875 crossref_primary_10_1016_j_ensm_2019_10_010 crossref_primary_10_1016_j_seta_2022_102048 crossref_primary_10_1557_s43577_022_00323_4 crossref_primary_10_3390_ma15062168 crossref_primary_10_1016_j_ijheatmasstransfer_2014_09_065 crossref_primary_10_3390_en14196308 crossref_primary_10_1115_1_4048861 crossref_primary_10_1007_s11242_014_0281_z crossref_primary_10_1007_s10694_010_0167_8 crossref_primary_10_1016_j_enbuild_2017_08_011 crossref_primary_10_1016_j_applthermaleng_2021_116617 crossref_primary_10_1007_s11663_016_0703_0 crossref_primary_10_1063_1_3587159 crossref_primary_10_1016_j_ijthermalsci_2015_04_007 crossref_primary_10_1016_S0017_9310_02_00089_3 crossref_primary_10_1016_j_cherd_2020_01_021 crossref_primary_10_1016_j_ijthermalsci_2015_04_005 crossref_primary_10_1016_j_applthermaleng_2020_115230 crossref_primary_10_1080_08916152_2018_1434575 crossref_primary_10_1016_j_ijheatfluidflow_2003_08_002 crossref_primary_10_1016_j_ijengsci_2011_08_010 crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_003 crossref_primary_10_1016_j_applthermaleng_2016_10_173 crossref_primary_10_1088_1742_6596_1158_4_042023 crossref_primary_10_4028_www_scientific_net_MSF_539_543_242 crossref_primary_10_1115_1_4044008 crossref_primary_10_1515_IJNSNS_2009_10_5_617 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118974 crossref_primary_10_1016_j_cej_2014_11_055 crossref_primary_10_4028_www_scientific_net_AMM_787_112 crossref_primary_10_1007_s10765_018_2405_0 crossref_primary_10_1002_htj_22798 crossref_primary_10_1088_0022_3727_40_1_024 crossref_primary_10_1016_j_ijengsci_2008_01_012 crossref_primary_10_3390_thermo3040034 crossref_primary_10_1115_1_4000226 crossref_primary_10_1080_00986445_2013_863188 crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_038 crossref_primary_10_1016_j_applthermaleng_2016_02_095 crossref_primary_10_1080_10407781003656827 crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_082 crossref_primary_10_1016_j_applthermaleng_2023_121994 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_157 crossref_primary_10_2514_1_6725 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_056 crossref_primary_10_1016_j_conbuildmat_2017_05_020 crossref_primary_10_1016_j_applthermaleng_2020_115493 crossref_primary_10_1016_j_energy_2019_116742 crossref_primary_10_1016_j_ijthermalsci_2024_108896 crossref_primary_10_1016_j_solener_2015_09_010 crossref_primary_10_1016_j_icheatmasstransfer_2020_104599 crossref_primary_10_2514_1_1032 crossref_primary_10_1016_j_measurement_2018_10_025 crossref_primary_10_1016_j_ijhydene_2015_04_100 crossref_primary_10_1016_j_cattod_2013_06_019 crossref_primary_10_1016_j_apenergy_2016_04_012 crossref_primary_10_1016_j_enbenv_2021_08_002 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120490 crossref_primary_10_1016_j_applthermaleng_2015_09_094 crossref_primary_10_1080_02670836_2016_1180795_test crossref_primary_10_1016_j_expthermflusci_2016_04_010 crossref_primary_10_1016_j_egyai_2023_100264 crossref_primary_10_1016_j_expthermflusci_2007_08_004 crossref_primary_10_1080_10407782_2014_894371 crossref_primary_10_1016_j_ijheatmasstransfer_2015_02_047 crossref_primary_10_1080_15361055_2020_1712994 crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_043 crossref_primary_10_1007_s10934_010_9423_z crossref_primary_10_1016_j_ijheatmasstransfer_2010_07_007 crossref_primary_10_1142_S2737549821500010 crossref_primary_10_1016_j_applthermaleng_2019_113897 crossref_primary_10_2514_1_49434 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121850 crossref_primary_10_1016_j_ijhydene_2021_11_058 crossref_primary_10_1080_10407790802154173 crossref_primary_10_1016_j_apenergy_2018_08_012 crossref_primary_10_1016_j_actamat_2014_04_061 crossref_primary_10_1088_0022_3727_44_12_125406 crossref_primary_10_1016_j_est_2019_100985 crossref_primary_10_1080_01457632_2020_1723841 crossref_primary_10_1016_j_ijheatmasstransfer_2009_05_015 crossref_primary_10_12989_cac_2016_18_3_319 crossref_primary_10_3390_en15134894 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_029 crossref_primary_10_1080_10407782_2015_1031607 crossref_primary_10_1016_j_ces_2018_09_045 crossref_primary_10_1016_j_applthermaleng_2023_121319 crossref_primary_10_1016_j_cej_2016_06_117 crossref_primary_10_1016_j_ijrefrig_2018_12_027 crossref_primary_10_1016_j_applthermaleng_2020_115456 crossref_primary_10_1016_j_apenergy_2016_12_163 crossref_primary_10_1051_matecconf_201824005027 crossref_primary_10_1016_j_compstruct_2021_115159 crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_070 crossref_primary_10_1016_j_ijhydene_2020_02_228 crossref_primary_10_1016_j_icheatmasstransfer_2023_107080 crossref_primary_10_1016_j_powtec_2019_06_037 crossref_primary_10_1021_acs_langmuir_7b01334 crossref_primary_10_1007_s10934_016_0225_9 crossref_primary_10_1016_j_matchar_2012_10_001 crossref_primary_10_1016_j_applthermaleng_2021_116844 crossref_primary_10_4271_2016_01_0965 crossref_primary_10_1016_j_ijthermalsci_2020_106796 crossref_primary_10_1016_j_ijthermalsci_2023_108156 crossref_primary_10_1016_j_rser_2017_01_048 crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_033 crossref_primary_10_1080_01457630601166127 crossref_primary_10_1016_j_cej_2012_05_045 crossref_primary_10_1016_j_ijthermalsci_2015_06_008 crossref_primary_10_1016_j_jpowsour_2009_09_004 crossref_primary_10_1007_BF02704775 crossref_primary_10_1016_j_ces_2011_05_005 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2022044114 crossref_primary_10_1016_j_applthermaleng_2019_114773 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123283 crossref_primary_10_1016_j_ijhydene_2015_07_149 crossref_primary_10_1016_j_applthermaleng_2018_10_106 crossref_primary_10_1088_1742_6596_2385_1_012023 crossref_primary_10_1016_j_medengphy_2014_11_001 crossref_primary_10_1016_j_ijheatmasstransfer_2005_11_028 crossref_primary_10_1016_j_ces_2010_12_031 crossref_primary_10_1016_j_micromeso_2008_12_011 crossref_primary_10_1016_j_ijheatmasstransfer_2010_06_002 crossref_primary_10_1016_j_applthermaleng_2015_09_043 crossref_primary_10_1016_j_est_2019_101005 crossref_primary_10_1016_j_ijheatmasstransfer_2021_120974 crossref_primary_10_1080_01457632_2013_838065 crossref_primary_10_1016_j_tsep_2020_100748 crossref_primary_10_1016_j_est_2021_102860 crossref_primary_10_1007_s10765_018_2473_1 crossref_primary_10_1016_j_apenergy_2018_10_036 crossref_primary_10_1007_s10765_013_1545_5 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123056 crossref_primary_10_1016_j_applthermaleng_2020_115874 crossref_primary_10_1016_j_est_2022_106284 crossref_primary_10_1002_adem_200900138 crossref_primary_10_1016_j_apenergy_2015_12_043 crossref_primary_10_1016_j_ces_2023_119138 crossref_primary_10_1177_0731684414545904 crossref_primary_10_1016_j_ijhydene_2020_12_183 crossref_primary_10_1016_j_jcis_2009_10_011 crossref_primary_10_1063_1_2829774 crossref_primary_10_1016_j_est_2021_103950 crossref_primary_10_4028_p_23o6w9 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124633 crossref_primary_10_1080_01457632_2012_659613 crossref_primary_10_1016_j_enconman_2004_06_010 crossref_primary_10_1016_j_ijrefrig_2016_12_019 crossref_primary_10_1016_j_ijthermalsci_2020_106514 crossref_primary_10_4271_2017_01_9288 crossref_primary_10_1016_j_est_2022_106493 crossref_primary_10_1016_j_energy_2022_124230 crossref_primary_10_1016_j_matdes_2020_109114 crossref_primary_10_1007_s40996_021_00685_w crossref_primary_10_1016_j_jpowsour_2018_08_002 crossref_primary_10_32604_cmes_2021_016894 crossref_primary_10_1016_j_ces_2019_02_010 crossref_primary_10_1016_j_ijheatmasstransfer_2010_03_015 crossref_primary_10_1002_adem_201901468 crossref_primary_10_1016_j_apenergy_2023_121633 crossref_primary_10_1016_j_rser_2014_08_040 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120675 crossref_primary_10_1016_j_ijmecsci_2020_105480 crossref_primary_10_3390_ma12142261 crossref_primary_10_1143_JJAP_45_L575 crossref_primary_10_1016_j_icheatmasstransfer_2021_105574 crossref_primary_10_1016_j_physleta_2014_06_002 crossref_primary_10_4028_www_scientific_net_AMR_668_42 crossref_primary_10_1016_j_applthermaleng_2016_04_085 crossref_primary_10_1016_j_ijheatmasstransfer_2009_03_051 crossref_primary_10_1016_j_crhy_2014_09_002 crossref_primary_10_1016_j_ijheatmasstransfer_2006_09_039 crossref_primary_10_1088_1742_6596_2385_1_012057 crossref_primary_10_1007_s00170_004_2440_9 crossref_primary_10_1016_j_applthermaleng_2021_116800 crossref_primary_10_1016_j_expthermflusci_2018_07_018 crossref_primary_10_1080_01457632_2022_2102960 crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_001 crossref_primary_10_1016_j_ijheatmasstransfer_2013_02_037 crossref_primary_10_1016_j_tsep_2024_102690 crossref_primary_10_1063_1_3673523 crossref_primary_10_1115_1_4049752 crossref_primary_10_1016_j_ijhydene_2021_11_221 crossref_primary_10_1016_j_ijthermalsci_2008_12_010 crossref_primary_10_1016_j_ijthermalsci_2015_07_017 crossref_primary_10_1016_j_ces_2016_08_025 crossref_primary_10_4150_KPMI_2010_17_6_489 crossref_primary_10_1016_j_matlet_2008_11_051 crossref_primary_10_4028_p_x73mgH crossref_primary_10_1016_j_applthermaleng_2020_115609 crossref_primary_10_1016_j_ijthermalsci_2015_07_016 crossref_primary_10_1016_j_applthermaleng_2003_12_011 crossref_primary_10_3390_en16196915 crossref_primary_10_1016_j_ijheatmasstransfer_2005_12_014 crossref_primary_10_1016_j_ijheatmasstransfer_2005_12_012 crossref_primary_10_1016_j_actamat_2008_06_033 crossref_primary_10_1016_j_applthermaleng_2018_07_094 crossref_primary_10_1007_s11242_015_0534_5 crossref_primary_10_1002_aic_12490 crossref_primary_10_3390_ma12122017 crossref_primary_10_1016_j_cryogenics_2017_04_005 crossref_primary_10_21205_deufmd_2022247111 crossref_primary_10_1016_j_ces_2016_08_031 crossref_primary_10_1016_j_ijft_2024_100677 crossref_primary_10_1080_10789669_2012_623565 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_027 crossref_primary_10_1016_j_applthermaleng_2015_09_019 crossref_primary_10_1016_j_solener_2020_03_025 crossref_primary_10_1007_s12540_014_5017_7 crossref_primary_10_1007_s10853_006_0602_x crossref_primary_10_1016_j_ijheatmasstransfer_2014_10_053 crossref_primary_10_3390_en12112045 crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_044 crossref_primary_10_1016_j_rinp_2020_103655 crossref_primary_10_1007_s11242_012_0022_0 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_050 crossref_primary_10_1115_1_4047560 crossref_primary_10_1016_j_ijhydene_2020_12_172 crossref_primary_10_1016_j_energy_2015_10_056 crossref_primary_10_1016_j_ijheatmasstransfer_2015_06_088 crossref_primary_10_1016_j_renene_2022_06_122 crossref_primary_10_1016_j_ces_2021_116518 crossref_primary_10_1016_j_est_2023_107858 crossref_primary_10_1007_s11708_011_0140_3 crossref_primary_10_4028_www_scientific_net_DDF_387_166 crossref_primary_10_1080_15567260600901642 crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_033 crossref_primary_10_1016_j_cattod_2013_05_018 crossref_primary_10_1002_pssa_202100576 crossref_primary_10_1016_j_applthermaleng_2016_03_081 crossref_primary_10_1016_j_tsep_2024_102458 crossref_primary_10_1016_j_energy_2022_124276 crossref_primary_10_1080_2374068X_2024_2306574 crossref_primary_10_1080_01457632_2016_1206415 |
Cites_doi | 10.1115/1.2822636 10.1023/A:1006643815323 10.1002/cite.330430610 10.1029/WR018i004p01049 10.1115/1.3242658 10.1016/0009-2509(94)00170-7 10.1016/S0017-9310(05)80286-8 10.1115/1.2826001 10.1029/TR039i004p00702 10.1007/BF00820342 10.1016/0017-9310(81)90027-2 10.1016/0017-9310(94)90392-1 10.1016/0009-2509(85)85037-5 10.1016/0022-5096(82)90022-9 10.1007/BF01007133 10.1016/0017-9310(88)90013-0 10.1007/BF00826965 10.1016/0094-4548(77)90100-X 10.1016/0017-9310(82)90212-5 10.1016/0017-9310(86)90234-6 10.1016/0017-9310(73)90104-X 10.1115/1.2910229 10.1080/14786449208620364 10.1016/0017-9310(93)90080-P 10.1016/S0017-9310(00)00123-X 10.1007/BF00773737 10.1115/1.2819148 10.1115/1.2819301 10.1115/1.2822515 10.1115/IMECE2000-1544 10.1115/IMECE1999-0795 10.1002/cite.330421408 10.1115/1.3564760 10.1088/0022-3727/24/9/002 10.1063/1.346276 10.1115/1.3167081 10.1021/i160071a001 10.1063/1.343422 10.2514/3.299 |
ContentType | Journal Article |
Copyright | 2002 2002 INIST-CNRS |
Copyright_xml | – notice: 2002 – notice: 2002 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1016/S0017-9310(01)00220-4 |
DatabaseName | Pascal-Francis CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 1031 |
ExternalDocumentID | 10_1016_S0017_9310_01_00220_4 13401094 S0017931001002204 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 08R AAPBV ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7TB 8FD FR3 |
ID | FETCH-LOGICAL-c523t-eb0ce7c18921d7fe2a1762a7249b4094b91952e2a91a7ccaa53d65fef459c1a3 |
ISSN | 0017-9310 |
IngestDate | Sat Oct 05 06:28:41 EDT 2024 Thu Sep 26 18:30:38 EDT 2024 Sun Oct 22 16:05:58 EDT 2023 Fri Feb 23 02:14:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Metal foam Thermal conductivity Aluminium Modelling Permeability Porosity Experimental study Thermophysical properties |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c523t-eb0ce7c18921d7fe2a1762a7249b4094b91952e2a91a7ccaa53d65fef459c1a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27771811 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_27771811 crossref_primary_10_1016_S0017_9310_01_00220_4 pascalfrancis_primary_13401094 elsevier_sciencedirect_doi_10_1016_S0017_9310_01_00220_4 |
PublicationCentury | 2000 |
PublicationDate | 2002-02-01 |
PublicationDateYYYYMMDD | 2002-02-01 |
PublicationDate_xml | – month: 02 year: 2002 text: 2002-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2002 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | (BIB5) 2000 A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, An analytical–experimental study for the determination of the thermal conductivity of high porosity metal foams, in: R.M. Sullivan, N.J. Salamon, M. Keyhani, S. White, Application of Porous Media Methods for Engineered Materials, AMD-Vol. 233, 1999, pp. 13–20 Zumbrunnen, Viskanta, Incropera (BIB38) 1986; 29 Darcy (BIB40) 1856 Verma, Shrotriya, Singh, Chaudhary (BIB16) 1991; 24 Hsu, Cheng, Wong (BIB20) 1994; 37 V.V. Calmidi, Transport phenomena in high porosity metal foams, Ph.D. Thesis, University of Colorado, Boulder, CO, 1998 E.G. Alexander, Structure–property relationships in heat pipe wicking materials, Ph.D. Thesis, North Carolina State University, Raleigh, NC, 1972 Taylor (BIB39) 1980 Hashin (BIB12) 1983; 50 Kaviany (BIB2) 1991 Koh, Fortini (BIB28) 1973; 6 Vafai, Tien (BIB43) 1982; 25 Beavers, Sparrow (BIB42) 1969; 36 Boomsma, Poulikakos (BIB33) 2001; 44 Semena, Zaripov (BIB29) 1977; 24 Du Plessis (BIB57) 1992 Munson, Young, Okiishi (BIB60) 1998 Joseph, Nield, Papanicolaou (BIB44) 1982; 18 Fand, Kim, Lam, Phan (BIB50) 1987; 109 Irmay (BIB47) 1958; 39 Hunt, Tien (BIB55) 1988; 31 Smith, Torquato (BIB14) 1989; 65 Calmidi, Mahajan (BIB31) 1999; 121 Bauer (BIB18) 1993; 36 Tien, Vafai (BIB19) 1979; 65 Zumbrunnen, Viskanta, Incropera (BIB37) 1984; 18 Vafai, Tien (BIB54) 1981; 24 Hsu (BIB24) 2000 S.F. Hoerner, Fluid Dynamic Drag, Midland Park, NJ, 1965 Nozad, Carbonell, Whitaker (BIB13) 1985; 40 Forchheimer (BIB41) 1901; 45 Mantle, Chang (BIB25) 1991; 5 Zehner, Schlunder (BIB10) 1970; 42 Aivazov, Domashnev (BIB9) 1968; 7 A. Bhattacharya, Thermophysical properties and convective transport in metal foam and finned metal foam heat sinks, Ph.D. Thesis, University of Colorado, Boulder, CO, 2001 Lage, Antohe, Nield (BIB53) 1997; 119 User Manuals, MARC Analysis Research Corporation, Palo Alto, CA, 1999 Whitaker (BIB22) 1999 B. Leyda, Personal Communications, ERG Aerospace, 2000 Du Plessis, Masliyah (BIB58) 1988; 3 (BIB3) 1998 Paek, Kang, Kim, Hyun (BIB32) 2000; 21 Hwang, Chao (BIB56) 1994; 117 Dul'nev, Muratova (BIB26) 1968; 14 Hsu, Cheng, Wong (BIB21) 1995; 117 Kececioglu, Jiang (BIB51) 1994; 116 Rumpf, Gupta (BIB48) 1971; 43 Dullien (BIB1) 1979 Kim, Torquato (BIB15) 1990; 68 Sahraoui, Kaviany (BIB17) 1993; 36 Milton (BIB11) 1982; 30 MARC Januszewski, Khokhar, Majumdar (BIB30) 1977; 4 Rayleigh (BIB8) 1892; 34 Cheng, Hsu (BIB23) 1998 Du Plessis, Montillet, Comiti, Legrand (BIB52) 1994; 49 Nield, Bejan (BIB4) 1999 Ergun (BIB46) 1952; 48 Macdonald, El-Sayed, Mow, Dullien (BIB49) 1979; 18 Antohe, Lage, Price, Weber (BIB45) 1997; 119 Nield (10.1016/S0017-9310(01)00220-4_BIB4) 1999 Rumpf (10.1016/S0017-9310(01)00220-4_BIB48) 1971; 43 (10.1016/S0017-9310(01)00220-4_BIB3) 1998 Irmay (10.1016/S0017-9310(01)00220-4_BIB47) 1958; 39 10.1016/S0017-9310(01)00220-4_BIB27 Bauer (10.1016/S0017-9310(01)00220-4_BIB18) 1993; 36 Hsu (10.1016/S0017-9310(01)00220-4_BIB24) 2000 Semena (10.1016/S0017-9310(01)00220-4_BIB29) 1977; 24 Kim (10.1016/S0017-9310(01)00220-4_BIB15) 1990; 68 Calmidi (10.1016/S0017-9310(01)00220-4_BIB31) 1999; 121 10.1016/S0017-9310(01)00220-4_BIB34 10.1016/S0017-9310(01)00220-4_BIB35 10.1016/S0017-9310(01)00220-4_BIB36 Tien (10.1016/S0017-9310(01)00220-4_BIB19) 1979; 65 Dullien (10.1016/S0017-9310(01)00220-4_BIB1) 1979 Taylor (10.1016/S0017-9310(01)00220-4_BIB39) 1980 Zumbrunnen (10.1016/S0017-9310(01)00220-4_BIB37) 1984; 18 Mantle (10.1016/S0017-9310(01)00220-4_BIB25) 1991; 5 Munson (10.1016/S0017-9310(01)00220-4_BIB60) 1998 10.1016/S0017-9310(01)00220-4_BIB7 Ergun (10.1016/S0017-9310(01)00220-4_BIB46) 1952; 48 10.1016/S0017-9310(01)00220-4_BIB6 Nozad (10.1016/S0017-9310(01)00220-4_BIB13) 1985; 40 Zumbrunnen (10.1016/S0017-9310(01)00220-4_BIB38) 1986; 29 Beavers (10.1016/S0017-9310(01)00220-4_BIB42) 1969; 36 Antohe (10.1016/S0017-9310(01)00220-4_BIB45) 1997; 119 Koh (10.1016/S0017-9310(01)00220-4_BIB28) 1973; 6 Vafai (10.1016/S0017-9310(01)00220-4_BIB43) 1982; 25 Hsu (10.1016/S0017-9310(01)00220-4_BIB21) 1995; 117 Kececioglu (10.1016/S0017-9310(01)00220-4_BIB51) 1994; 116 Du Plessis (10.1016/S0017-9310(01)00220-4_BIB58) 1988; 3 (10.1016/S0017-9310(01)00220-4_BIB5) 2000 Hsu (10.1016/S0017-9310(01)00220-4_BIB20) 1994; 37 Darcy (10.1016/S0017-9310(01)00220-4_BIB40) 1856 Fand (10.1016/S0017-9310(01)00220-4_BIB50) 1987; 109 Vafai (10.1016/S0017-9310(01)00220-4_BIB54) 1981; 24 Rayleigh (10.1016/S0017-9310(01)00220-4_BIB8) 1892; 34 Zehner (10.1016/S0017-9310(01)00220-4_BIB10) 1970; 42 Hunt (10.1016/S0017-9310(01)00220-4_BIB55) 1988; 31 Hwang (10.1016/S0017-9310(01)00220-4_BIB56) 1994; 117 10.1016/S0017-9310(01)00220-4_BIB59 Du Plessis (10.1016/S0017-9310(01)00220-4_BIB52) 1994; 49 Kaviany (10.1016/S0017-9310(01)00220-4_BIB2) 1991 Milton (10.1016/S0017-9310(01)00220-4_BIB11) 1982; 30 Forchheimer (10.1016/S0017-9310(01)00220-4_BIB41) 1901; 45 Sahraoui (10.1016/S0017-9310(01)00220-4_BIB17) 1993; 36 Januszewski (10.1016/S0017-9310(01)00220-4_BIB30) 1977; 4 Boomsma (10.1016/S0017-9310(01)00220-4_BIB33) 2001; 44 Cheng (10.1016/S0017-9310(01)00220-4_BIB23) 1998 Macdonald (10.1016/S0017-9310(01)00220-4_BIB49) 1979; 18 Paek (10.1016/S0017-9310(01)00220-4_BIB32) 2000; 21 Hashin (10.1016/S0017-9310(01)00220-4_BIB12) 1983; 50 Smith (10.1016/S0017-9310(01)00220-4_BIB14) 1989; 65 Verma (10.1016/S0017-9310(01)00220-4_BIB16) 1991; 24 Dul'nev (10.1016/S0017-9310(01)00220-4_BIB26) 1968; 14 Aivazov (10.1016/S0017-9310(01)00220-4_BIB9) 1968; 7 Whitaker (10.1016/S0017-9310(01)00220-4_BIB22) 1999 Lage (10.1016/S0017-9310(01)00220-4_BIB53) 1997; 119 Joseph (10.1016/S0017-9310(01)00220-4_BIB44) 1982; 18 Du Plessis (10.1016/S0017-9310(01)00220-4_BIB57) 1992 |
References_xml | – year: 2000 ident: BIB5 publication-title: Handbook of Porous Media – year: 1856 ident: BIB40 publication-title: Les Fontaines Publiques de la ville de Dijon contributor: fullname: Darcy – volume: 43 start-page: 367 year: 1971 end-page: 375 ident: BIB48 article-title: Einflusse der porositat and kongroß enverteilung im widerstandsgesetz der porenstromung publication-title: Chem.-Ing.-Tech. contributor: fullname: Gupta – start-page: 249 year: 1992 end-page: 262 ident: BIB57 article-title: Pore scale modeling for flow through different types of porous environments publication-title: Heat and Mass Transfer in Porous Media contributor: fullname: Du Plessis – volume: 36 start-page: 4181 year: 1993 end-page: 4191 ident: BIB18 article-title: A general approach toward the thermal conductivity of porous media publication-title: Int. J. Heat Mass Transfer contributor: fullname: Bauer – year: 1998 ident: BIB3 publication-title: Transport Phenomena in Porous Media – volume: 6 start-page: 2013 year: 1973 end-page: 2021 ident: BIB28 article-title: Prediction of thermal conductivity and electrical resistivity of porous metalic materials publication-title: Int. J. Heat Mass Transfer contributor: fullname: Fortini – volume: 24 start-page: 195 year: 1981 end-page: 203 ident: BIB54 article-title: Boundary and inertia effects on flow and heat transfer in porous media publication-title: Int. J. Heat Mass Transfer contributor: fullname: Tien – volume: 24 start-page: 1515 year: 1991 end-page: 1526 ident: BIB16 article-title: Prediction and measurement of effective thermal conductivity of three-phase systems publication-title: J. Phys. D contributor: fullname: Chaudhary – volume: 18 start-page: 199 year: 1979 end-page: 208 ident: BIB49 article-title: Flow through porous media: the Ergun equation revisited publication-title: Ind. Chem. Fund. contributor: fullname: Dullien – volume: 34 start-page: 481 year: 1892 end-page: 502 ident: BIB8 article-title: On the influence of obstacles arranged in rectangular order upon the properties of a medium publication-title: Philos. Mag. contributor: fullname: Rayleigh – volume: 25 start-page: 1183 year: 1982 end-page: 1190 ident: BIB43 article-title: Boundary and inertia effects on convective mass transfer in porous media publication-title: Int. J. Heat Mass Transfer contributor: fullname: Tien – volume: 40 start-page: 843 year: 1985 end-page: 855 ident: BIB13 article-title: Heat conduction in multi-phase systems I: theory and experiments for two-phase systems publication-title: Chem. Eng. Sci. contributor: fullname: Whitaker – volume: 65 start-page: 893 year: 1989 end-page: 900 ident: BIB14 article-title: Computer simulation results for bounds on the effective conductivity of porous media publication-title: J. Appl. Phys. contributor: fullname: Torquato – volume: 24 start-page: 82 year: 1977 end-page: 84 ident: BIB29 article-title: Influence of the diameter and length on material heat transfer of metal fiber wicks of heat pipes publication-title: Tepleonergetika contributor: fullname: Zaripov – year: 1979 ident: BIB1 publication-title: Porous Media: Fluid Transport and Pore Structure contributor: fullname: Dullien – volume: 44 start-page: 827 year: 2001 end-page: 836 ident: BIB33 article-title: On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam publication-title: Int. J. Heat Mass Transfer contributor: fullname: Poulikakos – volume: 31 start-page: 301 year: 1988 end-page: 309 ident: BIB55 article-title: Effects of thermal dispersion on forced convection in fibrous media publication-title: Int. J. Heat Mass Transfer contributor: fullname: Tien – year: 1998 ident: BIB60 publication-title: Fundamentals of Fluid Mechanics contributor: fullname: Okiishi – volume: 117 start-page: 725 year: 1994 end-page: 732 ident: BIB56 article-title: Heat transfer measurements and analysis for sintered porous channels publication-title: ASME J. Heat Transfer contributor: fullname: Chao – start-page: 57 year: 1998 end-page: 76 ident: BIB23 article-title: Heat conduction publication-title: Transport Phenomena in Porous Media contributor: fullname: Hsu – volume: 4 start-page: 417 year: 1977 end-page: 423 ident: BIB30 article-title: Thermal conductivity of some porous metals publication-title: Lett. Heat Mass Transfer contributor: fullname: Majumdar – volume: 121 start-page: 466 year: 1999 end-page: 471 ident: BIB31 article-title: The effective thermal conductivity of high porosity metal foams publication-title: ASME J. Heat Transfer contributor: fullname: Mahajan – volume: 36 start-page: 1019 year: 1993 end-page: 1033 ident: BIB17 article-title: Slip and no-slip temperature boundary conditions at interface of porous, plain media: conduction publication-title: Int. J. Heat Mass Transfer contributor: fullname: Kaviany – volume: 5 start-page: 545 year: 1991 end-page: 549 ident: BIB25 article-title: Effective thermal conductivity of sintered metal fibers publication-title: AIAA J. Thermophys. Heat Transfer contributor: fullname: Chang – volume: 119 start-page: 700 year: 1997 end-page: 706 ident: BIB53 article-title: Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media publication-title: ASME J. Fluids Eng. contributor: fullname: Nield – volume: 29 start-page: 275 year: 1986 end-page: 284 ident: BIB38 article-title: Heat transfer through porous solids with complex internal geometries publication-title: Int. J. Heat Mass Transfer contributor: fullname: Incropera – volume: 68 start-page: 3892 year: 1990 end-page: 3903 ident: BIB15 article-title: Determination of the effective conductivity of heterogeneous media by Brownian motion simulation publication-title: J. Appl. Phys. contributor: fullname: Torquato – volume: 21 start-page: 453 year: 2000 end-page: 464 ident: BIB32 article-title: Effective thermal conductivity and permeability of aluminum foam materials publication-title: Int. J. Thermophys. contributor: fullname: Hyun – volume: 18 start-page: 1049 year: 1982 end-page: 1052 ident: BIB44 article-title: Nonlinear equation governing flow in a saturated porous medium publication-title: Water Resour. Res. contributor: fullname: Papanicolaou – volume: 14 start-page: 29 year: 1968 end-page: 35 ident: BIB26 article-title: Thermal conductivity of fibrous systems publication-title: J. Eng. Phys. contributor: fullname: Muratova – volume: 39 start-page: 702 year: 1958 end-page: 707 ident: BIB47 article-title: On the theoretical derivation of Darcy and Forcheimer formula publication-title: Trans. Am. Geograph. Union contributor: fullname: Irmay – year: 1991 ident: BIB2 publication-title: Principles of Heat Transfer in Porous Media contributor: fullname: Kaviany – volume: 7 start-page: 708 year: 1968 end-page: 710 ident: BIB9 article-title: Influence of porosity on the conductivity of hot pressed titanium specimens publication-title: Sov. Powder Metall. Met. Ceram. contributor: fullname: Domashnev – volume: 3 start-page: 145 year: 1988 end-page: 161 ident: BIB58 article-title: Mathematical modeling of flow through consolidated isotropic porous media publication-title: Transp. Porous Media contributor: fullname: Masliyah – year: 1999 ident: BIB22 publication-title: The Method of Volume Averaging contributor: fullname: Whitaker – volume: 65 start-page: 135 year: 1979 end-page: 148 ident: BIB19 article-title: Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation publication-title: AIAA Progress Ser. contributor: fullname: Vafai – volume: 117 start-page: 264 year: 1995 end-page: 269 ident: BIB21 article-title: A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media publication-title: ASME J. Heat Transfer contributor: fullname: Wong – volume: 50 start-page: 481 year: 1983 end-page: 505 ident: BIB12 article-title: Analysis of composite materials – a survey publication-title: ASME J. Appl. Mech. contributor: fullname: Hashin – start-page: 171 year: 2000 end-page: 200 ident: BIB24 article-title: Heat conduction in porous media publication-title: Handbook of Porous Media contributor: fullname: Hsu – volume: 36 start-page: 711 year: 1969 end-page: 714 ident: BIB42 article-title: Non-darcy flow through fibrous porous media publication-title: ASME J. Appl. Mech. contributor: fullname: Sparrow – volume: 119 start-page: 404 year: 1997 end-page: 412 ident: BIB45 article-title: Experimental determination of permeability and inertial coefficients of mechanically compressed aluminum metal layers publication-title: ASME J. Fluids Eng. contributor: fullname: Weber – volume: 37 start-page: 2751 year: 1994 end-page: 2759 ident: BIB20 article-title: Modified Zehner–Schlunder models for stagnant thermal conductivity of porous media publication-title: Int. J. Heat Mass Transfer contributor: fullname: Wong – year: 1999 ident: BIB4 publication-title: Convection in Porous Media contributor: fullname: Bejan – volume: 48 start-page: 89 year: 1952 end-page: 94 ident: BIB46 article-title: Fluid flow through packed column publication-title: Chem. Eng. Prog. contributor: fullname: Ergun – year: 1980 ident: BIB39 publication-title: An Introduction to Error Analysis – The Study of Uncertainties in Physical Measurements contributor: fullname: Taylor – volume: 45 start-page: 1782 year: 1901 end-page: 1788 ident: BIB41 article-title: Wasserbewegung durch boden publication-title: VDI Z. contributor: fullname: Forchheimer – volume: 42 start-page: 933 year: 1970 end-page: 941 ident: BIB10 article-title: Thermal conductivity of granular materials at moderate temperatures publication-title: Chem.-Ing.-Tech. contributor: fullname: Schlunder – volume: 30 start-page: 177 year: 1982 end-page: 191 ident: BIB11 article-title: Bounds on the elastic and transport properties of two-component composites publication-title: J. Mech. Phys. Solids contributor: fullname: Milton – volume: 116 start-page: 164 year: 1994 end-page: 170 ident: BIB51 article-title: Flow through porous media of packed spheres saturated with water publication-title: ASME J. Fluids Eng. contributor: fullname: Jiang – volume: 18 start-page: 221 year: 1984 end-page: 226 ident: BIB37 article-title: Heat transfer through granular beds at high temperature publication-title: Warme- Stoffubertrag. contributor: fullname: Incropera – volume: 109 start-page: 268 year: 1987 end-page: 274 ident: BIB50 article-title: Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres publication-title: ASME J. Fluids Eng. contributor: fullname: Phan – volume: 49 start-page: 3545 year: 1994 end-page: 3553 ident: BIB52 article-title: Pressure drop prediction for flow through high porosity metallic foams publication-title: Chem. Eng. Sci. contributor: fullname: Legrand – year: 1999 ident: 10.1016/S0017-9310(01)00220-4_BIB4 contributor: fullname: Nield – volume: 117 start-page: 725 year: 1994 ident: 10.1016/S0017-9310(01)00220-4_BIB56 article-title: Heat transfer measurements and analysis for sintered porous channels publication-title: ASME J. Heat Transfer doi: 10.1115/1.2822636 contributor: fullname: Hwang – volume: 21 start-page: 453 issue: 2 year: 2000 ident: 10.1016/S0017-9310(01)00220-4_BIB32 article-title: Effective thermal conductivity and permeability of aluminum foam materials publication-title: Int. J. Thermophys. doi: 10.1023/A:1006643815323 contributor: fullname: Paek – volume: 43 start-page: 367 year: 1971 ident: 10.1016/S0017-9310(01)00220-4_BIB48 article-title: Einflusse der porositat and kongroß enverteilung im widerstandsgesetz der porenstromung publication-title: Chem.-Ing.-Tech. doi: 10.1002/cite.330430610 contributor: fullname: Rumpf – volume: 18 start-page: 1049 year: 1982 ident: 10.1016/S0017-9310(01)00220-4_BIB44 article-title: Nonlinear equation governing flow in a saturated porous medium publication-title: Water Resour. Res. doi: 10.1029/WR018i004p01049 contributor: fullname: Joseph – volume: 109 start-page: 268 year: 1987 ident: 10.1016/S0017-9310(01)00220-4_BIB50 article-title: Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres publication-title: ASME J. Fluids Eng. doi: 10.1115/1.3242658 contributor: fullname: Fand – year: 2000 ident: 10.1016/S0017-9310(01)00220-4_BIB5 – ident: 10.1016/S0017-9310(01)00220-4_BIB7 – volume: 49 start-page: 3545 year: 1994 ident: 10.1016/S0017-9310(01)00220-4_BIB52 article-title: Pressure drop prediction for flow through high porosity metallic foams publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(94)00170-7 contributor: fullname: Du Plessis – volume: 45 start-page: 1782 year: 1901 ident: 10.1016/S0017-9310(01)00220-4_BIB41 article-title: Wasserbewegung durch boden publication-title: VDI Z. contributor: fullname: Forchheimer – volume: 36 start-page: 1019 issue: 4 year: 1993 ident: 10.1016/S0017-9310(01)00220-4_BIB17 article-title: Slip and no-slip temperature boundary conditions at interface of porous, plain media: conduction publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(05)80286-8 contributor: fullname: Sahraoui – year: 1998 ident: 10.1016/S0017-9310(01)00220-4_BIB60 contributor: fullname: Munson – volume: 121 start-page: 466 year: 1999 ident: 10.1016/S0017-9310(01)00220-4_BIB31 article-title: The effective thermal conductivity of high porosity metal foams publication-title: ASME J. Heat Transfer doi: 10.1115/1.2826001 contributor: fullname: Calmidi – volume: 39 start-page: 702 issue: 4 year: 1958 ident: 10.1016/S0017-9310(01)00220-4_BIB47 article-title: On the theoretical derivation of Darcy and Forcheimer formula publication-title: Trans. Am. Geograph. Union doi: 10.1029/TR039i004p00702 contributor: fullname: Irmay – volume: 3 start-page: 145 year: 1988 ident: 10.1016/S0017-9310(01)00220-4_BIB58 article-title: Mathematical modeling of flow through consolidated isotropic porous media publication-title: Transp. Porous Media doi: 10.1007/BF00820342 contributor: fullname: Du Plessis – volume: 24 start-page: 195 year: 1981 ident: 10.1016/S0017-9310(01)00220-4_BIB54 article-title: Boundary and inertia effects on flow and heat transfer in porous media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(81)90027-2 contributor: fullname: Vafai – year: 1979 ident: 10.1016/S0017-9310(01)00220-4_BIB1 contributor: fullname: Dullien – volume: 37 start-page: 2751 issue: 17 year: 1994 ident: 10.1016/S0017-9310(01)00220-4_BIB20 article-title: Modified Zehner–Schlunder models for stagnant thermal conductivity of porous media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)90392-1 contributor: fullname: Hsu – volume: 40 start-page: 843 year: 1985 ident: 10.1016/S0017-9310(01)00220-4_BIB13 article-title: Heat conduction in multi-phase systems I: theory and experiments for two-phase systems publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(85)85037-5 contributor: fullname: Nozad – year: 1856 ident: 10.1016/S0017-9310(01)00220-4_BIB40 contributor: fullname: Darcy – volume: 30 start-page: 177 issue: 3 year: 1982 ident: 10.1016/S0017-9310(01)00220-4_BIB11 article-title: Bounds on the elastic and transport properties of two-component composites publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(82)90022-9 contributor: fullname: Milton – volume: 65 start-page: 135 year: 1979 ident: 10.1016/S0017-9310(01)00220-4_BIB19 article-title: Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation publication-title: AIAA Progress Ser. contributor: fullname: Tien – volume: 18 start-page: 221 year: 1984 ident: 10.1016/S0017-9310(01)00220-4_BIB37 article-title: Heat transfer through granular beds at high temperature publication-title: Warme- Stoffubertrag. doi: 10.1007/BF01007133 contributor: fullname: Zumbrunnen – volume: 31 start-page: 301 year: 1988 ident: 10.1016/S0017-9310(01)00220-4_BIB55 article-title: Effects of thermal dispersion on forced convection in fibrous media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(88)90013-0 contributor: fullname: Hunt – volume: 14 start-page: 29 year: 1968 ident: 10.1016/S0017-9310(01)00220-4_BIB26 article-title: Thermal conductivity of fibrous systems publication-title: J. Eng. Phys. doi: 10.1007/BF00826965 contributor: fullname: Dul'nev – year: 1991 ident: 10.1016/S0017-9310(01)00220-4_BIB2 contributor: fullname: Kaviany – volume: 4 start-page: 417 year: 1977 ident: 10.1016/S0017-9310(01)00220-4_BIB30 article-title: Thermal conductivity of some porous metals publication-title: Lett. Heat Mass Transfer doi: 10.1016/0094-4548(77)90100-X contributor: fullname: Januszewski – volume: 25 start-page: 1183 issue: 8 year: 1982 ident: 10.1016/S0017-9310(01)00220-4_BIB43 article-title: Boundary and inertia effects on convective mass transfer in porous media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(82)90212-5 contributor: fullname: Vafai – volume: 29 start-page: 275 year: 1986 ident: 10.1016/S0017-9310(01)00220-4_BIB38 article-title: Heat transfer through porous solids with complex internal geometries publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(86)90234-6 contributor: fullname: Zumbrunnen – ident: 10.1016/S0017-9310(01)00220-4_BIB59 – start-page: 249 year: 1992 ident: 10.1016/S0017-9310(01)00220-4_BIB57 article-title: Pore scale modeling for flow through different types of porous environments contributor: fullname: Du Plessis – volume: 6 start-page: 2013 year: 1973 ident: 10.1016/S0017-9310(01)00220-4_BIB28 article-title: Prediction of thermal conductivity and electrical resistivity of porous metalic materials publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(73)90104-X contributor: fullname: Koh – year: 1998 ident: 10.1016/S0017-9310(01)00220-4_BIB3 – volume: 116 start-page: 164 year: 1994 ident: 10.1016/S0017-9310(01)00220-4_BIB51 article-title: Flow through porous media of packed spheres saturated with water publication-title: ASME J. Fluids Eng. doi: 10.1115/1.2910229 contributor: fullname: Kececioglu – volume: 34 start-page: 481 year: 1892 ident: 10.1016/S0017-9310(01)00220-4_BIB8 article-title: On the influence of obstacles arranged in rectangular order upon the properties of a medium publication-title: Philos. Mag. doi: 10.1080/14786449208620364 contributor: fullname: Rayleigh – ident: 10.1016/S0017-9310(01)00220-4_BIB36 – volume: 36 start-page: 4181 issue: 17 year: 1993 ident: 10.1016/S0017-9310(01)00220-4_BIB18 article-title: A general approach toward the thermal conductivity of porous media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(93)90080-P contributor: fullname: Bauer – volume: 44 start-page: 827 year: 2001 ident: 10.1016/S0017-9310(01)00220-4_BIB33 article-title: On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(00)00123-X contributor: fullname: Boomsma – volume: 7 start-page: 708 year: 1968 ident: 10.1016/S0017-9310(01)00220-4_BIB9 article-title: Influence of porosity on the conductivity of hot pressed titanium specimens publication-title: Sov. Powder Metall. Met. Ceram. doi: 10.1007/BF00773737 contributor: fullname: Aivazov – year: 1999 ident: 10.1016/S0017-9310(01)00220-4_BIB22 contributor: fullname: Whitaker – volume: 119 start-page: 404 year: 1997 ident: 10.1016/S0017-9310(01)00220-4_BIB45 article-title: Experimental determination of permeability and inertial coefficients of mechanically compressed aluminum metal layers publication-title: ASME J. Fluids Eng. doi: 10.1115/1.2819148 contributor: fullname: Antohe – ident: 10.1016/S0017-9310(01)00220-4_BIB27 – start-page: 57 year: 1998 ident: 10.1016/S0017-9310(01)00220-4_BIB23 article-title: Heat conduction contributor: fullname: Cheng – volume: 119 start-page: 700 year: 1997 ident: 