Improvement of saccharide yield from wood by simultaneous enzymatic delignification and saccharification using a ligninolytic enzyme and cellulase

White-rot fungi are thought to hold promise for development of a delignification pretreatment process for wood biorefinery that is less energy-consuming than current processes. However, the reaction must take place over weeks and consumes non-neglectable amounts of saccharides. To establish a biolog...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering Vol. 132; no. 3; pp. 213 - 219
Main Authors: Mori, Toshio, Ikeda, Kohei, Kawagishi, Hirokazu, Hirai, Hirofumi
Format: Journal Article
Language:English
Published: Elsevier B.V 01-09-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:White-rot fungi are thought to hold promise for development of a delignification pretreatment process for wood biorefinery that is less energy-consuming than current processes. However, the reaction must take place over weeks and consumes non-neglectable amounts of saccharides. To establish a biological process for wood biorefinery would first require establishment of an enzymatic approach to delignification. Such an approach has the potential to lower costs and reduce saccharide loss. Here, we attempted enzymatic delignification reactions using manganese peroxidases (MnP), a lignin-degrading enzyme, under several reaction conditions. The delignification rate from beech wood meal (particle size <45 μm) of up to 11.0% in 48 h was reached in a MnP reaction supplemented with multiple co-oxidants, glucose, glucose oxidase (GOD) and commercial cellulase. An additional 48-h reaction using fresh MnP/co-oxidants increased the delignification rate to 14.2%. Simultaneous enzymatic delignification and saccharification, which occurs without a need for glucose supplementation, successfully improved the glucose yield to 160% of the reaction without MnP. Development of a more accurate imitation of the mechanisms of delignification that occurs in white-rot fungi has the potential to improve the monosaccharide yield resulting from simultaneous delignification and saccharification. •Simultaneous enzymatic delignification and saccharification (SDS) for wood was attempted.•Conditions of delignification using manganese peroxidase were investigated for SDS treatment.•Both delignification and saccharification activities seemed complemented each other.•The SDS improved glucose yield to 160% from wood biomass compared the treatment with cellulase alone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2021.04.016