Air-sea interactions during an Arctic storm
The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with th...
Saved in:
Published in: | Journal of Geophysical Research: Atmospheres Vol. 117; no. D15 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
Blackwell Publishing Ltd
16-08-2012
American Geophysical Union |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.
Key Points
Decrease of Beaufort ice cover increases the sea surface temperature by ~6C
Atmospheric responses to warmer SSTs are mainly limited to boundary layer
Enhanced storm‐generated surface winds, by as much as ~4 m/s |
---|---|
AbstractList | The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.
Key Points
Decrease of Beaufort ice cover increases the sea surface temperature by ~6C
Atmospheric responses to warmer SSTs are mainly limited to boundary layer
Enhanced storm‐generated surface winds, by as much as ~4 m/s The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm. Decrease of Beaufort ice cover increases the sea surface temperature by ~6C Atmospheric responses to warmer SSTs are mainly limited to boundary layer Enhanced storm‐generated surface winds, by as much as ~4 m/s The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere-ice-ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid-levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as 4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm-generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm. |
Author | Perrie, Will Long, Zhenxia |
Author_xml | – sequence: 1 givenname: Zhenxia surname: Long fullname: Long, Zhenxia organization: Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada – sequence: 2 givenname: Will surname: Perrie fullname: Perrie, Will email: perriew@dfo-mpo.gc.ca, (perriew@dfo-mpo.gc.ca organization: Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363898$$DView record in Pascal Francis |
BookMark | eNp9kE9Lw0AQxRdRsNbe_AAB8aTRmdkkmxxLq9VS_1LpcdkkG0ltk7qbov32bkkpnpzLwPB77zHvhB1WdaUZO0O4RqDkhgBxPASMkjg8YB3CMPKJgA5ZBzCIfSASx6xn7RzcBGEUAHbYZb80vtXKK6tGG5U1ZV1ZL1-bsvrwVOX1jTtlnm1qszxlR4VaWN3b7S57v7udDu79yfPoYdCf-FlIxP2oUIAugCClMM0Jcp4iJhriJBMiKECD4ilAHggBYRYIAkE81QVHKEJMeJedt74rU3-ttW3kvF6bykVKBM5RgMDYUVctlZnaWqMLuTLlUpmNg-S2Efm3EYdf7EyVzdSiMKrKSrvXUMQjHidbW95y3-VCb_71lOPR2xDdS9yp_FZV2kb_7FXKfMpIcBHK2dNIvs6m8PhCJIf8F2JPe5g |
CitedBy_id | crossref_primary_10_1016_j_ocemod_2013_05_006 crossref_primary_10_3389_fmars_2023_1065006 crossref_primary_10_1016_j_atmosres_2020_105183 crossref_primary_10_1002_2014GL061047 crossref_primary_10_1002_jgrd_50584 crossref_primary_10_1175_JCLI_D_17_0296_1 crossref_primary_10_1002_2016GL071748 crossref_primary_10_1007_s00382_014_2229_y crossref_primary_10_1175_JCLI_D_16_0415_1 crossref_primary_10_1080_07055900_2015_1029869 crossref_primary_10_1111_1365_2478_13300 crossref_primary_10_1016_j_oceano_2017_06_005 crossref_primary_10_1038_srep10295 crossref_primary_10_1080_07055900_2017_1369390 crossref_primary_10_1002_grl_50349 crossref_primary_10_1002_lno_10307 crossref_primary_10_1029_2020GB006796 crossref_primary_10_1002_joc_4094 crossref_primary_10_3390_atmos9020041 crossref_primary_10_5194_gmd_9_2335_2016 crossref_primary_10_1080_07055900_2015_1086295 |
Cites_doi | 10.1029/2001JC001248 10.1175/2008JCLI2521.1 10.1029/2009GL039810 10.1175/1520‐0493(1999)127<0341:ASISLR>2.0.CO;2 10.1029/JC080i033p04501 10.1007/s00382‐007‐0343‐9 10.1029/JC089iC06p10615 10.1029/2002GL015847 10.4095/194148 10.1002/joc.2039 10.1175/2011JCLI4121.1 10.1175/1520‐0493(1991)119<0457:EOSEFD>2.0.CO;2 10.1016/j.ecss.2010.06.010 10.1111/j.1600‐0870.2010.00441.x 10.1016/0079‐6611(88)90049‐3 10.1007/s00382‐003‐0342‐4 10.1007/s00382‐003‐0360‐2 10.1029/1999JC000110 10.1111/j.1600‐0870.2008.00314.x 10.1029/2003GL018571 10.14430/arctic2631 10.1029/2007GL031972 10.1175/1520‐0426(1994)011<1126:TPGCOS>2.0.CO;2 10.1029/97JC00738 10.1029/2007GL029703 10.1029/2009GL038824 10.1029/2006JD007693 10.1175/JAS3436.1 10.1175/1520‐0442(2004)017<2300:CAIVOA>2.0.CO;2 10.1034/j.1600-0870.2003.201267.x 10.1175/1520‐0493(1980)108<1943:MAVTSI>2.0.CO;2 10.1175/2009JCLI3053.1 10.3137/ao.400205 10.1029/94JC02206 10.1029/RG020i004p00851 10.1175/2008JCLI2366.1 10.1029/JC094iC08p10937 10.1080/07055900.1984.9649181 10.1007/s00382‐009‐0731‐4 10.1038/nature09051 10.1007/s00367‐004‐0191‐0 10.1175/1520‐0442(2001)014<1550:TAFZAS>2.0.CO;2 10.1029/2011JD015847 10.1029/2006GL028024 