Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch
Mechanical tension is a critical determinant of cell growth, differentiation, apoptosis, migration, and development. Integrins have been implicated in sensing force but little is known about how forces are transduced to biochemical signals. We now show that mechanical strain stimulates conformationa...
Saved in:
Published in: | The Journal of biological chemistry Vol. 280; no. 17; pp. 16546 - 16549 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
29-04-2005
American Society for Biochemistry and Molecular Biology |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mechanical tension is a critical determinant of cell growth, differentiation, apoptosis, migration, and development. Integrins have been implicated in sensing force but little is known about how forces are transduced to biochemical signals. We now show that mechanical strain stimulates conformational activation of integrin αvβ3 in NIH3T3 cells. Integrin activation is mediated by phosphoinositol 3-kinase and is followed by an increase in integrin binding to extracellular matrix proteins. Mechanical stretch stimulation of JNK was dependent on new integrin binding to extracellular matrix. These data define a molecular mechanism for the role of integrins in mechanotransduction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.C400455200 |