Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4

Enzymatic conversion of chitin, a β-1,4 linked polymer of N -acetylglucosamine, is of major interest in areas varying from the biorefining of chitin-rich waste streams to understanding how medically relevant fungi remodel their chitin-containing cell walls. Although numerous chitinolytic enzymes hav...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 7; no. 1; pp. 1746 - 12
Main Authors: Liu, Zhanliang, Gay, Laurie M., Tuveng, Tina R., Agger, Jane W., Westereng, Bjørge, Mathiesen, Geir, Horn, Svein J., Vaaje-Kolstad, Gustav, van Aalten, Daan M. F., Eijsink, Vincent G. H.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 11-05-2017
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzymatic conversion of chitin, a β-1,4 linked polymer of N -acetylglucosamine, is of major interest in areas varying from the biorefining of chitin-rich waste streams to understanding how medically relevant fungi remodel their chitin-containing cell walls. Although numerous chitinolytic enzymes have been studied in detail, relatively little is known about enzymes capable of deacetylating chitin. We describe the structural and functional characterization of a 237 residue deacetylase ( An CDA) from Aspergillus nidulans FGSC A4. An CDA acts on chito-oligomers, crystalline chitin, chitosan, and acetylxylan, but not on peptidoglycan. The K m and k cat of An CDA for the first deacetylation of penta- N -acetyl-chitopentaose are 72 µM and 1.4 s −1 , respectively. Combining mass spectrometry and analyses of acetate release, it was shown that An CDA catalyses mono-deacetylation of (GlcNAc) 2 and full deacetylation of (GlcNAc) 3–6 in a non-processive manner. Deacetylation of the reducing end sugar was much slower than deacetylation of the other sugars in chito-oligomers. These enzymatic characteristics are discussed in the light of the crystal structure of An CDA, providing insight into how the chitin deacetylase may interact with its substrates. Interestingly, An CDA activity on crystalline chitin was enhanced by a lytic polysaccharide monooxygenase that increases substrate accessibility by oxidative cleavage of the chitin chains.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-02043-1