10.1029/2009GL037525 10.1029/JC094iC10p14485 10.1175/1520‐0493(1994)122<1306:TCRDAS>2.0.CO;2 10.1175/1520‐0493(2004)132<2432:ACDOCI>2.0.CO;2 10.1175/JCLI3767.1 10.1175/1520‐0485(1979)009<0815:ADTSIM>2.0.CO;2 10.1029/2008GL034005 10.1029/2009GL037820 10.1029/2008JD010869 10.1038/nature10705 10.1029/2009GL041291 10.1175/2007JCLI1810.1 10.1175/1520‐0442(1992)005<1013:TCCCSG>2.0.CO;2 10.1175/1520‐0442(1988)001<1276:SAITAB>2.0.CO;2 10.1029/2001JD001191 10.1007/s00382‐007‐0286‐1 10.1175/1520‐0469(1990)047<2784:AODEPM>2.0.CO;2 10.1175/1520‐0485(1977)007<0482:OEIOTO>2.0.CO;2 10.1029/1999JC900264 10.1175/JCLI‐D‐11‐00113.1 10.1029/2009JD011884 10.1029/2003JC001940 |
ContentType | Journal Article |
Copyright | Published in 2012 by the American Geophysical Union 2015 INIST-CNRS |
Copyright_xml | – notice: Published in 2012 by the American Geophysical Union – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 3V. 7TG 7UA 7XB 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M7S MBDVC P5Z P62 PATMY PCBAR PQEST PQQKQ PQUKI PTHSS PYCSY Q9U |
DOI | 10.1029/2011JD016985 |
DatabaseName | Istex Pascal-Francis CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest_Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-8996 |
EndPage | n/a |
ExternalDocumentID | 2734343051 10_1029_2011JD016985 26363898 JGRD17743 ark_67375_WNG_QWT0MP22_D |
Genre | article Feature |
GeographicLocations | Russian Federation Eurasia Arctic region Siberia Arctic Ocean polar regions Beaufort Sea |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A 08R ALUQN IQODW AAYXX CITATION 05W 0R~ 33P 3V. 50Y 52M 5VS 702 7TG 7UA 7XB 8-1 8FD 8FG 8FK A00 AAESR AAIHA AASGY AAZKR ABJCF ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AFKRA AFRAH AIURR ARAPS AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ K6- KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PQEST PQQKQ PQUKI PROAC PTHSS PYCSY Q9U R.K SUPJJ WBKPD WYJ |
ID | FETCH-LOGICAL-c5223-6fa0104520b25bd20d3b119e089c774f0e0a3b00d47705c4720723bef310f5193 |
ISSN | 0148-0227 2169-897X |
IngestDate | Fri Nov 08 03:49:44 EST 2024 Fri Nov 22 01:13:41 EST 2024 Sun Oct 22 16:06:17 EDT 2023 Sat Aug 24 01:02:06 EDT 2024 Wed Oct 30 10:01:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | D15 |
Keywords | atmosphere Energy transport boundary layer mixing simulation Wind velocity Summer troposphere Atmospheric temperature sea ice heat flux sensible heat kinetic energy concentration Sea surface temperature ocean-atmosphere interaction Sea ice ocean model turbulence Ice cover trajectory intensity warming heat transfer storms Surface wind |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5223-6fa0104520b25bd20d3b119e089c774f0e0a3b00d47705c4720723bef310f5193 |
Notes | ark:/67375/WNG-QWT0MP22-D ArticleID:2011JD016985 istex:0F5BB83CC7124D9A7667F7959FA694215EDBB11E |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011JD016985 |
PQID | 1033170718 |
PQPubID | 54657 |
PageCount | 20 |
ParticipantIDs | proquest_journals_1033170718 crossref_primary_10_1029_2011JD016985 pascalfrancis_primary_26363898 wiley_primary_10_1029_2011JD016985_JGRD17743 istex_primary_ark_67375_WNG_QWT0MP22_D |
PublicationCentury | 2000 |
PublicationDate | 16 August 2012 |
PublicationDateYYYYMMDD | 2012-08-16 |
PublicationDate_xml | – month: 08 year: 2012 text: 16 August 2012 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Atmospheres |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Simmonds, I., and K. Keay (2009), Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979-2008, Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810. Atkinson, D. E. (2005), Observed storminess patterns and trends in the circum-Arctic coastal regime, Geo Mar. Lett., 25, 98-109, doi:10.1007/s00367-004-0191-0. Serreze, M. C., et al. (2001), The Arctic frontal zone as seen in the NCEP-NCAR reanalysis, J. Clim., 14, 1550-1567, doi:10.1175/1520-0442(2001)014<1550:TAFZAS>2.0.CO;2. Murray, R. J., and I. J. Simmonds (1995), Responses of climate and cyclones to reductions in Arctic winter sea ice, J. Geophys. Res., 100, 4791-4806, doi:10.1029/94JC02206. Yao, T., C. L. Tang, and I. K. Peterson (2000), Modeling the seasonal variation of sea ice in the Labrador Sea with a coupled multicategory ice model and the Princeton ocean model, J. Geophys. Res., 105, 1153-1165, doi:10.1029/1999JC900264. Hudak, D. R., and J. M. C. Young (2002), Storm