Air-sea interactions during an Arctic storm

The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres Vol. 117; no. D15
Main Authors: Long, Zhenxia, Perrie, Will
Format: Journal Article
Language:English
Published: Washington, DC Blackwell Publishing Ltd 16-08-2012
American Geophysical Union
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm. Key Points Decrease of Beaufort ice cover increases the sea surface temperature by ~6C Atmospheric responses to warmer SSTs are mainly limited to boundary layer Enhanced storm‐generated surface winds, by as much as ~4 m/s
AbstractList The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm. Key Points Decrease of Beaufort ice cover increases the sea surface temperature by ~6C Atmospheric responses to warmer SSTs are mainly limited to boundary layer Enhanced storm‐generated surface winds, by as much as ~4 m/s
The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm. Decrease of Beaufort ice cover increases the sea surface temperature by ~6C Atmospheric responses to warmer SSTs are mainly limited to boundary layer Enhanced storm‐generated surface winds, by as much as ~4 m/s
The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere-ice-ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid-levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as 4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm-generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.
Author Perrie, Will
Long, Zhenxia
Author_xml – sequence: 1
  givenname: Zhenxia
  surname: Long
  fullname: Long, Zhenxia
  organization: Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
– sequence: 2
  givenname: Will
  surname: Perrie
  fullname: Perrie, Will
  email: perriew@dfo-mpo.gc.ca, (perriew@dfo-mpo.gc.ca
  organization: Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363898$$DView record in Pascal Francis
BookMark eNp9kE9Lw0AQxRdRsNbe_AAB8aTRmdkkmxxLq9VS_1LpcdkkG0ltk7qbov32bkkpnpzLwPB77zHvhB1WdaUZO0O4RqDkhgBxPASMkjg8YB3CMPKJgA5ZBzCIfSASx6xn7RzcBGEUAHbYZb80vtXKK6tGG5U1ZV1ZL1-bsvrwVOX1jTtlnm1qszxlR4VaWN3b7S57v7udDu79yfPoYdCf-FlIxP2oUIAugCClMM0Jcp4iJhriJBMiKECD4ilAHggBYRYIAkE81QVHKEJMeJedt74rU3-ttW3kvF6bykVKBM5RgMDYUVctlZnaWqMLuTLlUpmNg-S2Efm3EYdf7EyVzdSiMKrKSrvXUMQjHidbW95y3-VCb_71lOPR2xDdS9yp_FZV2kb_7FXKfMpIcBHK2dNIvs6m8PhCJIf8F2JPe5g
CitedBy_id crossref_primary_10_1016_j_ocemod_2013_05_006
crossref_primary_10_3389_fmars_2023_1065006
crossref_primary_10_1016_j_atmosres_2020_105183
crossref_primary_10_1002_2014GL061047
crossref_primary_10_1002_jgrd_50584
crossref_primary_10_1175_JCLI_D_17_0296_1
crossref_primary_10_1002_2016GL071748
crossref_primary_10_1007_s00382_014_2229_y
crossref_primary_10_1175_JCLI_D_16_0415_1
crossref_primary_10_1080_07055900_2015_1029869
crossref_primary_10_1111_1365_2478_13300
crossref_primary_10_1016_j_oceano_2017_06_005
crossref_primary_10_1038_srep10295
crossref_primary_10_1080_07055900_2017_1369390
crossref_primary_10_1002_grl_50349
crossref_primary_10_1002_lno_10307
crossref_primary_10_1029_2020GB006796
crossref_primary_10_1002_joc_4094
crossref_primary_10_3390_atmos9020041
crossref_primary_10_5194_gmd_9_2335_2016
crossref_primary_10_1080_07055900_2015_1086295
Cites_doi 10.1029/2001JC001248
10.1175/2008JCLI2521.1
10.1029/2009GL039810
10.1175/1520‐0493(1999)127<0341:ASISLR>2.0.CO;2
10.1029/JC080i033p04501
10.1007/s00382‐007‐0343‐9
10.1029/JC089iC06p10615
10.1029/2002GL015847
10.4095/194148
10.1002/joc.2039
10.1175/2011JCLI4121.1
10.1175/1520‐0493(1991)119<0457:EOSEFD>2.0.CO;2
10.1016/j.ecss.2010.06.010
10.1111/j.1600‐0870.2010.00441.x
10.1016/0079‐6611(88)90049‐3
10.1007/s00382‐003‐0342‐4
10.1007/s00382‐003‐0360‐2
10.1029/1999JC000110
10.1111/j.1600‐0870.2008.00314.x
10.1029/2003GL018571
10.14430/arctic2631
10.1029/2007GL031972
10.1175/1520‐0426(1994)011<1126:TPGCOS>2.0.CO;2
10.1029/97JC00738
10.1029/2007GL029703
10.1029/2009GL038824
10.1029/2006JD007693
10.1175/JAS3436.1
10.1175/1520‐0442(2004)017<2300:CAIVOA>2.0.CO;2
10.1034/j.1600-0870.2003.201267.x
10.1175/1520‐0493(1980)108<1943:MAVTSI>2.0.CO;2
10.1175/2009JCLI3053.1
10.3137/ao.400205
10.1029/94JC02206
10.1029/RG020i004p00851
10.1175/2008JCLI2366.1
10.1029/JC094iC08p10937
10.1080/07055900.1984.9649181
10.1007/s00382‐009‐0731‐4
10.1038/nature09051
10.1007/s00367‐004‐0191‐0
10.1175/1520‐0442(2001)014<1550:TAFZAS>2.0.CO;2
10.1029/2011JD015847
10.1029/2006GL028024
10.1029/2009GL037525
10.1029/JC094iC10p14485
10.1175/1520‐0493(1994)122<1306:TCRDAS>2.0.CO;2
10.1175/1520‐0493(2004)132<2432:ACDOCI>2.0.CO;2
10.1175/JCLI3767.1
10.1175/1520‐0485(1979)009<0815:ADTSIM>2.0.CO;2
10.1029/2008GL034005
10.1029/2009GL037820
10.1029/2008JD010869
10.1038/nature10705
10.1029/2009GL041291
10.1175/2007JCLI1810.1
10.1175/1520‐0442(1992)005<1013:TCCCSG>2.0.CO;2
10.1175/1520‐0442(1988)001<1276:SAITAB>2.0.CO;2
10.1029/2001JD001191
10.1007/s00382‐007‐0286‐1
10.1175/1520‐0469(1990)047<2784:AODEPM>2.0.CO;2
10.1175/1520‐0485(1977)007<0482:OEIOTO>2.0.CO;2
10.1029/1999JC900264
10.1175/JCLI‐D‐11‐00113.1
10.1029/2009JD011884
10.1029/2003JC001940
ContentType Journal Article
Copyright Published in 2012 by the American Geophysical Union
2015 INIST-CNRS
Copyright_xml – notice: Published in 2012 by the American Geophysical Union
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
3V.
7TG
7UA
7XB
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOI 10.1029/2011JD016985
DatabaseName Istex
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest_Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-8996
EndPage n/a
ExternalDocumentID 2734343051
10_1029_2011JD016985
26363898
JGRD17743
ark_67375_WNG_QWT0MP22_D
Genre article
Feature
GeographicLocations Russian Federation
Eurasia
Arctic region
Siberia
Arctic Ocean
polar regions
Beaufort Sea
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
08R
ALUQN
IQODW
AAYXX
CITATION
05W
0R~
33P
3V.
50Y
52M
5VS
702
7TG
7UA
7XB
8-1
8FD
8FG
8FK
A00
AAESR
AAIHA
AASGY
AAZKR
ABJCF
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AFRAH
AIURR
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
K6-
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
PYCSY
Q9U
R.K
SUPJJ
WBKPD
WYJ
ID FETCH-LOGICAL-c5223-6fa0104520b25bd20d3b119e089c774f0e0a3b00d47705c4720723bef310f5193
ISSN 0148-0227
2169-897X
IngestDate Fri Nov 08 03:49:44 EST 2024
Fri Nov 22 01:13:41 EST 2024
Sun Oct 22 16:06:17 EDT 2023
Sat Aug 24 01:02:06 EDT 2024
Wed Oct 30 10:01:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue D15
Keywords atmosphere
Energy transport
boundary layer
mixing
simulation
Wind velocity
Summer
troposphere
Atmospheric temperature
sea ice
heat flux
sensible heat
kinetic energy
concentration
Sea surface temperature
ocean-atmosphere interaction
Sea ice ocean model
turbulence
Ice cover
trajectory
intensity
warming
heat transfer
storms
Surface wind
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5223-6fa0104520b25bd20d3b119e089c774f0e0a3b00d47705c4720723bef310f5193
Notes ark:/67375/WNG-QWT0MP22-D
ArticleID:2011JD016985
istex:0F5BB83CC7124D9A7667F7959FA694215EDBB11E
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011JD016985
PQID 1033170718
PQPubID 54657
PageCount 20
ParticipantIDs proquest_journals_1033170718
crossref_primary_10_1029_2011JD016985
pascalfrancis_primary_26363898
wiley_primary_10_1029_2011JD016985_JGRD17743
istex_primary_ark_67375_WNG_QWT0MP22_D
PublicationCentury 2000
PublicationDate 16 August 2012
PublicationDateYYYYMMDD 2012-08-16
PublicationDate_xml – month: 08
  year: 2012
  text: 16 August 2012
  day: 16
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Atmospheres
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Simmonds, I., and K. Keay (2009), Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979-2008, Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.
Atkinson, D. E. (2005), Observed storminess patterns and trends in the circum-Arctic coastal regime, Geo Mar. Lett., 25, 98-109, doi:10.1007/s00367-004-0191-0.
Serreze, M. C., et al. (2001), The Arctic frontal zone as seen in the NCEP-NCAR reanalysis, J. Clim., 14, 1550-1567, doi:10.1175/1520-0442(2001)014<1550:TAFZAS>2.0.CO;2.
Murray, R. J., and I. J. Simmonds (1995), Responses of climate and cyclones to reductions in Arctic winter sea ice, J. Geophys. Res., 100, 4791-4806, doi:10.1029/94JC02206.
Yao, T., C. L. Tang, and I. K. Peterson (2000), Modeling the seasonal variation of sea ice in the Labrador Sea with a coupled multicategory ice model and the Princeton ocean model, J. Geophys. Res., 105, 1153-1165, doi:10.1029/1999JC900264.
Hudak, D. R., and J. M. C. Young (2002), Storm climatology of the southern Beaufort Sea, Atmos. Ocean, 40, 145-158, doi:10.3137/ao.400205.
Serreze, M. C., and R. G. Barry (1988), Synoptic activity in the Arctic Basin, 1979-1985, J. Clim., 1, 1276-1295, doi:10.1175/1520-0442(1988)001<1276:SAITAB>2.0.CO;2.
Holland, M. M., C. M. Bitz, and B. Tremblay (2006), Future abrupt reductions in the summer Arctic sea ice, Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024.
Smith, S. D., and F. W. Dobson (1984), The heat budget at ocean weather station Bravo, Atmos. Ocean, 22, 1-22, doi:10.1080/07055900.1984.9649181.
McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare (1992), The Canadian Climate Centre Second Generation General Circulation Model and its equilibrium climate, J. Clim., 5, 1013-1044, doi:10.1175/1520-0442(1992)005<1013:TCCCSG>2.0.CO;2.
Comiso, J. C. (2012), Large decadal decline of the Arctic multiyear ice cover, J. Clim., 25, 1176-1193, doi:10.1175/JCLI-D-11-00113.1.
Gachon, P., et al. (2003), The effects of interactions between surface forcings in the development of a model-simulated polar low in Hudson Bay, Tellus, Ser. A, 55, 6-87.
Mesquita, M. D. S., D. E. Atkinson, I. Simmonds, K. Keay, and J. Gottschalck (2009), New perspectives on the synoptic development of the severe October 1992 Nome storm, Geophys. Res. Lett., 36, L13808, doi:10.1029/2009GL038824.
Dickson, R. R., J. Meincke, S.-A. Malmberg, and A. J. Lee (1988), The "Great Salinity Anomaly" in the northern North Atlantic 1968-1982, Prog. Oceanogr., 20, 103-151, doi:10.1016/0079-6611(88)90049-3.
Hibler, W. D. (1980), Modeling a variable thickness sea ice cover, Mon. Weather Rev., 108, 1943-1973, doi:10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.
Caya, D., and R. Laprise (1999), A semi-Lagrangian semi-implicit regional climate model: The Canadian RCM, Mon. Weather Rev., 127, 341-362, doi:10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2.
Yang, J., J. Comiso, D. Walsh, R. Krishfield, and S. Honjo (2004), Strom-driven mixing and potential impact on the Arctic Ocean, J. Geophys. Res., 109, C04008, doi:10.1029/2001JC001248.
McPhee, M. G., A. Proshutinsky, J. H. Morison, M. Steele, and M. B. Alkire (2009), Rapid change in freshwater content of the Arctic Ocean, Geophys. Res. Lett., 36, L10602, doi:10.1029/2009GL037525.
Perrie, W., E. L. Andreas, W. Zhang, W. Li, J. Gyakum, and R. McTaggart-Cowan (2005), Impact of sea spray on rapidly intensifying cyclones at midlatitudes, J. Atmos. Sci., 62, 1867-1883, doi:10.1175/JAS3436.1.
Zhang, X. (2010), Sensitivity of arctic summer sea ice coverage to global warming forcing: Towards reducing uncertainty in arctic climate change projections, Tellus, Ser. A, 62, 220-227, doi:10.1111/j.1600-0870.2010.00441.x.
Long, Z., W. Perrie, C. L. Tang, E. Dunla, and J. Wang (2012), Simulated interannual variations of fresh water content and sea surface height in the Beaufort Sea, J. Clim., 25, 1079-1095, doi:10.1175/2011JCLI4121.1.
Proshutinsky, A., and M. A. Johnson (1997), Two circulation regimes of the wind-driven Arctic ocean, J. Geophys. Res., 102, 12,493-12,514, doi:10.1029/97JC00738.
Laprise, R., D. Caya, A. Frigon, and D. Paquin (2003), Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America, Clim. Dyn., 21, 405-421, doi:10.1007/s00382-003-0342-4.
Kain, J. S., and J. M. Fritsch (1990), A one-dimensional entraining/detraining plume model and application in convective parameterization, J. Atmos. Sci., 47, 2784-2802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
Joly, S., S. Senneville, D. Caya, and F. J. Saucier (2011), Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing, Clim. Dyn., 36, 1835-1849, doi:10.1007/s00382-009-0731-4.
Zhang, J., R. Lindsay, M. Steele, and A. Schweiger (2008), What drove the dramatic retreat of Arctic sea ice during summer 2007?, Geophys. Res. Lett., 35, L11505, doi:10.1029/2008GL034005.
Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony (1975), The thickness of distribution of sea ice, J. Geophys. Res., 80, 4501-4513, doi:10.1029/JC080i033p04501.
Caya, D., and S. Biner (2004), Internal variability of RCM simulations over an annual cycle, Clim. Dyn., 22, 33-46, doi:10.1007/s00382-003-0360-2.
Jakobson, E., and T. Vihma (2010), Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis, Int. J. Climatol., 30, 2175-2194, doi:10.1002/joc.2039.
Screen, J. A., and I. Simmonds (2010), The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334-1337, doi:10.1038/nature09051.
Reed, R. K. (1977), On estimating insolation over the ocean, J. Phys. Oceanogr., 7, 482-485, doi:10.1175/1520-0485(1977)007<0482:OEIOTO>2.0.CO;2.
Mellor, G. L., T. Ezer, and L. Y. Oey (1994), The pressure gradient conundrum of sigma coordinate ocean models, J. Atmos. Oceanic Technol., 11, 1126-1134, doi:10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2.
Deser, C., R. Tomas, M. Alexander, and D. Lawrence (2010), The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century, J. Clim., 23, 333-351, doi:10.1175/2009JCLI3053.1.
Ren, X., W. Perrie, Z. Long, and J. Gyakum (2004), Atmosphere-ocean coupled dynamics of cyclones in the midlatitudes, Mon. Weather Rev., 132, 2432-2451, doi:10.1175/1520-0493(2004)132<2432:ACDOCI>2.0.CO;2.
Simmonds, I., C. Burke, and K. Keay (2008), Arctic climate change as manifest in cyclone behavior, J. Clim., 21, 5777-5796, doi:10.1175/2008JCLI2366.1.
Wang, M., and J. E. Overland (2009), A sea ice free summer Arctic within 30 years?, Geophys. Res. Lett., 36, L07502, doi:10.1029/2009GL037820.
Higgins, M. E., and J. J. Cassano (2009), Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation and temperature, J. Geophys. Res., 114, D16107, doi:10.1029/2009JD011884.
Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern (2009), Arctic sea ice retreat in 2007 follows thinning trend, J. Clim., 22, 165-176, doi:10.1175/2008JCLI2521.1.
Mellor, G. L., and L. H. Kantha (1989), An ice-ocean coupled model, J. Geophys. Res., 94, 10,937-10,954, doi:10.1029/JC094iC08p10937.
Sorteberg, A., and J. E. Walsh (2008), Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic, Tellus, Ser. A, 60, 570-586, doi:10.1111/j.1600-0870.2008.00314.x.
Morison, J., et al. (2012), Changing Arctic Ocean freshwater pathways, Nature, 481(7379), 66-70, doi:10.1038/nature10705.
Proshutinsky, A., R. H. Bourke, and F. A. McLaughlin (2002), The role of the Beaufort Gyre in Arctic climatic variability: Seasonal to decadal climate scales, Geophys. Res. Lett., 29(23), 2100, doi:10.1029/2002GL015847.
Hibler, W. D. (1979), A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815-846, doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.
Rainville, L., and R. A. Woodgate (2009), Observations of internal wave generation in the seasonally ice-free Arctic, Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291.
Wyser, K., et al. (2008), An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional models, Clim. Dyn., 30, 203-223, doi:10.1007/s00382-007-0286-1.
Häkkinen, S., and A. Proshutinsky (2004), Freshwater content variability in the Arctic Ocean, J. Geophys. Res., 109, C03051, doi:10.1029/2003JC001940.
Holt, B., and S. Martin (2001), The effect of a storm on the 1992 summer sea ice cover of the Beaufort, Chukchi, and East Siberian Seas, J. Geophys. Res., 106, 1017-1032, doi:10.1029/1999JC000110.
Groves, D. G., and J. A. Francis (2002), Moisture budget of the Arctic atmosphere from TOVS satellite data, J. Geophys. Res., 107(D19), 4391, doi:10.1029/2001JD001191.
Zhang, X., and J. E. Walsh (2006), Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations, J. Clim., 19, 1730-1747, doi:10.1175/JCLI3767.1.
Shine, K. P., and R. G. Crane (1984), The sensitivity of a one-dimensional thermodynamic sea ice model to changes in cloudiness, J. Geophys. Res., 89(C6), 10,615-10,622, doi:10.1029/JC089iC06p10615.
Køltzow, M. (2007), The effect of a new snow and sea ice albedo scheme on regional climate model simulations, J. Geophys. Res., 112, D07110, doi:10.1029/2006JD007693.
Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze (2007), Arctic sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.
Serreze, M. C., and A. P. Barrett (2008), The summer cyclone maximum over the central Arctic Ocean, J. Clim., 21, 1048-1065, doi:10.1175/2007JCLI1810.1.
Qian, M., et al. (2008), The influence of NAO and the Hudson Bay sea-ice on the climate of eastern Canada, Clim. Dyn., 31, 169-182, doi:10.1007/s00382-007-0343-9.
Mellor, G. L., and T. Yamada (1982), Development of a turbulent closure model for geophysical fluid problems, Rev. Geophys., 20, 851-875, doi:10.1029/RG020i004p00851.
Perrie, W., X. Ren, W. Zhang, and Z. Long (2004), Simulation o
2011; 116
2004; 22
2012; 481
2006; 33
1984; 22
2010; 464
2005; 62
2008; 35
2008; 30
2008; 31
1999; 127
1979; 32
2007; 34
2009; 114
2010; 62
2003; 55
2001; 106
2005; 25
1991; 119
2010; 23
1997; 102
2004; 132
2004; 31
1980; 108
1990; 47
2002; 40
1982; 20
2002; 107
2008; 21
2012; 25
2001; 14
2008; 60
2010; 30
1979; 9
1975; 80
1992; 5
2000; Rep. WMO/TD‐987
2009; 22
1984; 89
2008
2006; 19
2005
1994
2011; 36
2004; 109
2010; 89
1988; 1
2007; 112
2009; 36
1989; 94
1994; 122
2002; 29
2000; 105
2004; 17
1994; 11
1995; 100
1988; 20
1977; 7
2003; 21
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 36
  year: 2009
  article-title: Observations of internal wave generation in the seasonally ice‐free Arctic
  publication-title: Geophys. Res. Lett.
– year: 2005
– volume: 25
  start-page: 1176
  year: 2012
  end-page: 1193
  article-title: Large decadal decline of the Arctic multiyear ice cover
  publication-title: J. Clim.
– volume: 22
  start-page: 165
  year: 2009
  end-page: 176
  article-title: Arctic sea ice retreat in 2007 follows thinning trend
  publication-title: J. Clim.
– volume: 35
  year: 2008
  article-title: Accelerated decline in the Arctic sea ice cover
  publication-title: Geophys. Res. Lett.
– volume: 14
  start-page: 1550
  year: 2001
  end-page: 1567
  article-title: The Arctic frontal zone as seen in the NCEP‐NCAR reanalysis
  publication-title: J. Clim.
– volume: 34
  year: 2007
  article-title: Arctic sea ice decline: Faster than forecast
  publication-title: Geophys. Res. Lett.
– volume: 5
  start-page: 1013
  year: 1992
  end-page: 1044
  article-title: The Canadian Climate Centre Second Generation General Circulation Model and its equilibrium climate
  publication-title: J. Clim.
– volume: Rep. WMO/TD‐987
  start-page: 7.14
  year: 2000
  end-page: 7.15
– volume: 20
  start-page: 851
  year: 1982
  end-page: 875
  article-title: Development of a turbulent closure model for geophysical fluid problems
  publication-title: Rev. Geophys.
– year: 1994
– volume: 132
  start-page: 2432
  year: 2004
  end-page: 2451
  article-title: Atmosphere–ocean coupled dynamics of cyclones in the midlatitudes
  publication-title: Mon. Weather Rev.
– volume: 36
  year: 2009
  article-title: Rapid change in freshwater content of the Arctic Ocean
  publication-title: Geophys. Res. Lett.
– volume: 112
  year: 2007
  article-title: The effect of a new snow and sea ice albedo scheme on regional climate model simulations
  publication-title: J. Geophys. Res.
– volume: 89
  start-page: 214
  year: 2010
  end-page: 220
  article-title: Dynamics of the Mackenzie River plume on the inner Beaufort Shelf during an open water period in summer
  publication-title: Estuarine Coastal Shelf Sci.
– volume: 32
  start-page: 329
  year: 1979
  end-page: 344
  article-title: Effects of storm surges on the Beaufort Sea coast, northern Alaska
  publication-title: Arctic
– volume: 89
  start-page: 10,615
  issue: C6
  year: 1984
  end-page: 10,622
  article-title: The sensitivity of a one‐dimensional thermodynamic sea ice model to changes in cloudiness
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 169
  year: 2008
  end-page: 182
  article-title: The influence of NAO and the Hudson Bay sea‐ice on the climate of eastern Canada
  publication-title: Clim. Dyn.
– volume: 114
  year: 2009
  article-title: Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the northwest Atlantic
  publication-title: J. Geophys. Res.
– volume: 481
  start-page: 66
  issue: 7379
  year: 2012
  end-page: 70
  article-title: Changing Arctic Ocean freshwater pathways
  publication-title: Nature
– volume: 94
  start-page: 14,485
  year: 1989
  end-page: 14,498
  article-title: The role of sea ice and other fresh water in the Arctic circulation
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 1017
  year: 2001
  end-page: 1032
  article-title: The effect of a storm on the 1992 summer sea ice cover of the Beaufort, Chukchi, and East Siberian Seas
  publication-title: J. Geophys. Res.
– volume: 62
  start-page: 1867
  year: 2005
  end-page: 1883
  article-title: Impact of sea spray on rapidly intensifying cyclones at midlatitudes
  publication-title: J. Atmos. Sci.
– volume: 21
  start-page: 1048
  year: 2008
  end-page: 1065
  article-title: The summer cyclone maximum over the central Arctic Ocean
  publication-title: J. Clim.
– year: 2008
– volume: 33
  year: 2006
  article-title: Future abrupt reductions in the summer Arctic sea ice
  publication-title: Geophys. Res. Lett.
– volume: 29
  issue: 23
  year: 2002
  article-title: The role of the Beaufort Gyre in Arctic climatic variability: Seasonal to decadal climate scales
  publication-title: Geophys. Res. Lett.
– volume: 30
  start-page: 203
  year: 2008
  end-page: 223
  article-title: An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional models
  publication-title: Clim. Dyn.
– volume: 36
  year: 2009
  article-title: A sea ice free summer Arctic within 30 years?
  publication-title: Geophys. Res. Lett.
– volume: 122
  start-page: 1306
  year: 1994
  end-page: 1325
  article-title: The Canadian regional data assimilation system: Operational and research applications
  publication-title: Mon. Weather Rev.
– volume: 30
  start-page: 2175
  year: 2010
  end-page: 2194
  article-title: Atmospheric moisture budget in the Arctic based on the ERA‐40 reanalysis
  publication-title: Int. J. Climatol.
– volume: 100
  start-page: 4791
  year: 1995
  end-page: 4806
  article-title: Responses of climate and cyclones to reductions in Arctic winter sea ice
  publication-title: J. Geophys. Res.
– volume: 31
  year: 2004
  article-title: Simulation of extratropical Hurricane Gustav using a coupled atmosphere–ocean‐sea spray model
  publication-title: Geophys. Res. Lett.
– volume: 21
  start-page: 405
  year: 2003
  end-page: 421
  article-title: Current and perturbed climate as simulated by the second‐generation Canadian Regional Climate Model (CRCM‐II) over northwestern North America
  publication-title: Clim. Dyn.
– volume: 55
  start-page: 6
  year: 2003
  end-page: 87
  article-title: The effects of interactions between surface forcings in the development of a model‐simulated polar low in Hudson Bay
  publication-title: Tellus, Ser. A
– volume: 108
  start-page: 1943
  year: 1980
  end-page: 1973
  article-title: Modeling a variable thickness sea ice cover
  publication-title: Mon. Weather Rev.
– volume: 23
  start-page: 333
  year: 2010
  end-page: 351
  article-title: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty‐first century
  publication-title: J. Clim.
– volume: 36
  start-page: 1835
  year: 2011
  end-page: 1849
  article-title: Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing
  publication-title: Clim. Dyn.
– volume: 11
  start-page: 1126
  year: 1994
  end-page: 1134
  article-title: The pressure gradient conundrum of sigma coordinate ocean models
  publication-title: J. Atmos. Oceanic Technol.
– volume: 36
  year: 2009
  article-title: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008
  publication-title: Geophys. Res. Lett.
– volume: 35
  year: 2008
  article-title: What drove the dramatic retreat of Arctic sea ice during summer 2007?
  publication-title: Geophys. Res. Lett.
– volume: 40
  start-page: 145
  year: 2002
  end-page: 158
  article-title: Storm climatology of the southern Beaufort Sea
  publication-title: Atmos. Ocean
– volume: 19
  start-page: 1730
  year: 2006
  end-page: 1747
  article-title: Toward a seasonally ice‐covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations
  publication-title: J. Clim.
– volume: 17
  start-page: 2300
  year: 2004
  end-page: 2317
  article-title: Climatology and interannual variability of Arctic cyclone activity: 1948–2002
  publication-title: J. Clim.
– volume: 80
  start-page: 4501
  year: 1975
  end-page: 4513
  article-title: The thickness of distribution of sea ice
  publication-title: J. Geophys. Res.
– volume: 62
  start-page: 220
  year: 2010
  end-page: 227
  article-title: Sensitivity of arctic summer sea ice coverage to global warming forcing: Towards reducing uncertainty in arctic climate change projections
  publication-title: Tellus, Ser. A
– volume: 47
  start-page: 2784
  year: 1990
  end-page: 2802
  article-title: A one‐dimensional entraining/detraining plume model and application in convective parameterization
  publication-title: J. Atmos. Sci.
– volume: 60
  start-page: 570
  year: 2008
  end-page: 586
  article-title: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic
  publication-title: Tellus, Ser. A
– volume: 94
  start-page: 10,937
  year: 1989
  end-page: 10,954
  article-title: An ice‐ocean coupled model
  publication-title: J. Geophys. Res.
– volume: 1
  start-page: 1276
  year: 1988
  end-page: 1295
  article-title: Synoptic activity in the Arctic Basin, 1979–1985
  publication-title: J. Clim.
– volume: 107
  issue: D19
  year: 2002
  article-title: Moisture budget of the Arctic atmosphere from TOVS satellite data
  publication-title: J. Geophys. Res.
– volume: 20
  start-page: 103
  year: 1988
  end-page: 151
  article-title: The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982
  publication-title: Prog. Oceanogr.
– volume: 7
  start-page: 482
  year: 1977
  end-page: 485
  article-title: On estimating insolation over the ocean
  publication-title: J. Phys. Oceanogr.
– volume: 119
  start-page: 457
  year: 1991
  end-page: 476
  article-title: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic
  publication-title: Mon. Weather Rev.
– volume: 105
  start-page: 1153
  year: 2000
  end-page: 1165
  article-title: Modeling the seasonal variation of sea ice in the Labrador Sea with a coupled multicategory ice model and the Princeton ocean model
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 98
  year: 2005
  end-page: 109
  article-title: Observed storminess patterns and trends in the circum‐Arctic coastal regime
  publication-title: Geo Mar. Lett.
– volume: 22
  start-page: 1
  year: 1984
  end-page: 22
  article-title: The heat budget at ocean weather station Bravo
  publication-title: Atmos. Ocean
– volume: 25
  start-page: 1079
  year: 2012
  end-page: 1095
  article-title: Simulated interannual variations of fresh water content and sea surface height in the Beaufort Sea
  publication-title: J. Clim.
– volume: 9
  start-page: 815
  year: 1979
  end-page: 846
  article-title: A dynamic thermodynamic sea ice model
  publication-title: J. Phys. Oceanogr.
– volume: 114
  year: 2009
  article-title: Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation and temperature
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 5777
  year: 2008
  end-page: 5796
  article-title: Arctic climate change as manifest in cyclone behavior
  publication-title: J. Clim.
– volume: 127
  start-page: 341
  year: 1999
  end-page: 362
  article-title: A semi‐Lagrangian semi‐implicit regional climate model: The Canadian RCM
  publication-title: Mon. Weather Rev.
– volume: 36
  year: 2009
  article-title: New perspectives on the synoptic development of the severe October 1992 Nome storm
  publication-title: Geophys. Res. Lett.
– volume: 464
  start-page: 1334
  year: 2010
  end-page: 1337
  article-title: The central role of diminishing sea ice in recent Arctic temperature amplification
  publication-title: Nature
– volume: 102
  start-page: 12,493
  year: 1997
  end-page: 12,514
  article-title: Two circulation regimes of the wind‐driven Arctic ocean
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Dramatic inter‐annual changes of perennial Arctic sea ice linked to abnormal summer storm activity
  publication-title: J. Geophys. Res.
– volume: 109
  year: 2004
  article-title: Strom‐driven mixing and potential impact on the Arctic Ocean
  publication-title: J. Geophys. Res.
– volume: 22
  start-page: 33
  year: 2004
  end-page: 46
  article-title: Internal variability of RCM simulations over an annual cycle
  publication-title: Clim. Dyn.
– volume: 109
  year: 2004
  article-title: Freshwater content variability in the Arctic Ocean
  publication-title: J. Geophys. Res.
– ident: e_1_2_9_65_1
  doi: 10.1029/2001JC001248
– ident: e_1_2_9_28_1
  doi: 10.1175/2008JCLI2521.1
– ident: e_1_2_9_56_1
  doi: 10.1029/2009GL039810
– ident: e_1_2_9_5_1
  doi: 10.1175/1520‐0493(1999)127<0341:ASISLR>2.0.CO;2
– ident: e_1_2_9_62_1
  doi: 10.1029/JC080i033p04501
– ident: e_1_2_9_45_1
  doi: 10.1007/s00382‐007‐0343‐9
– ident: e_1_2_9_55_1
  doi: 10.1029/JC089iC06p10615
– ident: e_1_2_9_44_1
  doi: 10.1029/2002GL015847
– ident: e_1_2_9_59_1
  doi: 10.4095/194148
– ident: e_1_2_9_22_1
  doi: 10.1002/joc.2039
– ident: e_1_2_9_30_1
  doi: 10.1175/2011JCLI4121.1
– ident: e_1_2_9_26_1
  doi: 10.1175/1520‐0493(1991)119<0457:EOSEFD>2.0.CO;2
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ecss.2010.06.010
– ident: e_1_2_9_68_1
  doi: 10.1111/j.1600‐0870.2010.00441.x
– ident: e_1_2_9_10_1
  doi: 10.1016/0079‐6611(88)90049‐3
– ident: e_1_2_9_27_1
  doi: 10.1007/s00382‐003‐0342‐4
– ident: e_1_2_9_4_1
  doi: 10.1007/s00382‐003‐0360‐2
– ident: e_1_2_9_20_1
  doi: 10.1029/1999JC000110
– ident: e_1_2_9_60_1
  doi: 10.1111/j.1600‐0870.2008.00314.x
– ident: e_1_2_9_41_1
  doi: 10.1029/2003GL018571
– ident: e_1_2_9_48_1
  doi: 10.14430/arctic2631
– ident: e_1_2_9_8_1
  doi: 10.1029/2007GL031972
– ident: e_1_2_9_35_1
  doi: 10.1175/1520‐0426(1994)011<1126:TPGCOS>2.0.CO;2
– ident: e_1_2_9_43_1
  doi: 10.1029/97JC00738
– ident: e_1_2_9_61_1
  doi: 10.1029/2007GL029703
– ident: e_1_2_9_36_1
  doi: 10.1029/2009GL038824
– ident: e_1_2_9_25_1
  doi: 10.1029/2006JD007693
– ident: e_1_2_9_42_1
  doi: 10.1175/JAS3436.1
– ident: e_1_2_9_70_1
  doi: 10.1175/1520‐0442(2004)017<2300:CAIVOA>2.0.CO;2
– ident: e_1_2_9_13_1
  doi: 10.1034/j.1600-0870.2003.201267.x
– ident: e_1_2_9_17_1
  doi: 10.1175/1520‐0493(1980)108<1943:MAVTSI>2.0.CO;2
– ident: e_1_2_9_9_1
  doi: 10.1175/2009JCLI3053.1
– ident: e_1_2_9_21_1
  doi: 10.3137/ao.400205
– ident: e_1_2_9_39_1
  doi: 10.1029/94JC02206
– ident: e_1_2_9_34_1
  doi: 10.1029/RG020i004p00851
– ident: e_1_2_9_11_1
– ident: e_1_2_9_57_1
  doi: 10.1175/2008JCLI2366.1
– ident: e_1_2_9_33_1
  doi: 10.1029/JC094iC08p10937
– ident: e_1_2_9_58_1
  doi: 10.1080/07055900.1984.9649181
– ident: e_1_2_9_23_1
  doi: 10.1007/s00382‐009‐0731‐4
– ident: e_1_2_9_50_1
  doi: 10.1038/nature09051
– ident: e_1_2_9_3_1
  doi: 10.1007/s00367‐004‐0191‐0
– ident: e_1_2_9_54_1
  doi: 10.1175/1520‐0442(2001)014<1550:TAFZAS>2.0.CO;2
– ident: e_1_2_9_51_1
  doi: 10.1029/2011JD015847
– ident: e_1_2_9_19_1
  doi: 10.1029/2006GL028024
– ident: e_1_2_9_32_1
  doi: 10.1029/2009GL037525
– ident: e_1_2_9_2_1
  doi: 10.1029/JC094iC10p14485
– ident: e_1_2_9_6_1
  doi: 10.1175/1520‐0493(1994)122<1306:TCRDAS>2.0.CO;2
– ident: e_1_2_9_49_1
  doi: 10.1175/1520‐0493(2004)132<2432:ACDOCI>2.0.CO;2
– ident: e_1_2_9_69_1
  doi: 10.1175/JCLI3767.1
– ident: e_1_2_9_16_1
  doi: 10.1175/1520‐0485(1979)009<0815:ADTSIM>2.0.CO;2
– ident: e_1_2_9_40_1
– ident: e_1_2_9_67_1
  doi: 10.1029/2008GL034005
– ident: e_1_2_9_63_1
  doi: 10.1029/2009GL037820
– ident: e_1_2_9_29_1
  doi: 10.1029/2008JD010869
– ident: e_1_2_9_37_1
  doi: 10.1038/nature10705
– ident: e_1_2_9_46_1
  doi: 10.1029/2009GL041291
– ident: e_1_2_9_52_1
  doi: 10.1175/2007JCLI1810.1
– ident: e_1_2_9_31_1
  doi: 10.1175/1520‐0442(1992)005<1013:TCCCSG>2.0.CO;2
– ident: e_1_2_9_53_1
  doi: 10.1175/1520‐0442(1988)001<1276:SAITAB>2.0.CO;2
– ident: e_1_2_9_12_1
– ident: e_1_2_9_14_1
  doi: 10.1029/2001JD001191
– ident: e_1_2_9_64_1
  doi: 10.1007/s00382‐007‐0286‐1
– ident: e_1_2_9_24_1
  doi: 10.1175/1520‐0469(1990)047<2784:AODEPM>2.0.CO;2
– ident: e_1_2_9_47_1
  doi: 10.1175/1520‐0485(1977)007<0482:OEIOTO>2.0.CO;2
– ident: e_1_2_9_66_1
  doi: 10.1029/1999JC900264
– ident: e_1_2_9_7_1
  doi: 10.1175/JCLI‐D‐11‐00113.1
– ident: e_1_2_9_18_1
  doi: 10.1029/2009JD011884
– ident: e_1_2_9_15_1
  doi: 10.1029/2003JC001940
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000803454
Score 2.2453108
Snippet The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The...
The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere-ice-ocean model. The...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Air temperature
Air-sea interactions
Arctic summer storm
Atmosphere
Atmospheric sciences
Atmospheric turbulence
Beaufort Sea
Boundary layers
Coastal waters
Cryosphere
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
Ice
Ice cover
Kinetic energy
Meteorology
Ocean-atmosphere interaction
Oceans
Sea ice
Sea surface temperature
Sensible heat
Storms
Troposphere
Upper ocean
Water content
Wind speed
Title Air-sea interactions during an Arctic storm
URI https://api.istex.fr/ark:/67375/WNG-QWT0MP22-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JD016985
https://www.proquest.com/docview/1033170718
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbYrpAQEoIC6rZllQP0UiIc5-Uco2bZqqJlKVsVuERO4ogVbFIlrdTe-An8Rn4J40deQlT0wCXyOE52428yD2dmjNBLy-OMZlliZuAumw73qJkECTWZw0BdM0KTVCxlH370Tz7RaObMuu1Su77_ijT0AdYic_YOaLc3hQ5oA-ZwBNTh-E-4h6uqDWCQaZBi5lT2Qt0lJe6HlUiO2hexkeu_GKhzXl40KDYBenId8XJd1qIaQRd--E4H9n75yovrFevkbaW36xLLOv0FBhGpQU2V_9hbcxSVBpXKkH1gKHgmIXgoSFUWpuaYSKVpaq3a6pw_RDYmouKpsEOOIlEahrqdamo-x7fj3NtGSq18ND-NLLBp7REaExA-IPvG4ezs82m78iYr6HSBQJYjU3sVAdKPDgjSJ-w-4fQJt094DeGA9FYbYuoZ1JkX8Chv-o8xsInG4vW-FjG6rAaAc7W_ysAB6rtR0g5aPkaPNH8YoeK8J-geLzbRVliLTyrl-sbYM2RbcU69ie6r3U5voDXnujU5BletrCQFFxx8X4HfpM89fJ9yVuhC6nDRQt3oKTKBs3_9-Al8aPR52lA8bbDCUDxtSJ5-hs7ezpYHh6be7MNMwQWwTS9nYmnAJTghbpIRnNmJZQUc0yAFOHPMMbNBR2SO72M3dXyCfWInPAf_JBduyHO0UZQF30JGCi4M9azUDXLPoYwFlGSJMKQ9ijl3vAl61Ux3fKFqusQyFoMEcR-WCdqTWLSDWPVNxEH6bnx-Mo8_nC_x8YKQOJqg6QCs9gLi2cIjoBO026AXa1lRw-_ZYLyDiQ-nX0tEb_03ccvZ23cbvoMedK_1Ltq4rK74CzSqs6spGtn2YqpfkN9CjbB_
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air%E2%80%90sea+interactions+during+an+Arctic+storm&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Long%2C+Zhenxia&rft.au=Perrie%2C+Will&rft.date=2012-08-16&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=D15&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JD016985&rft.externalDBID=10.1029%252F2011JD016985&rft.externalDocID=JGRD17743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon