Nuclear Focal Adhesion Kinase Controls Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia Through GATA4-Mediated Cyclin D1 Transcription

RATIONALE:Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and ne...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research Vol. 125; no. 2; pp. 152 - 166
Main Authors: Jeong, Kyuho, Kim, Jung-Hyun, Murphy, James M, Park, Hyeonsoo, Kim, Su-Jeong, Rodriguez, Yelitza A.R, Kong, Hyunkyung, Choi, Chungsik, Guan, Jun-Lin, Taylor, Joan M, Lincoln, Thomas M, Gerthoffer, William T, Kim, Jun-Sub, Ahn, Eun-Young Erin, Schlaepfer, David D, Lim, Ssang-Taek Steve
Format: Journal Article
Language:English
Published: United States American Heart Association, Inc 05-07-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract RATIONALE:Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE:To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS:Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ER) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS:Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
AbstractList Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ER ) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
RATIONALE:Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE:To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS:Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ER) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS:Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
Rationale: Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). Objective: To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. Methods and Results: Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ER T2 ) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. Conclusions: Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
RATIONALENeointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVETo understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTSUsing combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ERT2) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONSNuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
Author Lincoln, Thomas M
Ahn, Eun-Young Erin
Lim, Ssang-Taek Steve
Kim, Jung-Hyun
Guan, Jun-Lin
Kong, Hyunkyung
Taylor, Joan M
Kim, Jun-Sub
Schlaepfer, David D
Murphy, James M
Kim, Su-Jeong
Rodriguez, Yelitza A.R
Jeong, Kyuho
Park, Hyeonsoo
Choi, Chungsik
Gerthoffer, William T
AuthorAffiliation 6 Department of Biotechnology, Korea National Transportation University, Chungbuk, Korea
4 Department of Cancer Biology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
2 Mitchell Cancer Institute, University of South Alabama, College of Medicine, Mobile, AL 36604
7 Department of Reproductive Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037
5 Department of Pathology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599
1 Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL 36688
3 Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL 366884
AuthorAffiliation_xml – name: 7 Department of Reproductive Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037
– name: 1 Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL 36688
– name: 6 Department of Biotechnology, Korea National Transportation University, Chungbuk, Korea
– name: 2 Mitchell Cancer Institute, University of South Alabama, College of Medicine, Mobile, AL 36604
