The porosity of carbohydrate-based spray-dried microparticles containing limonene stabilized by pea protein: Correlation between porosity and oxidative stability
In this study, the effects of different concentrations of pea protein concentrate (PPC) in the physical properties, porosity features, and oxidative stability of maltodextrin-based spray-dried microparticles containing orange essential oil (OEO, rich in limonene) were evaluated. The use of PPC resul...
Saved in:
Published in: | Current research in food science Vol. 5; pp. 878 - 885 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-01-2022
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the effects of different concentrations of pea protein concentrate (PPC) in the physical properties, porosity features, and oxidative stability of maltodextrin-based spray-dried microparticles containing orange essential oil (OEO, rich in limonene) were evaluated. The use of PPC resulted in spray-dried microparticles with encapsulation efficiencies of about 99 wt%, without visible pores, and relatively high glass transition temperature (66,4 °C) at Aw ∼ 0.3. The nitrogen adsorption and positron annihilation lifetime spectroscopy measurements showed that the increase of PPC concentration from 2.4 to 4.8 wt% (g of PPC/100 g of emulsion) did not affect the porosity features of the microparticles. These results were confirmed by the profiles of OEO retention and limonene oxide production, which were similar for both samples throughout four weeks of storage. Based on these results, we verified that the lower amount of PPC we tested can effectively protect the OEO during storage, showing that a relatively cheaper orange flavor powder can be produced using less protein.
[Display omitted]
•Pea protein was an efficient stabilizer of limonene in spray-dried microparticles.•The effect of plant protein amount on the porosity of the microparticles was assessed by PALS.•The porosity of the microparticles explained the oxidative stability of limonene.•Limonene presented the same oxidative stability in microparticles containing 2.4 and 4.8 wt% of PPC (g of PPC/g of emulsion). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2665-9271 2665-9271 |
DOI: | 10.1016/j.crfs.2022.05.003 |