10.1016/S0017-9310(01)00220-4_BIB53 article-title: Two types of nonlinear pressure-drop versus flow-rate relation observed for saturated porous media publication-title: ASME J. Fluids Eng. doi: 10.1115/1.2819301 contributor: fullname: Lage – volume: 117 start-page: 264 year: 1995 ident: 10.1016/S0017-9310(01)00220-4_BIB21 article-title: A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media publication-title: ASME J. Heat Transfer doi: 10.1115/1.2822515 contributor: fullname: Hsu – ident: 10.1016/S0017-9310(01)00220-4_BIB34 doi: 10.1115/IMECE2000-1544 – year: 1980 ident: 10.1016/S0017-9310(01)00220-4_BIB39 contributor: fullname: Taylor – start-page: 171 year: 2000 ident: 10.1016/S0017-9310(01)00220-4_BIB24 article-title: Heat conduction in porous media contributor: fullname: Hsu – ident: 10.1016/S0017-9310(01)00220-4_BIB35 doi: 10.1115/IMECE1999-0795 – volume: 42 start-page: 933 year: 1970 ident: 10.1016/S0017-9310(01)00220-4_BIB10 article-title: Thermal conductivity of granular materials at moderate temperatures publication-title: Chem.-Ing.-Tech. doi: 10.1002/cite.330421408 contributor: fullname: Zehner – volume: 36 start-page: 711 issue: 4 year: 1969 ident: 10.1016/S0017-9310(01)00220-4_BIB42 article-title: Non-darcy flow through fibrous porous media publication-title: ASME J. Appl. Mech. doi: 10.1115/1.3564760 contributor: fullname: Beavers – ident: 10.1016/S0017-9310(01)00220-4_BIB6 – volume: 24 start-page: 1515 year: 1991 ident: 10.1016/S0017-9310(01)00220-4_BIB16 article-title: Prediction and measurement of effective thermal conductivity of three-phase systems publication-title: J. Phys. D doi: 10.1088/0022-3727/24/9/002 contributor: fullname: Verma – volume: 68 start-page: 3892 issue: 8 year: 1990 ident: 10.1016/S0017-9310(01)00220-4_BIB15 article-title: Determination of the effective conductivity of heterogeneous media by Brownian motion simulation publication-title: J. Appl. Phys. doi: 10.1063/1.346276 contributor: fullname: Kim – volume: 50 start-page: 481 year: 1983 ident: 10.1016/S0017-9310(01)00220-4_BIB12 article-title: Analysis of composite materials – a survey publication-title: ASME J. Appl. Mech. doi: 10.1115/1.3167081 contributor: fullname: Hashin – volume: 18 start-page: 199 year: 1979 ident: 10.1016/S0017-9310(01)00220-4_BIB49 article-title: Flow through porous media: the Ergun equation revisited publication-title: Ind. Chem. Fund. doi: 10.1021/i160071a001 contributor: fullname: Macdonald – volume: 48 start-page: 89 issue: 2 year: 1952 ident: 10.1016/S0017-9310(01)00220-4_BIB46 article-title: Fluid flow through packed column publication-title: Chem. Eng. Prog. contributor: fullname: Ergun – volume: 24 start-page: 82 year: 1977 ident: 10.1016/S0017-9310(01)00220-4_BIB29 article-title: Influence of the diameter and length on material heat transfer of metal fiber wicks of heat pipes publication-title: Tepleonergetika contributor: fullname: Semena – volume: 65 start-page: 893 issue: 3 year: 1989 ident: 10.1016/S0017-9310(01)00220-4_BIB14 article-title: Computer simulation results for bounds on the effective conductivity of porous media publication-title: J. Appl. Phys. doi: 10.1063/1.343422 contributor: fullname: Smith – volume: 5 start-page: 545 year: 1991 ident: 10.1016/S0017-9310(01)00220-4_BIB25 article-title: Effective thermal conductivity of sintered metal fibers publication-title: AIAA J. Thermophys. Heat Transfer doi: 10.2514/3.299 contributor: fullname: Mantle |
SSID | ssj0017046 |
Score | 2.3779528 |
Snippet | In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity (
k
e),... In this paper, we present a comprehensive analytical and experimental investigation for the determination of the effective thermal conductivity (k sub e ),... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1017 |
SubjectTerms | Condensed matter: electronic structure, electrical, magnetic, and optical properties Electrical and thermal conduction in amorphous and liquid metals and alloys Electronic conduction in metals and alloys Electronic transport in condensed matter Exact sciences and technology Physics |
Title | Thermophysical properties of high porosity metal foams |
URI | https://dx.doi.org/10.1016/S0017-9310(01)00220-4 https://search.proquest.com/docview/27771811 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dixMxMPR6CIKIn3h-nPvggyK7brIfaR5PrZyivlw57i1kswl3h-2WdvtwcD_eydemRcUP8CWUYbqBmclkvoPQC3C5mhqOTaokE2kplUybqqlTypqWqQllxI7YOD6hX88m76fldDS6Dl7_APuvnAYY8Np0zv4Ft4ePAgB-A89hBa7D-qd8X827ZSD_0gTbV2ZqqjULwRV_DRZ3Zysx5qq37YvCTyy_jFXtMUi4NVrC6G2bbJiDxW0elwCTNxb3vj0XfS9MF9eVi9VmMb_xbX7R2rKB0-x0AH8R5-LSp6Gyz9lO_IGEkuUQFAuNMbEKySpauPxY4StWldOtwPkULAq2rXzdLEkvZNWWJjWqYutWNq9R_FTju-DDybAh2OXm7QFmjJPcNxDtDtS2uAY1xxap3EP7BADVGO0ffZyefRqyUDR3jV7h27ED7E3c8GWOX_nNfmXb3FqKNbBcu6dSfrj1rSkzu4Nuex8kOXLCcxeN1OIeumFrgeX6Pqp3RSiJIpR0OjEilAQRSqwIJVaEHqDZh-ns3XHqn9dIZUWKPlVNLhWVwBCCW6oVERhuRkHBIW-M198wzCoCYIYFhYMuqqKtK610WTGJRfEQjRfdQj1CiQBkrEH7yxxWXQhMdINboYFGZT3JD1AW6MKXbogKj9WFgMQNIXmOuSUkLw_QJFCPe0vQWXgc2P67vx7uUDtuWJQmDQwIzwP5OahSkx8TC9Vt1pxQCpYaxo__ffcn6GY8I0_RuF9t1DO0t243h164vgOZ3JDt |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermophysical+properties+of+high+porosity+metal+foams&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Bhattacharya%2C+A.&rft.au=Calmidi%2C+V.V.&rft.au=Mahajan%2C+R.L.&rft.date=2002-02-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=45&rft.issue=5&rft.spage=1017&rft.epage=1031&rft_id=info:doi/10.1016%2FS0017-9310%2801%2900220-4&rft.externalDocID=S0017931001002204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |