Effects of SPA4 peptide on lipopolysaccharide‐disrupted lung epithelial barrier, injury, and function in a human cell system and mouse model of lung injury
Disrupted epithelial barrier, fluid accumulation, inflammation, and compromised physiology are hallmarks of lung injury. Here we investigated the structural stability of the Toll‐like receptor‐4 (TLR4)‐interacting SPA4 peptide, its effect on Pseudomonas aeruginosa lipopolysaccharide (LPS)‐disrupted...
Saved in:
Published in: | Physiological reports Vol. 10; no. 13; pp. e15353 - n/a |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
John Wiley & Sons, Inc
01-07-2022
John Wiley and Sons Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Disrupted epithelial barrier, fluid accumulation, inflammation, and compromised physiology are hallmarks of lung injury. Here we investigated the structural stability of the Toll‐like receptor‐4 (TLR4)‐interacting SPA4 peptide, its effect on Pseudomonas aeruginosa lipopolysaccharide (LPS)‐disrupted epithelial barrier in a human cell system, and lung injury markers in a mouse model of LPS‐induced lung inflammation. The structural properties of SPA4 peptide were investigated using circular dichroism and UV–VIS spectroscopy. The transepithelial electrical resistance (TEER), an indicator of barrier function, was measured after the cells were challenged with 1 μg/ml LPS and treated with 10 or 100 μM SPA4 peptide. The expression and localization of tight junction proteins were studied by immunoblotting and immunocytochemistry, respectively. Mice were intratracheally challenged with 5 μg LPS per g body weight and treated with 50 μg SPA4 peptide. The lung wet/dry weight ratios or edema, surfactant protein‐D (SP‐D) levels in serum, lung function, tissue injury, body weights, and temperature, and survival were determined as study parameters. The spectroscopy results demonstrated that the structure was maintained among different batches of SPA4 peptide throughout the study. Treatment with 100 μM SPA4 peptide restored the LPS‐disrupted epithelial barrier, which correlated with the localization pattern of Zonula Occludens (ZO)‐1 and occludin proteins. Correspondingly, SPA4 peptide treatment helped suppress the lung edema and levels of serum SP‐D, improved some of the lung function parameters, and reduced the mortality risk against LPS challenge. Our results suggest that the anti‐inflammatory activity of the SPA4 peptide facilitates the resolution of lung pathology.
The TLR4‐interacting SPA4 peptide restores the lipopolysaccharide‐disrupted alveolar epithelial barrier function and distribution of tight junction proteins. Therapeutic treatment with SPA4 peptide reduces lung edema and inflammation, and improves lung function parameters and survival in a mouse model of lipopolysaccharide‐induced lung inflammation. |
---|---|
Bibliography: | Parts of the results were presented at the 2021 American Thoracic Society International Conference. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2051-817X |
DOI: | 10.14814/phy2.15353 |