A Myogenic Factor from Sea Urchin Embryos Capable of Programming Muscle Differentiation in Mammalian Cells

Using the basic helix-loop-helix domain of the myogenic factor myogenin as a probe, we identified a clone from a sea urchin cDNA library with considerable sequence similarity to the vertebrate myogenic factors. This cDNA, sea urchin myogenic factor 1 (SUM-1), transactivated a muscle creative kinase-...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 88; no. 14; pp. 6219 - 6223
Main Authors: Venuti, Judith M., Goldberg, Leah, Chakraborty, Tushar, Olson, Eric N., Klein, William H.
Format: Journal Article
Language:English
Published: Washington, DC National Academy of Sciences of the United States of America 15-07-1991
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the basic helix-loop-helix domain of the myogenic factor myogenin as a probe, we identified a clone from a sea urchin cDNA library with considerable sequence similarity to the vertebrate myogenic factors. This cDNA, sea urchin myogenic factor 1 (SUM-1), transactivated a muscle creative kinase-chloramphenicol acetyltransferase reporter gene in 10T1/2 fibroblasts to a level comparable to that of the vertebrate myogenic factors. In addition, bacterially expressed β-galactosidase-SUM-1 fusion protein interacted directly with the κE-2 site in the muscle creatine kinase enhancer core as assayed by electrophoretic mobility shift assays. Stably transfected SUM-1 activated the muscle differentiation program and converted 10T1/2 cells from fibroblasts to myotubes. In sea urchin embryos, SUM-1 RNA was not detected before gastrulation. It accumulated to its highest levels during the prism stage when myoblasts were first detected by myosin immunostaining and then diminished as myocytes differentiated. SUM-1 protein was localized in secondary mesenchyme cells when they could first be identified as muscle cells by myosin immunostaining. These results implicate SUM-1 as a regulatory factor involved in the early decision of a pluripotent secondary mesenchyme cell to convert to a myogenic fate. SUM-1 is an example of an invertebrate myogenic factor that is capable of functioning in mammalian cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.88.14.6219