– name: 4 Department of Cancer Biology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267
– name: 3 Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL 366884
– name: 5 Department of Pathology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599
Author_xml – sequence: 1
  givenname: Kyuho
  surname: Jeong
  fullname: Jeong, Kyuho
– sequence: 2
  givenname: Jung-Hyun
  surname: Kim
  fullname: Kim, Jung-Hyun
– sequence: 3
  givenname: James
  surname: Murphy
  middlename: M
  fullname: Murphy, James M
– sequence: 4
  givenname: Hyeonsoo
  surname: Park
  fullname: Park, Hyeonsoo
– sequence: 5
  givenname: Su-Jeong
  surname: Kim
  fullname: Kim, Su-Jeong
– sequence: 6
  givenname: Yelitza
  surname: Rodriguez
  middlename: A.R
  fullname: Rodriguez, Yelitza A.R
– sequence: 7
  givenname: Hyunkyung
  surname: Kong
  fullname: Kong, Hyunkyung
– sequence: 8
  givenname: Chungsik
  surname: Choi
  fullname: Choi, Chungsik
– sequence: 9
  givenname: Jun-Lin
  surname: Guan
  fullname: Guan, Jun-Lin
– sequence: 10
  givenname: Joan
  surname: Taylor
  middlename: M
  fullname: Taylor, Joan M
– sequence: 11
  givenname: Thomas
  surname: Lincoln
  middlename: M
  fullname: Lincoln, Thomas M
– sequence: 12
  givenname: William
  surname: Gerthoffer
  middlename: T
  fullname: Gerthoffer, William T
– sequence: 13
  givenname: Jun-Sub
  surname: Kim
  fullname: Kim, Jun-Sub
– sequence: 14
  givenname: Eun-Young
  surname: Ahn
  middlename: Erin
  fullname: Ahn, Eun-Young Erin
– sequence: 15
  givenname: David
  surname: Schlaepfer
  middlename: D
  fullname: Schlaepfer, David D
– sequence: 16
  givenname: Ssang-Taek
  surname: Lim
  middlename: Steve
  fullname: Lim, Ssang-Taek Steve
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31096851$$D View this record in MEDLINE/PubMed
BookMark eNpVks1u1DAUhS1URKeFRwB5ySbFP4mTbJCi9Gcq2oLaga3lOHcag8cOdkI1r8LT4mFKgZVl-zvnXt_jI3TgvAOEXlNyQqmg79rL2_b27K5ZNmlfnXCa8zx_hha0YHmWFyU9QAtCSJ2VnJNDdBTjV0ISxOoX6JBTUouqoAv082bWFlTA514ri5t-gGi8wx-MUxFw690UvI34i4p6tom723g_Dfh6jkmHW7AWf0qEWUNQ006pXI9vwBs3mU1yXG5HCKNV0Si8GoKf7wd80ayaPLuG3qgJetxutTUOn1K8CspFHcy4c3qJnq-VjfDqcT1Gn8_PVu0yu_p4cdk2V5kuGONZWdQg6pqXua5oJThjBYiuEFBXQIROSLcWneiIUHXOFdW1SIMouYKqK8Wa8GP0fu87zt0Geg3pycrKMaT-w1Z6ZeT_N84M8t7_kKIkLGdFMnj7aBD89xniJDcm6jQZ5cDPUaYWGClTJLtaxR7VwccYYP1UhhK5y1X-zTXtK7nPNene_Nvjk-pPkAnI98CDtxOE-M3ODxDkAMpOg0wfgXBCWcYIrUlJCpL9PuK_AN3Jsnw
CitedBy_id crossref_primary_10_1002_cac2_12443
crossref_primary_10_1038_s12276_020_0447_4
crossref_primary_10_1007_s10753_020_01408_5
crossref_primary_10_1093_cvr_cvad080
crossref_primary_10_1161_RES_0000000000000406
crossref_primary_10_1016_j_matbio_2021_09_001
crossref_primary_10_1186_s40360_022_00604_3
crossref_primary_10_1038_s41401_022_01029_8
crossref_primary_10_1126_sciadv_adh8939
crossref_primary_10_1515_jbcpp_2022_0018
crossref_primary_10_1002_ctm2_605
crossref_primary_10_1007_s10557_023_07428_1
crossref_primary_10_3390_ijms25136899
crossref_primary_10_1016_j_jbc_2022_102013
crossref_primary_10_1155_2021_3698386
crossref_primary_10_3389_fphar_2024_1274209
crossref_primary_10_3390_ijms21061943
crossref_primary_10_1016_j_atherosclerosis_2023_06_969
crossref_primary_10_1038_s41420_023_01601_z
crossref_primary_10_3390_genes12020183
crossref_primary_10_3389_fcvm_2023_1203130
crossref_primary_10_1016_j_jvssci_2023_100111
crossref_primary_10_1038_s41598_023_38880_6
crossref_primary_10_36660_abc_20200761
crossref_primary_10_1093_cvr_cvab132
crossref_primary_10_1186_s12885_022_09386_7
crossref_primary_10_3389_fnut_2022_867745
crossref_primary_10_1161_CIRCRESAHA_121_319066
crossref_primary_10_1016_j_apsb_2023_11_012
crossref_primary_10_5582_bst_2019_01272
crossref_primary_10_1038_s41419_023_06199_9
crossref_primary_10_1186_s11658_022_00346_4
crossref_primary_10_1161_CIRCRESAHA_119_315395
crossref_primary_10_1161_ATVBAHA_122_317492
crossref_primary_10_3390_proteomes10020014
crossref_primary_10_1016_j_vph_2023_107211
crossref_primary_10_1186_s12872_024_03778_2
crossref_primary_10_3390_ijms21103630
crossref_primary_10_1142_S0192415X23500301
crossref_primary_10_1002_edm2_351
crossref_primary_10_1088_1757_899X_729_1_012094
crossref_primary_10_1177_09636897221122999
crossref_primary_10_1093_jpp_rgab040
crossref_primary_10_1016_j_trsl_2023_05_001
crossref_primary_10_1016_j_toxlet_2023_06_009
crossref_primary_10_3390_bioengineering9090449
Cites_doi 10.1083/jcb.141.3.805
10.1126/scitranslmed.3008639
10.1093/cvr/cvt115
10.1083/jcb.200710038
10.1161/CIRCRESAHA.115.306361
10.1016/S1534-5807(02)00396-9
10.1016/j.jcin.2017.05.004
10.1002/(SICI)1096-9896(200002)190:3<300::AID-PATH596>3.0.CO;2-I
10.2147/vhrm.2007.3.2.191
10.1016/0735-1097(94)90502-9
10.1016/j.cell.2015.09.001
10.1161/ATVBAHA.110.221135
10.1161/01.RES.82.3.396
10.1016/j.carpath.2007.04.002
10.5551/jat.12.138
10.1128/MCB.00717-08
10.1074/jbc.M404307200
10.1126/scisignal.2004838
10.1073/pnas.1104499108
10.1016/j.cub.2009.07.069
10.1161/01.RES.84.6.647
10.1128/mcb.20.20.7550-7558.2000
10.1016/j.febslet.2008.06.004
10.1152/physrev.00041.2003
10.1002/jcp.22202
10.1128/MCB.21.5.1565-1572.2001
10.1016/j.molcel.2007.11.031
10.1161/01.CIR.95.3.669
10.1038/s41598-017-04317-0
10.1074/jbc.273.22.13713
10.1038/emboj.2009.178
10.1161/01.RES.0000261982.76892.09
10.1016/j.str.2016.06.003
10.1038/s41598-018-20930-z
10.1016/j.ceb.2006.08.011
10.1093/cvr/cvs115
10.21037/jtd.2017.06.36
10.1161/CIRCULATIONAHA.113.002887
10.4330/wjc.v9.i8.640
10.1038/nm1666
10.1083/jcb.201109067
10.1002/art.33482
10.1161/ATVBAHA.108.175455
10.1002/1529-0131(199804)41:4<623::AID-ART9>3.0.CO;2-6
10.1006/jmcc.2000.1238
10.1126/scisignal.2005482
10.1074/jbc.R000029200
10.1128/mcb.15.2.954
10.1038/nrm1549
10.1091/mbc.e02-08-0508
10.1586/erc.12.33
10.4161/cbt.9.10.11434
10.1158/0008-5472.CAN-17-0418
10.1165/rcmb.2012-0277OC
10.1074/jbc.M110.129999
10.1016/j.cardiores.2005.08.020
10.1038/nrm3629
10.2174/1381612824666171227221305
10.1074/jbc.M411585200
10.1038/s41467-018-02938-1
10.1016/j.celrep.2015.02.023
10.1016/j.bbadis.2014.07.008
ContentType Journal Article
Copyright 2019 American Heart Association, Inc.
Copyright_xml – notice: 2019 American Heart Association, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1161/CIRCRESAHA.118.314344
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 166
ExternalDocumentID 10_1161_CIRCRESAHA_118_314344
31096851
00003012-201907050-00003
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA102310
– fundername: NHLBI NIH HHS
  grantid: R01 HL136432
– fundername: NCI NIH HHS
  grantid: R01 CA190688
– fundername: NCRR NIH HHS
  grantid: S10 RR027535
GroupedDBID -
.Z2
01R
0R
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O
7O~
AAAXR
AAMOA
AAMTA
AAPBV
AARTV
AAXQO
ABBUW
ABFLS
ABOCM
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFS
ACPRK
ACWDW
ACWRI
ACXNZ
ADACO
ADBBV
AENEX
AFUWQ
AHMBA
AHULI
AHVBC
AIJEX
AJIOK
ALMA_UNASSIGNED_HOLDINGS
AMJPA
ASCII
AWKKM
BAWUL
BOYCO
BQLVK
C45
CS3
DIK
DU5
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FL-
FRP
GX1
H0
H0~
HZ
IKYAY
IN
IN~
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
LI0
N9A
N~7
N~B
O0-
O9-
OAG
OAH
OB2
ODA
OHASI
OK1
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQEST
PQQKQ
RAH
RHF
RIG
RLZ
RSW
S4R
S4S
UPT
V2I
WH7
WOQ
WOW
X
X3V
X3W
Z2
ZA5
---
-~X
.-D
.3C
0R~
18M
AAAAV
AAGIX
AAHPQ
AAIQE
AAQKA
AASCR
AASOK
ABASU
ABDIG
ABJNI
ABQRW
ABVCZ
ACGFO
ACILI
ACLDA
ACNWC
ACXJB
ADGGA
ADHPY
AE3
AE6
AFDTB
AGINI
AHOMT
AHQNM
AINUH
AJNWD
AJZMW
AKULP
ALMTX
AMKUR
AMNEI
AOHHW
CGR
CUY
CVF
DIWNM
ECM
EEVPB
EIF
ERAAH
FCALG
GNXGY
GQDEL
HLJTE
HZ~
IKREB
IPNFZ
NPM
T8P
TEORI
TR2
TSPGW
VVN
W3M
W8F
YFH
YOC
ZFV
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c5223-759e699374c81863225e6b56e98e06c223bf6b6b06a943a1c9600173ae8b76f03
ISSN 0009-7330
IngestDate Tue Sep 17 21:01:23 EDT 2024
Sat Oct 26 01:41:22 EDT 2024
Fri Aug 23 03:52:09 EDT 2024
Wed Oct 16 00:46:15 EDT 2024
Thu Aug 13 19:47:44 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords atherosclerosis
FAK
smooth muscle cell
hyperplasia
GATA4
cyclin D1
vascular remodeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5223-759e699374c81863225e6b56e98e06c223bf6b6b06a943a1c9600173ae8b76f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
K.J., J-H.K., and J.M.M equally contributed to this manuscript.
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.118.314344
PMID 31096851
PQID 2232075710
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6702425
proquest_miscellaneous_2232075710
crossref_primary_10_1161_CIRCRESAHA_118_314344
pubmed_primary_31096851
wolterskluwer_health_00003012-201907050-00003
ProviderPackageCode L-C
C45
7O~
AARTV
OLH
ASCII
OLG
AAMOA
ODA
ABZAD
ABBUW
JK3
JK8
H0~
1J1
OLV
OLU
OLW
OLZ
OLY
F2K
F2M
F2L
F2N
OHASI
AHVBC
FL-
KMI
K8S
OVLEI
AJIOK
OPUJH
V2I
S4R
S4S
4Q1
OAG
4Q2
OVDNE
4Q3
AMJPA
OAH
OVD
71W
AHULI
OB2
ACEWG
.Z2
N~7
IKYAY
OVIDH
AWKKM
40H
N~B
X3V
X3W
ACDDN
ACWRI
BOYCO
AIJEX
AAXQO
AAMTA
AAAXR
E.X
OWW
OWY
01R
ACXNZ
OL1
ABXVJ
IN~
KD2
OXXIT
77Y
ACWDW
PublicationCentury 2000
PublicationDate 2019-July-5
PublicationDateYYYYMMDD 2019-07-05
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July-5
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2019
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References 31268859 - Circ Res. 2019 Jul 5;125(2):167-169
e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_46_2
e_1_3_5_48_2
e_1_3_5_29_2
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_42_2
e_1_3_5_63_2
Louis SF (e_1_3_5_4_2) 2010; 15
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_45_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_57_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_51_2
e_1_3_5_53_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_57_2
  doi: 10.1083/jcb.141.3.805
– ident: e_1_3_5_58_2
  doi: 10.1126/scitranslmed.3008639
– ident: e_1_3_5_9_2
  doi: 10.1093/cvr/cvt115
– ident: e_1_3_5_47_2
  doi: 10.1083/jcb.200710038
– ident: e_1_3_5_2_2
  doi: 10.1161/CIRCRESAHA.115.306361
– ident: e_1_3_5_45_2
  doi: 10.1016/S1534-5807(02)00396-9
– ident: e_1_3_5_12_2
  doi: 10.1016/j.jcin.2017.05.004
– ident: e_1_3_5_3_2
  doi: 10.1002/(SICI)1096-9896(200002)190:3<300::AID-PATH596>3.0.CO;2-I
– ident: e_1_3_5_42_2
  doi: 10.2147/vhrm.2007.3.2.191
– ident: e_1_3_5_15_2
  doi: 10.1016/0735-1097(94)90502-9
– ident: e_1_3_5_34_2
  doi: 10.1016/j.cell.2015.09.001
– ident: e_1_3_5_38_2
  doi: 10.1161/ATVBAHA.110.221135
– ident: e_1_3_5_26_2
  doi: 10.1161/01.RES.82.3.396
– ident: e_1_3_5_17_2
  doi: 10.1016/j.carpath.2007.04.002
– ident: e_1_3_5_50_2
  doi: 10.5551/jat.12.138
– ident: e_1_3_5_53_2
  doi: 10.1128/MCB.00717-08
– ident: e_1_3_5_24_2
  doi: 10.1074/jbc.M404307200
– ident: e_1_3_5_21_2
  doi: 10.1126/scisignal.2004838
– ident: e_1_3_5_56_2
  doi: 10.1073/pnas.1104499108
– ident: e_1_3_5_23_2
  doi: 10.1016/j.cub.2009.07.069
– ident: e_1_3_5_59_2
  doi: 10.1161/01.RES.84.6.647
– ident: e_1_3_5_44_2
  doi: 10.1128/mcb.20.20.7550-7558.2000
– ident: e_1_3_5_29_2
  doi: 10.1016/j.febslet.2008.06.004
– ident: e_1_3_5_37_2
  doi: 10.1152/physrev.00041.2003
– ident: e_1_3_5_18_2
  doi: 10.1002/jcp.22202
– ident: e_1_3_5_19_2
  doi: 10.1128/MCB.21.5.1565-1572.2001
– ident: e_1_3_5_28_2
  doi: 10.1016/j.molcel.2007.11.031
– ident: e_1_3_5_55_2
  doi: 10.1161/01.CIR.95.3.669
– ident: e_1_3_5_63_2
  doi: 10.1038/s41598-017-04317-0
– ident: e_1_3_5_40_2
  doi: 10.1074/jbc.273.22.13713
– ident: e_1_3_5_31_2
  doi: 10.1038/emboj.2009.178
– ident: e_1_3_5_7_2
  doi: 10.1161/01.RES.0000261982.76892.09
– ident: e_1_3_5_32_2
  doi: 10.1016/j.str.2016.06.003
– ident: e_1_3_5_35_2
  doi: 10.1038/s41598-018-20930-z
– ident: e_1_3_5_14_2
  doi: 10.1016/j.ceb.2006.08.011
– volume: 15
  start-page: e75
  year: 2010
  ident: e_1_3_5_4_2
  article-title: Vascular smooth muscle cell motility: from migration to invasion.
  publication-title: Exp Clin Cardiol
  contributor:
    fullname: Louis SF
– ident: e_1_3_5_5_2
  doi: 10.1093/cvr/cvs115
– ident: e_1_3_5_10_2
  doi: 10.21037/jtd.2017.06.36
– ident: e_1_3_5_49_2
  doi: 10.1161/CIRCULATIONAHA.113.002887
– ident: e_1_3_5_11_2
  doi: 10.4330/wjc.v9.i8.640
– ident: e_1_3_5_46_2
  doi: 10.1038/nm1666
– ident: e_1_3_5_30_2
  doi: 10.1083/jcb.201109067
– ident: e_1_3_5_61_2
  doi: 10.1002/art.33482
– ident: e_1_3_5_20_2
  doi: 10.1161/ATVBAHA.108.175455
– ident: e_1_3_5_54_2
  doi: 10.1002/1529-0131(199804)41:4<623::AID-ART9>3.0.CO;2-6
– ident: e_1_3_5_48_2
  doi: 10.1006/jmcc.2000.1238
– ident: e_1_3_5_43_2
  doi: 10.1126/scisignal.2005482
– ident: e_1_3_5_39_2
  doi: 10.1074/jbc.R000029200
– ident: e_1_3_5_27_2
  doi: 10.1128/mcb.15.2.954
– ident: e_1_3_5_13_2
  doi: 10.1038/nrm1549
– ident: e_1_3_5_60_2
  doi: 10.1091/mbc.e02-08-0508
– ident: e_1_3_5_6_2
  doi: 10.1586/erc.12.33
– ident: e_1_3_5_64_2
  doi: 10.4161/cbt.9.10.11434
– ident: e_1_3_5_33_2
  doi: 10.1158/0008-5472.CAN-17-0418
– ident: e_1_3_5_62_2
  doi: 10.1165/rcmb.2012-0277OC
– ident: e_1_3_5_51_2
  doi: 10.1074/jbc.M110.129999
– ident: e_1_3_5_25_2
  doi: 10.1016/j.cardiores.2005.08.020
– ident: e_1_3_5_52_2
  doi: 10.1038/nrm3629
– ident: e_1_3_5_8_2
  doi: 10.2174/1381612824666171227221305
– ident: e_1_3_5_41_2
  doi: 10.1074/jbc.M411585200
– ident: e_1_3_5_36_2
  doi: 10.1038/s41467-018-02938-1
– ident: e_1_3_5_22_2
  doi: 10.1016/j.celrep.2015.02.023
– ident: e_1_3_5_16_2
  doi: 10.1016/j.bbadis.2014.07.008
SSID ssj0014329
Score 2.55826
Snippet RATIONALE:Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as...
Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as...
Rationale: Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as...
RATIONALENeointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as...
SourceID pubmedcentral
proquest
crossref
pubmed
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 152
SubjectTerms Active Transport, Cell Nucleus
Animals
Cell Nucleus - metabolism
Cell Proliferation
Cells, Cultured
Cyclin D1 - genetics
Cyclin D1 - metabolism
Focal Adhesion Kinase 1 - antagonists & inhibitors
Focal Adhesion Kinase 1 - metabolism
GATA4 Transcription Factor - metabolism
Hyperplasia - metabolism
Mice
Mice, Inbred C57BL
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - physiology
Tunica Intima - metabolism
Tunica Intima - pathology
Title Nuclear Focal Adhesion Kinase Controls Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia Through GATA4-Mediated Cyclin D1 Transcription
URI http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-201907050-00003
https://www.ncbi.nlm.nih.gov/pubmed/31096851
https://search.proquest.com/docview/2232075710
https://pubmed.ncbi.nlm.nih.gov/PMC6702425
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6lqYSQEOImXFok3iyX-FrbjyYHgTYBURf1zfKxJhGqXcW1UP4Kv5aZ3bUdKzyUB16iZOOsrMznuXbmG0LexbaTpAlEqj5zx7qd-7EeOzHXnSz3fNvInFzMT1mcu6tLbzqzZ4NBM0GsW_uvkoY1kDV2zv6DtNtNYQHeg8zhFaQOr7eS-woJiuOtNi_Fv5-tOebDtNNNAfYKG_ywMr3SvjcVqOdXJQhLW9YV_E6biFQeTvLJucIGZtZXvNwUN5srZCKGwHV7LZovtVAN-fkYhIGtL8XUD8wY77DfUpsakjq90Uv7fvBks03V4DBN8Q21eenPXJUJn-7qddkVCah-7uKHvtjVxSFSRMFvl939qqrAFzvYryrL_fyGaKnSx_KgmyudbNq67chJLa3Slu3SCp3mngo2JCOusuaGnOlyaCgYGorJp28TAHqwCGDFO7HAeZRslH1i7tWXaH5xdhaFs8vwiByboNOcITkO5tPwQ3tkZVumr1rEYPP3f9267_wcRDSHhbn3fpVYNFH9FD0Te55P-IDcVyELDSTWHpIBLx6RO0tVlPGY_FaQowJytIEclZCjDeRoAzkqIUcl5ChCjvYgRwFytIMc3YMcVZCjfchRCTk6NWgPck_IxXwWTha6GvmhpxAIWLrr-Jyhy2ynSLWI1oazxGHc9_iYpXBJkrOEgXKJfduKjdRHh921Yu4lLsvH1lMyLMqCPyc0Y1nmJ-Ch5jEe77PET7jnZl5uZllqGdmInDSyiK4ls0skImJmRJ3w4LMXSeGNyNtGYhHoYDxYiwte1lUEt2WC6w3O-og8kxJst0TmXQZhzYi4Pdm2FyC_e_-bYrMWPO-gPTEhMCJ6DwWR7JDGshHMZ5g6PjVguR1BETG2XtziPl-Su92z9ooMb7Y1f02Oqqx-o3D9B9jF1gI
link.rule.ids 230,315,782,786,887,27935,27936,64552,64572,65347,65367
linkProvider Ovid
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Jj5swFLbaGamtVHVf6OpKFTemIYDBhxwoSSbTmaBRodsJGWw0UWcgCkmr_pX-2r5nIG006qGXnsCyQSyf_b7ntxHyWrheXuSgqXLmDyy35MISnlCWJ8uAu7b0Sl0_ZZb48edgPME0Ob2vKgafNcsDPOhlGk-wHA7qhenoXWLGk0_JqDKjJBp9MU_Dw4nepkYnCXM8qr-VazOMtfsVAHcIEAB55w88HTyNOUH3mecw0NH2w-k4fbs1N7jOkPcl13zQ8LtQH2BDb6Kj9xF8i3AWQjsAFdd1XHdXiF1ippcdLG9-r9H43XzVvu9_SLDp7f_07nfIrY7i0rDF5F1yRVX3yLV5Z8S_T37GmENZrOgU5SgN5ZnCLTt6vKhApNKodZ5v6MfOSZYmFzXgic43DVxHI3V-Tk-x2FCpWvhSUUkaq3pRrRcXcMcZ6NarpY4PpWlbh4gehmnoWnNdmERJGv3AkFA6tqkW1v3S-YB8mE7SaGZ1JSKsAoijY_keVwwplltgaj5cnRTLPaZ4oAasgCF5yXIGYBTcdYRdcCR4viNUkPusHDgPyV5VV-oxoZJJyXNgNKVAczDLea4CXwblUMrCsaVBDvp_ni3bTCCZ1qCYnf0GCbSDrAWJQV71yMhgzqIhRlSq3jQZPNYQqBqQO4M8apGyvSVmamVAgw3i72BoOwDzge_2VIsznRccZhsqkAaxdtCWtRG12d-Q8eQfx78k12fp_CQ7OYqPn5Ib2Kv9l71nZG-92qjn5GojNy-6OfYLbaswRw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1bb5swFLa2VKomTbtvza6eNPFGF4Ix8MADIkmTtUHRkt2ekMFGjdpCFJJN_Sv7tTvHQLao2sNe9gSWDULms893fG6EvBPMSbMUNFWfuz2T5b4whSOU6cjc85klnVzXTxnP3firNxhimpzWgo_BZ9XqGC96m8YbLIeDeuEi-DA3onkUfDPi4Zd5EBuz8GSoj6nRScKYDUbBtTEIyu_5xghj7YQF8O0DEEDquT1Hh1BjZtADzhyn3yEHYTQ5m-yMDszu-23hNRf0_CbgBzjR-2jyMYIZCcchtD1QdJnN2L4ou8FPb7pZ3v1Rogm8utAe8H_IsdH9_zoDD8i9hu7SsMbnQ3JLFY_I4bQx6D8mP2PMpyzWdIQylYbyXOHxHT1dFiBeaVQ70lf0c-MwS-dXJWCLTrcVPEcjdXlJZ1h4KFc1lKkoJI1VuSw2yyt44xj07PVKx4rSRV2TiJ6Ei5CZU12kREkaXWN4KB1YVAvudht9Qj6NhotobDblIswMSKRtuo6vONItlmGaPtypFE8drnxP9XgGQ9KcpxyAKXxmCyvzkey5tlBe6vK8Zz8lnaIs1BGhkkvpp8BucoGmYZ76qfJc6eV9KTPbkl1y3P75ZFVnBUm0NsWt5DdUoO0lNVS65G2LjwTWLxplRKHKbZXAZ_WBtgHR65JnNV52r8SsrRwocZe4e0jaDcDc4Ps9xfJc5wiHlYfKZJeYe5hL6uja5G_IeP6P49-QQwBdcjaJT1-QO9ipXZmdl6SzWW_VK3K7ktvXzUL7BWwTMyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+Focal+Adhesion+Kinase+Controls+Vascular+Smooth+Muscle+Cell+Proliferation+and+Neointimal+Hyperplasia+Through+GATA4-Mediated+Cyclin+D1+Transcription&rft.jtitle=Circulation+research&rft.au=Jeong%2C+Kyuho&rft.au=Kim%2C+Jung-Hyun&rft.au=Murphy%2C+James+M&rft.au=Park%2C+Hyeonsoo&rft.date=2019-07-05&rft.eissn=1524-4571&rft.volume=125&rft.issue=2&rft.spage=152&rft.epage=166&rft_id=info:doi/10.1161%2FCIRCRESAHA.118.314344&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon