Electrospun Polyvinylpyrrolidone-Based Dressings Containing GO/ZnO Nanocomposites: A Novel Frontier in Antibacterial Wound Care

In recent years, the rapid emergence of antibiotic-resistant bacteria has become a significant concern in the healthcare field, and although bactericidal dressings loaded with various classes of antibiotics have been used in clinics, in addition to other anti-infective strategies, this alarming issu...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutics Vol. 16; no. 3; p. 305
Main Authors: Martín, Cristina, Ferreiro Fernández, Adalyz, Salazar Romero, Julia C, Fernández-Blázquez, Juan P, Mendizabal, Jabier, Artola, Koldo, Jorcano, José L, Rabanal, M Eugenia
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 22-02-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, the rapid emergence of antibiotic-resistant bacteria has become a significant concern in the healthcare field, and although bactericidal dressings loaded with various classes of antibiotics have been used in clinics, in addition to other anti-infective strategies, this alarming issue necessitates the development of innovative strategies to combat bacterial infections and promote wound healing. Electrospinning technology has gained significant attention as a versatile method for fabricating advanced wound dressings with enhanced functionalities. This work is based on the generation of polyvinylpyrrolidone (PVP)-based dressings through electrospinning, using a DomoBIO4A bioprinter, and incorporating graphene oxide (GO)/zinc oxide (ZnO) nanocomposites as a potent antibacterial agent. GO and ZnO nanoparticles offer unique properties, including broad-spectrum antibacterial activity for improved wound healing capabilities. The synthesis process was performed in an inexpensive one-pot reaction, and the nanocomposites were thoroughly characterized using XRD, TEM, EDX, SEM, EDS, and TGA. The antibacterial activity of the dispersions was demonstrated against and , Gram-negative and Gram-positive bacteria, respectively, using the well diffusion method and the spread plate method. Bactericidal mats were synthesized in a rapid and cost-effective manner, and the fiber-based structure of the electrospun dressings was studied by SEM. Evaluations of their antibacterial efficacy against and were explored by the disk-diffusion method, revealing an outstanding antibacterial capacity, especially against the Gram-positive strain. Overall, the findings of this research contribute to the development of next-generation wound dressings that effectively combat bacterial infections and pave the way for advanced therapeutic interventions in the field of wound care.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics16030305