climatology of the southern Beaufort Sea, Atmos. Ocean, 40, 145-158, doi:10.3137/ao.400205. Serreze, M. C., and R. G. Barry (1988), Synoptic activity in the Arctic Basin, 1979-1985, J. Clim., 1, 1276-1295, doi:10.1175/1520-0442(1988)001<1276:SAITAB>2.0.CO;2. Holland, M. M., C. M. Bitz, and B. Tremblay (2006), Future abrupt reductions in the summer Arctic sea ice, Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024. Smith, S. D., and F. W. Dobson (1984), The heat budget at ocean weather station Bravo, Atmos. Ocean, 22, 1-22, doi:10.1080/07055900.1984.9649181. McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare (1992), The Canadian Climate Centre Second Generation General Circulation Model and its equilibrium climate, J. Clim., 5, 1013-1044, doi:10.1175/1520-0442(1992)005<1013:TCCCSG>2.0.CO;2. Comiso, J. C. (2012), Large decadal decline of the Arctic multiyear ice cover, J. Clim., 25, 1176-1193, doi:10.1175/JCLI-D-11-00113.1. Gachon, P., et al. (2003), The effects of interactions between surface forcings in the development of a model-simulated polar low in Hudson Bay, Tellus, Ser. A, 55, 6-87. Mesquita, M. D. S., D. E. Atkinson, I. Simmonds, K. Keay, and J. Gottschalck (2009), New perspectives on the synoptic development of the severe October 1992 Nome storm, Geophys. Res. Lett., 36, L13808, doi:10.1029/2009GL038824. Dickson, R. R., J. Meincke, S.-A. Malmberg, and A. J. Lee (1988), The "Great Salinity Anomaly" in the northern North Atlantic 1968-1982, Prog. Oceanogr., 20, 103-151, doi:10.1016/0079-6611(88)90049-3. Hibler, W. D. (1980), Modeling a variable thickness sea ice cover, Mon. Weather Rev., 108, 1943-1973, doi:10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2. Caya, D., and R. Laprise (1999), A semi-Lagrangian semi-implicit regional climate model: The Canadian RCM, Mon. Weather Rev., 127, 341-362, doi:10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2. Yang, J., J. Comiso, D. Walsh, R. Krishfield, and S. Honjo (2004), Strom-driven mixing and potential impact on the Arctic Ocean, J. Geophys. Res., 109, C04008, doi:10.1029/2001JC001248. McPhee, M. G., A. Proshutinsky, J. H. Morison, M. Steele, and M. B. Alkire (2009), Rapid change in freshwater content of the Arctic Ocean, Geophys. Res. Lett., 36, L10602, doi:10.1029/2009GL037525. Perrie, W., E. L. Andreas, W. Zhang, W. Li, J. Gyakum, and R. McTaggart-Cowan (2005), Impact of sea spray on rapidly intensifying cyclones at midlatitudes, J. Atmos. Sci., 62, 1867-1883, doi:10.1175/JAS3436.1. Zhang, X. (2010), Sensitivity of arctic summer sea ice coverage to global warming forcing: Towards reducing uncertainty in arctic climate change projections, Tellus, Ser. A, 62, 220-227, doi:10.1111/j.1600-0870.2010.00441.x. Long, Z., W. Perrie, C. L. Tang, E. Dunla, and J. Wang (2012), Simulated interannual variations of fresh water content and sea surface height in the Beaufort Sea, J. Clim., 25, 1079-1095, doi:10.1175/2011JCLI4121.1. Proshutinsky, A., and M. A. Johnson (1997), Two circulation regimes of the wind-driven Arctic ocean, J. Geophys. Res., 102, 12,493-12,514, doi:10.1029/97JC00738. Laprise, R., D. Caya, A. Frigon, and D. Paquin (2003), Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America, Clim. Dyn., 21, 405-421, doi:10.1007/s00382-003-0342-4. Kain, J. S., and J. M. Fritsch (1990), A one-dimensional entraining/detraining plume model and application in convective parameterization, J. Atmos. Sci., 47, 2784-2802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2. Joly, S., S. Senneville, D. Caya, and F. J. Saucier (2011), Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing, Clim. Dyn., 36, 1835-1849, doi:10.1007/s00382-009-0731-4. Zhang, J., R. Lindsay, M. Steele, and A. Schweiger (2008), What drove the dramatic retreat of Arctic sea ice during summer 2007?, Geophys. Res. Lett., 35, L11505, doi:10.1029/2008GL034005. Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony (1975), The thickness of distribution of sea ice, J. Geophys. Res., 80, 4501-4513, doi:10.1029/JC080i033p04501. Caya, D., and S. Biner (2004), Internal variability of RCM simulations over an annual cycle, Clim. Dyn., 22, 33-46, doi:10.1007/s00382-003-0360-2. Jakobson, E., and T. Vihma (2010), Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis, Int. J. Climatol., 30, 2175-2194, doi:10.1002/joc.2039. Screen, J. A., and I. Simmonds (2010), The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334-1337, doi:10.1038/nature09051. Reed, R. K. (1977), On estimating insolation over the ocean, J. Phys. Oceanogr., 7, 482-485, doi:10.1175/1520-0485(1977)007<0482:OEIOTO>2.0.CO;2. Mellor, G. L., T. Ezer, and L. Y. Oey (1994), The pressure gradient conundrum of sigma coordinate ocean models, J. Atmos. Oceanic Technol., 11, 1126-1134, doi:10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2. Deser, C., R. Tomas, M. Alexander, and D. Lawrence (2010), The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century, J. Clim., 23, 333-351, doi:10.1175/2009JCLI3053.1. Ren, X., W. Perrie, Z. Long, and J. Gyakum (2004), Atmosphere-ocean coupled dynamics of cyclones in the midlatitudes, Mon. Weather Rev., 132, 2432-2451, doi:10.1175/1520-0493(2004)132<2432:ACDOCI>2.0.CO;2. Simmonds, I., C. Burke, and K. Keay (2008), Arctic climate change as manifest in cyclone behavior, J. Clim., 21, 5777-5796, doi:10.1175/2008JCLI2366.1. Wang, M., and J. E. Overland (2009), A sea ice free summer Arctic within 30 years?, Geophys. Res. Lett., 36, L07502, doi:10.1029/2009GL037820. Higgins, M. E., and J. J. Cassano (2009), Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation and temperature, J. Geophys. Res., 114, D16107, doi:10.1029/2009JD011884. Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern (2009), Arctic sea ice retreat in 2007 follows thinning trend, J. Clim., 22, 165-176, doi:10.1175/2008JCLI2521.1. Mellor, G. L., and L. H. Kantha (1989), An ice-ocean coupled model, J. Geophys. Res., 94, 10,937-10,954, doi:10.1029/JC094iC08p10937. Sorteberg, A., and J. E. Walsh (2008), Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic, Tellus, Ser. A, 60, 570-586, doi:10.1111/j.1600-0870.2008.00314.x. Morison, J., et al. (2012), Changing Arctic Ocean freshwater pathways, Nature, 481(7379), 66-70, doi:10.1038/nature10705. Proshutinsky, A., R. H. Bourke, and F. A. McLaughlin (2002), The role of the Beaufort Gyre in Arctic climatic variability: Seasonal to decadal climate scales, Geophys. Res. Lett., 29(23), 2100, doi:10.1029/2002GL015847. Hibler, W. D. (1979), A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815-846, doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2. Rainville, L., and R. A. Woodgate (2009), Observations of internal wave generation in the seasonally ice-free Arctic, Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291. Wyser, K., et al. (2008), An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional models, Clim. Dyn., 30, 203-223, doi:10.1007/s00382-007-0286-1. Häkkinen, S., and A. Proshutinsky (2004), Freshwater content variability in the Arctic Ocean, J. Geophys. Res., 109, C03051, doi:10.1029/2003JC001940. Holt, B., and S. Martin (2001), The effect of a storm on the 1992 summer sea ice cover of the Beaufort, Chukchi, and East Siberian Seas, J. Geophys. Res., 106, 1017-1032, doi:10.1029/1999JC000110. Groves, D. G., and J. A. Francis (2002), Moisture budget of the Arctic atmosphere from TOVS satellite data, J. Geophys. Res., 107(D19), 4391, doi:10.1029/2001JD001191. Zhang, X., and J. E. Walsh (2006), Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations, J. Clim., 19, 1730-1747, doi:10.1175/JCLI3767.1. Shine, K. P., and R. G. Crane (1984), The sensitivity of a one-dimensional thermodynamic sea ice model to changes in cloudiness, J. Geophys. Res., 89(C6), 10,615-10,622, doi:10.1029/JC089iC06p10615. Køltzow, M. (2007), The effect of a new snow and sea ice albedo scheme on regional climate model simulations, J. Geophys. Res., 112, D07110, doi:10.1029/2006JD007693. Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze (2007), Arctic sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703. Serreze, M. C., and A. P. Barrett (2008), The summer cyclone maximum over the central Arctic Ocean, J. Clim., 21, 1048-1065, doi:10.1175/2007JCLI1810.1. Qian, M., et al. (2008), The influence of NAO and the Hudson Bay sea-ice on the climate of eastern Canada, Clim. Dyn., 31, 169-182, doi:10.1007/s00382-007-0343-9. Mellor, G. L., and T. Yamada (1982), Development of a turbulent closure model for geophysical fluid problems, Rev. Geophys., 20, 851-875, doi:10.1029/RG020i004p00851. Perrie, W., X. Ren, W. Zhang, and Z. Long (2004), Simulation o 2011; 116 2004; 22 2012; 481 2006; 33 1984; 22 2010; 464 2005; 62 2008; 35 2008; 30 2008; 31 1999; 127 1979; 32 2007; 34 2009; 114 2010; 62 2003; 55 2001; 106 2005; 25 1991; 119 2010; 23 1997; 102 2004; 132 2004; 31 1980; 108 1990; 47 2002; 40 1982; 20 2002; 107 2008; 21 2012; 25 2001; 14 2008; 60 2010; 30 1979; 9 1975; 80 1992; 5 2000; Rep. WMO/TD‐987 2009; 22 1984; 89 2008 2006; 19 2005 1994 2011; 36 2004; 109 2010; 89 1988; 1 2007; 112 2009; 36 1989; 94 1994; 122 2002; 29 2000; 105 2004; 17 1994; 11 1995; 100 1988; 20 1977; 7 2003; 21 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 36 year: 2009 article-title: Observations of internal wave generation in the seasonally ice‐free Arctic publication-title: Geophys. Res. Lett. – year: 2005 – volume: 25 start-page: 1176 year: 2012 end-page: 1193 article-title: Large decadal decline of the Arctic multiyear ice cover publication-title: J. Clim. – volume: 22 start-page: 165 year: 2009 end-page: 176 article-title: Arctic sea ice retreat in 2007 follows thinning trend publication-title: J. Clim. – volume: 35 year: 2008 article-title: Accelerated decline in the Arctic sea ice cover publication-title: Geophys. Res. Lett. – volume: 14 start-page: 1550 year: 2001 end-page: 1567 article-title: The Arctic frontal zone as seen in the NCEP‐NCAR reanalysis publication-title: J. Clim. – volume: 34 year: 2007 article-title: Arctic sea ice decline: Faster than forecast publication-title: Geophys. Res. Lett. – volume: 5 start-page: 1013 year: 1992 end-page: 1044 article-title: The Canadian Climate Centre Second Generation General Circulation Model and its equilibrium climate publication-title: J. Clim. – volume: Rep. WMO/TD‐987 start-page: 7.14 year: 2000 end-page: 7.15 – volume: 20 start-page: 851 year: 1982 end-page: 875 article-title: Development of a turbulent closure model for geophysical fluid problems publication-title: Rev. Geophys. – year: 1994 – volume: 132 start-page: 2432 year: 2004 end-page: 2451 article-title: Atmosphere–ocean coupled dynamics of cyclones in the midlatitudes publication-title: Mon. Weather Rev. – volume: 36 year: 2009 article-title: Rapid change in freshwater content of the Arctic Ocean publication-title: Geophys. Res. Lett. – volume: 112 year: 2007 article-title: The effect of a new snow and sea ice albedo scheme on regional climate model simulations publication-title: J. Geophys. Res. – volume: 89 start-page: 214 year: 2010 end-page: 220 article-title: Dynamics of the Mackenzie River plume on the inner Beaufort Shelf during an open water period in summer publication-title: Estuarine Coastal Shelf Sci. – volume: 32 start-page: 329 year: 1979 end-page: 344 article-title: Effects of storm surges on the Beaufort Sea coast, northern Alaska publication-title: Arctic – volume: 89 start-page: 10,615 issue: C6 year: 1984 end-page: 10,622 article-title: The sensitivity of a one‐dimensional thermodynamic sea ice model to changes in cloudiness publication-title: J. Geophys. Res. – volume: 31 start-page: 169 year: 2008 end-page: 182 article-title: The influence of NAO and the Hudson Bay sea‐ice on the climate of eastern Canada publication-title: Clim. Dyn. – volume: 114 year: 2009 article-title: Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the northwest Atlantic publication-title: J. Geophys. Res. – volume: 481 start-page: 66 issue: 7379 year: 2012 end-page: 70 article-title: Changing Arctic Ocean freshwater pathways publication-title: Nature – volume: 94 start-page: 14,485 year: 1989 end-page: 14,498 article-title: The role of sea ice and other fresh water in the Arctic circulation publication-title: J. Geophys. Res. – volume: 106 start-page: 1017 year: 2001 end-page: 1032 article-title: The effect of a storm on the 1992 summer sea ice cover of the Beaufort, Chukchi, and East Siberian Seas publication-title: J. Geophys. Res. – volume: 62 start-page: 1867 year: 2005 end-page: 1883 article-title: Impact of sea spray on rapidly intensifying cyclones at midlatitudes publication-title: J. Atmos. Sci. – volume: 21 start-page: 1048 year: 2008 end-page: 1065 article-title: The summer cyclone maximum over the central Arctic Ocean publication-title: J. Clim. – year: 2008 – volume: 33 year: 2006 article-title: Future abrupt reductions in the summer Arctic sea ice publication-title: Geophys. Res. Lett. – volume: 29 issue: 23 year: 2002 article-title: The role of the Beaufort Gyre in Arctic climatic variability: Seasonal to decadal climate scales publication-title: Geophys. Res. Lett. – volume: 30 start-page: 203 year: 2008 end-page: 223 article-title: An evaluation of Arctic cloud and radiation processes during the SHEBA year: Simulation results from eight Arctic regional models publication-title: Clim. Dyn. – volume: 36 year: 2009 article-title: A sea ice free summer Arctic within 30 years? publication-title: Geophys. Res. Lett. – volume: 122 start-page: 1306 year: 1994 end-page: 1325 article-title: The Canadian regional data assimilation system: Operational and research applications publication-title: Mon. Weather Rev. – volume: 30 start-page: 2175 year: 2010 end-page: 2194 article-title: Atmospheric moisture budget in the Arctic based on the ERA‐40 reanalysis publication-title: Int. J. Climatol. – volume: 100 start-page: 4791 year: 1995 end-page: 4806 article-title: Responses of climate and cyclones to reductions in Arctic winter sea ice publication-title: J. Geophys. Res. – volume: 31 year: 2004 article-title: Simulation of extratropical Hurricane Gustav using a coupled atmosphere–ocean‐sea spray model publication-title: Geophys. Res. Lett. – volume: 21 start-page: 405 year: 2003 end-page: 421 article-title: Current and perturbed climate as simulated by the second‐generation Canadian Regional Climate Model (CRCM‐II) over northwestern North America publication-title: Clim. Dyn. – volume: 55 start-page: 6 year: 2003 end-page: 87 article-title: The effects of interactions between surface forcings in the development of a model‐simulated polar low in Hudson Bay publication-title: Tellus, Ser. A – volume: 108 start-page: 1943 year: 1980 end-page: 1973 article-title: Modeling a variable thickness sea ice cover publication-title: Mon. Weather Rev. – volume: 23 start-page: 333 year: 2010 end-page: 351 article-title: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty‐first century publication-title: J. Clim. – volume: 36 start-page: 1835 year: 2011 end-page: 1849 article-title: Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing publication-title: Clim. Dyn. – volume: 11 start-page: 1126 year: 1994 end-page: 1134 article-title: The pressure gradient conundrum of sigma coordinate ocean models publication-title: J. Atmos. Oceanic Technol. – volume: 36 year: 2009 article-title: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008 publication-title: Geophys. Res. Lett. – volume: 35 year: 2008 article-title: What drove the dramatic retreat of Arctic sea ice during summer 2007? publication-title: Geophys. Res. Lett. – volume: 40 start-page: 145 year: 2002 end-page: 158 article-title: Storm climatology of the southern Beaufort Sea publication-title: Atmos. Ocean – volume: 19 start-page: 1730 year: 2006 end-page: 1747 article-title: Toward a seasonally ice‐covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations publication-title: J. Clim. – volume: 17 start-page: 2300 year: 2004 end-page: 2317 article-title: Climatology and interannual variability of Arctic cyclone activity: 1948–2002 publication-title: J. Clim. – volume: 80 start-page: 4501 year: 1975 end-page: 4513 article-title: The thickness of distribution of sea ice publication-title: J. Geophys. Res. – volume: 62 start-page: 220 year: 2010 end-page: 227 article-title: Sensitivity of arctic summer sea ice coverage to global warming forcing: Towards reducing uncertainty in arctic climate change projections publication-title: Tellus, Ser. A – volume: 47 start-page: 2784 year: 1990 end-page: 2802 article-title: A one‐dimensional entraining/detraining plume model and application in convective parameterization publication-title: J. Atmos. Sci. – volume: 60 start-page: 570 year: 2008 end-page: 586 article-title: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic publication-title: Tellus, Ser. A – volume: 94 start-page: 10,937 year: 1989 end-page: 10,954 article-title: An ice‐ocean coupled model publication-title: J. Geophys. Res. – volume: 1 start-page: 1276 year: 1988 end-page: 1295 article-title: Synoptic activity in the Arctic Basin, 1979–1985 publication-title: J. Clim. – volume: 107 issue: D19 year: 2002 article-title: Moisture budget of the Arctic atmosphere from TOVS satellite data publication-title: J. Geophys. Res. – volume: 20 start-page: 103 year: 1988 end-page: 151 article-title: The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982 publication-title: Prog. Oceanogr. – volume: 7 start-page: 482 year: 1977 end-page: 485 article-title: On estimating insolation over the ocean publication-title: J. Phys. Oceanogr. – volume: 119 start-page: 457 year: 1991 end-page: 476 article-title: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic publication-title: Mon. Weather Rev. – volume: 105 start-page: 1153 year: 2000 end-page: 1165 article-title: Modeling the seasonal variation of sea ice in the Labrador Sea with a coupled multicategory ice model and the Princeton ocean model publication-title: J. Geophys. Res. – volume: 25 start-page: 98 year: 2005 end-page: 109 article-title: Observed storminess patterns and trends in the circum‐Arctic coastal regime publication-title: Geo Mar. Lett. – volume: 22 start-page: 1 year: 1984 end-page: 22 article-title: The heat budget at ocean weather station Bravo publication-title: Atmos. Ocean – volume: 25 start-page: 1079 year: 2012 end-page: 1095 article-title: Simulated interannual variations of fresh water content and sea surface height in the Beaufort Sea publication-title: J. Clim. – volume: 9 start-page: 815 year: 1979 end-page: 846 article-title: A dynamic thermodynamic sea ice model publication-title: J. Phys. Oceanogr. – volume: 114 year: 2009 article-title: Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation and temperature publication-title: J. Geophys. Res. – volume: 21 start-page: 5777 year: 2008 end-page: 5796 article-title: Arctic climate change as manifest in cyclone behavior publication-title: J. Clim. – volume: 127 start-page: 341 year: 1999 end-page: 362 article-title: A semi‐Lagrangian semi‐implicit regional climate model: The Canadian RCM publication-title: Mon. Weather Rev. – volume: 36 year: 2009 article-title: New perspectives on the synoptic development of the severe October 1992 Nome storm publication-title: Geophys. Res. Lett. – volume: 464 start-page: 1334 year: 2010 end-page: 1337 article-title: The central role of diminishing sea ice in recent Arctic temperature amplification publication-title: Nature – volume: 102 start-page: 12,493 year: 1997 end-page: 12,514 article-title: Two circulation regimes of the wind‐driven Arctic ocean publication-title: J. Geophys. Res. – volume: 116 year: 2011 article-title: Dramatic inter‐annual changes of perennial Arctic sea ice linked to abnormal summer storm activity publication-title: J. Geophys. Res. – volume: 109 year: 2004 article-title: Strom‐driven mixing and potential impact on the Arctic Ocean publication-title: J. Geophys. Res. – volume: 22 start-page: 33 year: 2004 end-page: 46 article-title: Internal variability of RCM simulations over an annual cycle publication-title: Clim. Dyn. – volume: 109 year: 2004 article-title: Freshwater content variability in the Arctic Ocean publication-title: J. Geophys. Res. – ident: e_1_2_9_65_1 doi: 10.1029/2001JC001248 – ident: e_1_2_9_28_1 doi: 10.1175/2008JCLI2521.1 – ident: e_1_2_9_56_1 doi: 10.1029/2009GL039810 – ident: e_1_2_9_5_1 doi: 10.1175/1520‐0493(1999)127<0341:ASISLR>2.0.CO;2 – ident: e_1_2_9_62_1 doi: 10.1029/JC080i033p04501 – ident: e_1_2_9_45_1 doi: 10.1007/s00382‐007‐0343‐9 – ident: e_1_2_9_55_1 doi: 10.1029/JC089iC06p10615 – ident: e_1_2_9_44_1 doi: 10.1029/2002GL015847 – ident: e_1_2_9_59_1 doi: 10.4095/194148 – ident: e_1_2_9_22_1 doi: 10.1002/joc.2039 – ident: e_1_2_9_30_1 doi: 10.1175/2011JCLI4121.1 – ident: e_1_2_9_26_1 doi: 10.1175/1520‐0493(1991)119<0457:EOSEFD>2.0.CO;2 – ident: e_1_2_9_38_1 doi: 10.1016/j.ecss.2010.06.010 – ident: e_1_2_9_68_1 doi: 10.1111/j.1600‐0870.2010.00441.x – ident: e_1_2_9_10_1 doi: 10.1016/0079‐6611(88)90049‐3 – ident: e_1_2_9_27_1 doi: 10.1007/s00382‐003‐0342‐4 – ident: e_1_2_9_4_1 doi: 10.1007/s00382‐003‐0360‐2 – ident: e_1_2_9_20_1 doi: 10.1029/1999JC000110 – ident: e_1_2_9_60_1 doi: 10.1111/j.1600‐0870.2008.00314.x – ident: e_1_2_9_41_1 doi: 10.1029/2003GL018571 – ident: e_1_2_9_48_1 doi: 10.14430/arctic2631 – ident: e_1_2_9_8_1 doi: 10.1029/2007GL031972 – ident: e_1_2_9_35_1 doi: 10.1175/1520‐0426(1994)011<1126:TPGCOS>2.0.CO;2 – ident: e_1_2_9_43_1 doi: 10.1029/97JC00738 – ident: e_1_2_9_61_1 doi: 10.1029/2007GL029703 – ident: e_1_2_9_36_1 doi: 10.1029/2009GL038824 – ident: e_1_2_9_25_1 doi: 10.1029/2006JD007693 – ident: e_1_2_9_42_1 doi: 10.1175/JAS3436.1 – ident: e_1_2_9_70_1 doi: 10.1175/1520‐0442(2004)017<2300:CAIVOA>2.0.CO;2 – ident: e_1_2_9_13_1 doi: 10.1034/j.1600-0870.2003.201267.x – ident: e_1_2_9_17_1 doi: 10.1175/1520‐0493(1980)108<1943:MAVTSI>2.0.CO;2 – ident: e_1_2_9_9_1 doi: 10.1175/2009JCLI3053.1 – ident: e_1_2_9_21_1 doi: 10.3137/ao.400205 – ident: e_1_2_9_39_1 doi: 10.1029/94JC02206 – ident: e_1_2_9_34_1 doi: 10.1029/RG020i004p00851 – ident: e_1_2_9_11_1 – ident: e_1_2_9_57_1 doi: 10.1175/2008JCLI2366.1 – ident: e_1_2_9_33_1 doi: 10.1029/JC094iC08p10937 – ident: e_1_2_9_58_1 doi: 10.1080/07055900.1984.9649181 – ident: e_1_2_9_23_1 doi: 10.1007/s00382‐009‐0731‐4 – ident: e_1_2_9_50_1 doi: 10.1038/nature09051 – ident: e_1_2_9_3_1 doi: 10.1007/s00367‐004‐0191‐0 – ident: e_1_2_9_54_1 doi: 10.1175/1520‐0442(2001)014<1550:TAFZAS>2.0.CO;2 – ident: e_1_2_9_51_1 doi: 10.1029/2011JD015847 – ident: e_1_2_9_19_1 doi: 10.1029/2006GL028024 – ident: e_1_2_9_32_1 doi: 10.1029/2009GL037525 – ident: e_1_2_9_2_1 doi: 10.1029/JC094iC10p14485 – ident: e_1_2_9_6_1 doi: 10.1175/1520‐0493(1994)122<1306:TCRDAS>2.0.CO;2 – ident: e_1_2_9_49_1 doi: 10.1175/1520‐0493(2004)132<2432:ACDOCI>2.0.CO;2 – ident: e_1_2_9_69_1 doi: 10.1175/JCLI3767.1 – ident: e_1_2_9_16_1 doi: 10.1175/1520‐0485(1979)009<0815:ADTSIM>2.0.CO;2 – ident: e_1_2_9_40_1 – ident: e_1_2_9_67_1 doi: 10.1029/2008GL034005 – ident: e_1_2_9_63_1 doi: 10.1029/2009GL037820 – ident: e_1_2_9_29_1 doi: 10.1029/2008JD010869 – ident: e_1_2_9_37_1 doi: 10.1038/nature10705 – ident: e_1_2_9_46_1 doi: 10.1029/2009GL041291 – ident: e_1_2_9_52_1 doi: 10.1175/2007JCLI1810.1 – ident: e_1_2_9_31_1 doi: 10.1175/1520‐0442(1992)005<1013:TCCCSG>2.0.CO;2 – ident: e_1_2_9_53_1 doi: 10.1175/1520‐0442(1988)001<1276:SAITAB>2.0.CO;2 – ident: e_1_2_9_12_1 – ident: e_1_2_9_14_1 doi: 10.1029/2001JD001191 – ident: e_1_2_9_64_1 doi: 10.1007/s00382‐007‐0286‐1 – ident: e_1_2_9_24_1 doi: 10.1175/1520‐0469(1990)047<2784:AODEPM>2.0.CO;2 – ident: e_1_2_9_47_1 doi: 10.1175/1520‐0485(1977)007<0482:OEIOTO>2.0.CO;2 – ident: e_1_2_9_66_1 doi: 10.1029/1999JC900264 – ident: e_1_2_9_7_1 doi: 10.1175/JCLI‐D‐11‐00113.1 – ident: e_1_2_9_18_1 doi: 10.1029/2009JD011884 – ident: e_1_2_9_15_1 doi: 10.1029/2003JC001940 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000803454 |
Score | 2.2453108 |
Snippet | The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The... The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere-ice-ocean model. The... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Air temperature Air-sea interactions Arctic summer storm Atmosphere Atmospheric sciences Atmospheric turbulence Beaufort Sea Boundary layers Coastal waters Cryosphere Earth sciences Earth, ocean, space Exact sciences and technology Geophysics Ice Ice cover Kinetic energy Meteorology Ocean-atmosphere interaction Oceans Sea ice Sea surface temperature Sensible heat Storms Troposphere Upper ocean Water content Wind speed |
Title | Air-sea interactions during an Arctic storm |
URI | https://api.istex.fr/ark:/67375/WNG-QWT0MP22-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JD016985 https://www.proquest.com/docview/1033170718 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbYrpAQEoIC6rZllQP0UiIc5-Uco2bZqqJlKVsVuERO4ogVbFIlrdTe-An8Rn4J40deQlT0wCXyOE52428yD2dmjNBLy-OMZlliZuAumw73qJkECTWZw0BdM0KTVCxlH370Tz7RaObMuu1Su77_ijT0AdYic_YOaLc3hQ5oA-ZwBNTh-E-4h6uqDWCQaZBi5lT2Qt0lJe6HlUiO2hexkeu_GKhzXl40KDYBenId8XJd1qIaQRd--E4H9n75yovrFevkbaW36xLLOv0FBhGpQU2V_9hbcxSVBpXKkH1gKHgmIXgoSFUWpuaYSKVpaq3a6pw_RDYmouKpsEOOIlEahrqdamo-x7fj3NtGSq18ND-NLLBp7REaExA-IPvG4ezs82m78iYr6HSBQJYjU3sVAdKPDgjSJ-w-4fQJt094DeGA9FYbYuoZ1JkX8Chv-o8xsInG4vW-FjG6rAaAc7W_ysAB6rtR0g5aPkaPNH8YoeK8J-geLzbRVliLTyrl-sbYM2RbcU69ie6r3U5voDXnujU5BletrCQFFxx8X4HfpM89fJ9yVuhC6nDRQt3oKTKBs3_9-Al8aPR52lA8bbDCUDxtSJ5-hs7ezpYHh6be7MNMwQWwTS9nYmnAJTghbpIRnNmJZQUc0yAFOHPMMbNBR2SO72M3dXyCfWInPAf_JBduyHO0UZQF30JGCi4M9azUDXLPoYwFlGSJMKQ9ijl3vAl61Ux3fKFqusQyFoMEcR-WCdqTWLSDWPVNxEH6bnx-Mo8_nC_x8YKQOJqg6QCs9gLi2cIjoBO026AXa1lRw-_ZYLyDiQ-nX0tEb_03ccvZ23cbvoMedK_1Ltq4rK74CzSqs6spGtn2YqpfkN9CjbB_ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air%E2%80%90sea+interactions+during+an+Arctic+storm&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Long%2C+Zhenxia&rft.au=Perrie%2C+Will&rft.date=2012-08-16&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=D15&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JD016985&rft.externalDBID=10.1029%252F2011JD016985&rft.externalDocID=JGRD17743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |